国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

植物TCP轉(zhuǎn)錄因子的研究進(jìn)展

2020-09-06 14:05安新艷樓盼盼郝娟
安徽農(nóng)業(yè)科學(xué) 2020年15期
關(guān)鍵詞:生長發(fā)育

安新艷 樓盼盼 郝娟

摘要TCPs是一類植物所特有的并普遍存在于植物中的轉(zhuǎn)錄因子家族。大多數(shù) TCP蛋白具有保守的非典型螺旋-環(huán)-螺旋的結(jié)構(gòu)域,研究表明,TCP轉(zhuǎn)錄因子與真核轉(zhuǎn)錄因子的bHLH類似,且該家族基因在植物體內(nèi)發(fā)揮著重要作用,如植物生長發(fā)育、激素反應(yīng)和逆境脅迫等。因而,TCP轉(zhuǎn)錄因子被越來越多的科研工作者所關(guān)注。迄今為止,科研工作者對TCP轉(zhuǎn)錄因子家族成員的生物學(xué)功能研究已經(jīng)取得了重大進(jìn)步??偨Y(jié)了TCP轉(zhuǎn)錄因子的研究進(jìn)展,為植物的遺傳改良、次生代謝產(chǎn)物合成和生物學(xué)功能提供了參考。

關(guān)鍵詞TCP轉(zhuǎn)錄因子;結(jié)構(gòu)特性;生長發(fā)育;生物學(xué)功能

中圖分類號Q943.2文獻(xiàn)標(biāo)識碼A文章編號0517-6611(2020)15-0020-04

doi:10.3969/j.issn.0517-6611.2020.15.006

開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):

Research Progress on Plant TCP Transcription Factors

AN Xinyan, LOU Panpan, HAO Juan

(Hangzhou Normal University, Hangzhou, Zhejiang 310000)

AbstractCharacteristic of the TCPs is a kind of universal existence in the family of transcription factors in plants. Most TCP proteins have conservative atypical helixloophelix structure domain, studies show that TCP transcription factors is similar to the bHLH eukaryotic transcription factors, the family genes in plants play an important role in the body, such as plant growth and development, and adversity stress hormone responses. Therefore, TCP transcription factors are being paid more and more attention by more and more researchers. So far, researchers have made significant progress in the biological function research of TCP transcription factors family members. The latest research progress on TCP transcription factors was summarized, in order to provide reference for plant genetic improvement, synthesis of secondary metabolites and biological function.

Key wordsTCP transcription factors;Structural characteristics;Growth and development;Biological function

基金項(xiàng)目

浙江省新苗計(jì)劃項(xiàng)目“CrSLS參與UV-B調(diào)控長春花生物堿合成的功能分析”(2025C5151910177);國家自然科學(xué)基金項(xiàng)目“棉花TCP轉(zhuǎn)錄因子家族