吳子媚 李林玉 陳璐 施孝金 陳海飛
摘 要 程序性細胞死亡受體-1(programmed cell death-1, PD-1)/程序性細胞死亡受體配體-1(programmed cell death-ligand 1, PD-L1)信號通路是誘導腫瘤免疫逃逸的主要機制,在腫瘤形成中起著免疫檢查點的作用。近年來,隨著抗PD-1/PD-L1單克隆抗體成功地用于治療黑素瘤、腎細胞癌、膀胱癌和非小細胞肺癌,PD-1/PD-L1抑制劑已成為實體瘤免疫治療研究中的熱點之一。本文概要介紹PD-1/PD-L1抑制劑用于結直腸癌免疫治療的研究進展。
關鍵詞 程序性細胞死亡受體-1 程序性細胞死亡受體配體-1 結直腸癌 腫瘤免疫治療 免疫檢查點抑制劑
中圖分類號:R979.19; R730.51 文獻標志碼:A 文章編號:1006-1533(2020)15-0018-04
Research advances of PD-1/PD-L1 inhibitors in the treatment of colorectal cancer
WU Zimei1*, LI Linyu1, CHEN Lu1, SHI Xiaojin1, 2, CHEN Haifei1, 2**(1. Department of Pharmacy, Northern Division of Huashan Hospital, Fudan University, Shanghai 201907, China; 2. Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China)
ABSTRACT Programmed cell death-1 (PD-1)/programmed cell death-ligand 1 (PD-L1) signaling pathway is the main mechanism of inducing tumor immune escape and plays the role of immune checkpoint in tumor formation. With the successful development of monoclonal antibodies against PD-1/PD-L1 in melanoma, renal cell carcinoma, bladder cancer and non-small cell lung cancer, PD-1/PD-L1 inhibitors have become a research hotspot in solid tumor immunotherapy. In this review, we present a comprehensive knowledge of immunotherapy through PD-1/PD-L1 blockade and review the related research advances in colorectal cancer.
KEY WORDS programmed cell death-1; programmed cell death-ligand 1; colorectal cancer; tumor immunotherapy; immune checkpoint inhibitors
結直腸癌是全球發(fā)病率排名第三、死亡率排名第四的癌癥類型[1]。有研究稱,到2030年,全球新發(fā)結直腸癌患者數(shù)將增加220萬人以上,因結直腸癌而死亡人數(shù)增加110萬人左右[2]。結直腸癌的發(fā)病因素是多方面的,包括病毒和細菌感染、吸煙、飲酒、肥胖、衰老、潰瘍性結腸炎和基因變異等[3-4],也可由遺傳不穩(wěn)定引起,包括染色體不穩(wěn)定、微衛(wèi)星不穩(wěn)定(microsatellite instability, MSI)和CpG島甲基化表型等[5]。近年來的研究還表明,免疫抑制亦可能參與了結腸癌的發(fā)生、發(fā)展過程[5]。
在過去10年中,由于貝伐珠單抗和西妥昔單抗等靶向治療藥物的面世,轉移性結直腸癌(metastatic colorectal cancer, mCRC)患者的總生存期得到明顯提高[6]。然而,對高危Ⅱ、Ⅲ期結腸癌的輔助治療,使用靶向治療藥物仍不能提高患者的無復發(fā)生存期和總生存期[7-8]。為了進一步提高結直腸癌的治療效果,無論是輔助治療還是姑息治療,都需要有新的有效藥物。相關研究提示,免疫檢查點分子如程序性細胞死亡受體-1(programmed cell death-1, PD-1)/程序性細胞死亡受體配體-1(programmed cell death-ligand 1, PD-L1)是結直腸癌免疫治療的潛在作用靶點[9]。本文概要介紹PD-1/ PD-L1抑制劑用于結直腸癌治療的研究進展。
1 PD-1/PD-L1
PD-1是CD8+ T淋巴細胞、CD4+ T淋巴細胞、自然殺傷細胞、B淋巴細胞和腫瘤浸潤淋巴細胞表面的共抑制受體之一[10]。PD-1能與PD-L1或程序性細胞死亡受體配體-2(programmed cell death-ligand 2, PD-L2)兩種配體發(fā)生相互作用。PD-L1和PD-L2均可表達于腫瘤細胞上和腫瘤基質中[11-12]。在腫瘤微環(huán)境中,PD-1與PD-L1的結合親和力較PD-1與PD-L2的結合親和力高2倍[13]。
2 結直腸癌與PD-1/PD-L1信號通路調(diào)節(jié)
結直腸癌微環(huán)境中存在著各種免疫細胞,包括B淋巴細胞、T淋巴細胞、腫瘤相關巨噬細胞、樹突狀細胞和腫瘤相關成纖維細胞。CD8+ T淋巴細胞是腫瘤發(fā)生適應性免疫應答時的主要腫瘤浸潤淋巴細胞。在正常生理條件下,T細胞在全身循環(huán)以識別抗原呈遞細胞表面的病原體衍生抗原。CD4+ T淋巴細胞和CD8+ T淋巴細胞上的T細胞受體與抗原呈遞細胞表面的主要組織相容性復合體(major histocompatibility complex, MHC)中的抗原結合并不足以激活T細胞。T細胞受體-MHC信號通路受共刺激或共抑制信號調(diào)節(jié)后,T細胞才會被激活或表現(xiàn)為耐受[14]。T細胞共刺激分子包括CD28和誘導性T細胞共刺激因子(inducible T cell co-stimulator, ICOS),它們可分別與抗原呈遞細胞和ICOS配體表面的B7-1/B7-2發(fā)生相互作用。T細胞共抑制分子包括細胞毒性T淋巴細胞抗原-4(cytotoxic T lymphocyte antigen-4, CTLA-4)和PD-1。CTLA-4可與抗原呈遞細胞上的B7-1/B7-2結合,在淋巴器官中起中心檢查點的作用。而PD-1是外周檢查點,會在腫瘤細胞等靶點上與其配體PD-L1或B7-H1、PD-L2、B7-DC發(fā)生相互作用[15]。PD-1/PD-L1軸是正常的生理免疫穩(wěn)態(tài)的關鍵決定因素。免疫細胞、特別是T細胞表面的PD-1與抗原呈遞細胞表面的PD-L1結合后產(chǎn)生抑制信號,防止免疫細胞在機體感染或外源體侵入時產(chǎn)生過度的免疫應答[16]。研究顯示,不同遺傳背景下的PD-1缺陷小鼠易患狼瘡樣自身免疫性疾病或致死性自身免疫性心肌病[17-18]。在腫瘤微環(huán)境中,PD-1與PD-L1結合后會抑制PI3K/AKT和Ras信號通路等,通過調(diào)控細胞周期檢查點蛋白和細胞增殖相關蛋白的表達,抑制T細胞的活化、增殖、存活、細胞因子的產(chǎn)生和其他效應功能。因此,PD-1/PD-L1抑制劑能夠增強機體對腫瘤抗原的免疫應答,從而呈現(xiàn)抗腫瘤活性。
3 PD-1/PD-L1在結直腸癌中的表達
不同研究報告的與MSI相關的結直腸癌中PD-L1表達水平的結果是矛盾的。一些研究發(fā)現(xiàn),高度MSI(microsatellite instability-high, MSI-H)型結直腸癌中PD-1和PD-L1的表達水平高于微衛(wèi)星穩(wěn)定的結直腸癌[19-20]。另有研究顯示,在BRAF突變的錯配修復基因缺失(defective mismatch repair, dMMR)腫瘤中PD-L1高表達[21-22]。相反,Droeser等[23]觀察到,在微衛(wèi)星穩(wěn)定的結直腸癌患者中PD-L1的表達水平較高。最近的一項研究則表明,在MSI-H型和微衛(wèi)星穩(wěn)定的結直腸癌患者間,PD-1和PD-L1表達水平均無顯著差異[24]。
4 PD-1/PD-L1抑制劑治療dMMR/MSI-H型結直腸癌
隨著免疫檢查點抑制劑治療惡性黑素瘤、腎細胞癌和肺癌的臨床療效得到確認,人們又開展了PD-1/PD-L1抑制劑治療結直腸癌的臨床研究[25]。不過,早期的初步研究顯示,免疫檢查點抑制劑對非選擇性結直腸癌的治療作用非常有限。例如,在抗PD-L1抗體BMS-936559治療難治性結直腸癌的Ⅰ期研究中,未觀察到有患者應答[26]。使用抗PD-1抗體納武單抗(nivolumab)治療19例結直腸癌患者,結果也未見有患者應答[27]。但有一項研究顯示,1例結直腸癌患者在接受納武單抗治療后,其腫瘤呈持續(xù)性緩解,且在經(jīng)納武單抗再次治療后獲完全緩解(持續(xù)時間>3年)[28-29]。進一步研究發(fā)現(xiàn),該患者屬dMMR/MSI-H型結直腸癌患者。
一項國際性、多中心、非盲法Ⅱ期研究進一步評估了納武單抗治療dMMR/MSI-H型mCRC患者的作用,結果顯示納武單抗治療可使患者獲得持續(xù)的腫瘤緩解或疾病穩(wěn)定。該研究共納入74例患者,其中51例患者的疾病穩(wěn)定時間≥12周,8例患者的腫瘤緩解時間≥1年[30]?!癈heckMate-142”研究評估了納武單抗聯(lián)合抗CTLA-4抗體伊匹單抗(ipilimumab)治療119例dMMR/MSI-H型mCRC患者的作用,結果顯示患者的總緩解率為55%,其中4例(3%)患者獲得完全緩解,61例(52%)患者獲得部分緩解,1年疾病無進展生存率和總生存率分別為71%和85%[31]。與單用納武單抗治療相比,聯(lián)合治療可提高療效,有望成為dMMR/MSI-H型mCRC患者治療的新的有效選擇。
在抗PD-1抗體派姆單抗(pembrolizumab)的Ⅱ期研究中,患者被分成dMMR型結直腸癌、錯配修復基因完整(proficient mismatch repair, pMMR)型結直腸癌和dMMR型非結直腸癌3組,他們均每2周接受1次經(jīng)靜脈輸注派姆單抗10 mg/kg的治療。結果發(fā)現(xiàn),dMMR型結直腸癌患者的總緩解率和20周免疫相關的疾病無進展生存率分別為40%(4/10例)和78%(7/9例),而pMMR型結直腸癌患者的此兩指標值分別為0%和11%(2/18例)[32]。派姆單抗治療dMMR型非結直腸癌患者的療效與治療dMMR型結直腸癌患者相似。此外,在開放性“KEYNOTE-164”研究中,124例dMMR/MSI-H型結腸癌患者經(jīng)每3周接受1次派姆單抗200 mg治療2年,結果顯示總緩解率為33%[33]。因此,dMMR被認為是對PD-1抑制劑治療有應答的可能標志物。
5 聯(lián)合PD-1/PD-L1抑制劑治療pMMR型結直腸癌
單用抗PD-1抗體治療pMMR型結直腸癌無效。一項隨機Ⅱ期研究共納入180例難治性pMMR型結直腸癌患者,評估了抗PD-L1抗體度伐單抗(durvalumab)聯(lián)合抗CTLA-4抗體曲美木單抗(tremelimumab)治療的作用。結果發(fā)現(xiàn),聯(lián)合治療組患者的中位總生存期延長至6.6個月[34],但疾病無進展生存期未獲顯著改善。
瑞格非尼(regorafenib)是一種血管形成和激酶抑制劑。一項ⅠB期研究在25例pMMR型結直腸癌患者中評估了瑞格非尼聯(lián)合納武單抗治療的作用,結果發(fā)現(xiàn)腫瘤應答率為36%,患者中位疾病無進展生存期為7.7個月[35]。
一項Ⅱ期研究在30例未經(jīng)治療的不能切除的pMMR型結直腸癌患者中評估了派姆單抗聯(lián)合奧沙利鉑-氟尿嘧啶-亞葉酸鈣方案(mFOLFOX6方案)治療的作用,結果顯示8周時的患者疾病穩(wěn)定率為100%,24周時的總緩解率為53%[36]。
6 目前存在的問題及展望
2017年,美國FDA已批準納武單抗和派姆單抗治療dMMR/MSI-H型mCRC患者。dMMR/MSI-H是結直腸癌患者接受免疫檢查點抑制劑治療有效的生物標志物。當然,并不是所有的dMMR/MSI-H型結直腸癌患者對現(xiàn)有免疫檢查點抑制劑治療均有應答。此外,到目前為止,免疫檢查點抑制劑治療pMMR/低度MSI型結直腸癌基本無效,而此類結直腸癌卻在mCRC患者中占絕大多數(shù)。相信隨著對PD-1/PD-L1信號通路調(diào)控T細胞功能及其活性的機制的深入研究,未來PD-1/PD-L1抑制劑會在結直腸癌治療方面發(fā)揮更大的作用。
參考文獻
[1] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012 [J]. CA Cancer J Clin, 2015, 65(2): 87-108.
[2] Arnold M, Sierra MS, Laversanne M, et al. Global patterns and trends in colorectal cancer incidence and mortality [J]. Gut, 2017, 66(4): 683-691.
[3] Willett WC. Diet and cancer: an evolving picture [J]. JAMA, 2005, 293(2): 233-234.
[4] Martinez-Useros J, Garcia-Foncillas J. Obesity and colorectal cancer: molecular features of adipose tissue [J/OL]. J Transl Med, 2016, 14: 21 [2020-03-13]. doi: 10.1186/s12967-016-0772-5.
[5] Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis [J]. Gastroenterology, 2008, 135(4): 1079-1099.
[6] Venook A. Critical evaluation of current treatments in metastatic colorectal cancer [J]. Oncologist, 2005, 10(4): 250-261.
[7] Allegra CJ, Yothers G, OConnell MJ, et al. Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08 [J]. J Clin Oncol, 2011, 29(1): 11-16.
[8] de Gramont A, Van Cutsem E, Schmoll HJ, et al. Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial [J]. Lancet Oncol, 2012, 13(12): 1225-1233.
[9] Yaghoubi N, Soltani A, Ghazvini K, et al. PD-1/PD-L1 blockade as a novel treatment for colorectal cancer [J]. Biomed Pharmacother, 2019, 110: 312-318.
[10] Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy [J]. J Clin Oncol, 2015, 33(17): 1974-1982.
[11] Konishi J, Yamazaki K, Azuma M, et al. B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression [J]. Clin Cancer Res, 2004, 10(15): 5094-5100.
[12] Ohigashi Y, Sho M, Yamada Y, et al. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer [J]. Clin Cancer Res, 2005, 11(8): 2947-2953.
[13] Cheng X, Veverka V, Radhakrishnan A, et al. Structure and interactions of the human programmed cell death 1 receptor[J]. J Biol Chem, 2013, 288(17): 11771-11785.
[14] Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms [J]. Mol Cell Biol, 2005, 25(21): 9543-9553.
[15] Mittal D, Gubin MM, Schreiber RD, et al. New insights into cancer immunoediting and its three component phases -elimination, equilibrium and escape [J]. Curr Opin Immunol, 2014, 27: 16-25.
[16] Ohaegbulam KC, Assal A, Lazar-Molnar E, et al. Human cancer immunotherapy with antibodies to the PD-1 and PDL1 pathway [J]. Trends Mol Med, 2015, 21(1): 24-33.
[17] Nishimura H, Nose M, Hiai H, et al. Development of lupuslike autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor [J]. Immunity, 1999, 11(2): 141-151.
[18] Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice [J]. Science, 2001, 291(5502): 319-322.
[19] Gatalica Z, Snyder C, Maney T, et al. Programmed cell death 1 (PD-1) and its ligand (PD-L1) in common cancers and their correlation with molecular cancer type [J]. Cancer Epidemiol Biomarkers Prev, 2014, 23(12): 2965-2970.
[20] Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints [J]. Cancer Discov, 2015, 5(1): 43-51.
[21] Cohen R, Svrcek M, Dreyer C, et al. New therapeutic opportunities based on DNA mismatch repair and BRAF status in metastatic colorectal cancer [J]. Curr Oncol Rep, 2016, 18(3): 18.
[22] Feng D, Qin B, Pal K, et al. BRAFV600E-induced, tumor intrinsic PD-L1 can regulate chemotherapy-induced apoptosis in human colon cancer cells and in tumor xenografts [J]. Oncogene, 2019, 38(41): 6752-6766.
[23] Droeser RA, Hirt C, Viehl CT, et al. Clinical impact of programmed cell death ligand 1 expression in colorectal cancer [J]. Eur J Cancer, 2013, 49(9): 2233-2242.
[24] Li Y, Liang L, Dai W, et al. Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer [J/OL]. Mol Cancer, 2016, 15(1): 55 [2020-03-13]. doi: 10.1186/s12943-016-0539-x.
[25] Passardi A, Canale M, Valgiusti M, et al. Immune checkpoints as a target for colorectal cancer treatment [J/OL]. Int J Mol Sci, 2017, 18(6): 1324 [2020-03-13]. doi: 10.3390/ ijms18061324.
[26] Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer [J]. N Engl J Med, 2012, 366(26): 2455-2465.
[27] Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer [J]. N Engl J Med, 2012, 366(26): 2443-2454.
[28] Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates [J]. J Clin Oncol, 2010, 28(19): 3167-3175.
[29] Lipson EJ, Sharfman WH, Drake CG, et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody [J]. Clin Cancer Res, 2013, 19(2): 462-468.
[30] Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study [J]. Lancet Oncol, 2017, 18(9): 1182-1191.
[31] Overman MJ, Lonardi S, Wong KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-reficient/microsatellite instability-high metastatic colorectal cancer [J]. J Clin Oncol, 2018, 36(8): 773-779.
[32] Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency [J]. N Engl J Med, 2015, 372(26): 2509-2520.
[33] Le DT, Kim TW, Van Cutsem E, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164 [J]. J Clin Oncol, 2020, 38(1): 11-19.
[34] Chen EX, Jonker DJ, Loree JM, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian Cancer Trials Group CO.26 study [J]. JAMA Oncol, 2020, 6(6): 1-8.
[35] Fukuoka S, Hara H, Takahashi N, et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603) [J]. J Clin Oncol, 2020, 38(18): 2053-2061.
[36] Shahda S, Noonan AM, Bekaii-Saab TS, et al. A phase II study of pembrolizumab in combination with mFOLFOX6 for patients with advanced colorectal cancer [J]. J Clin Oncol, 2017, 35(15 Suppl): 3541.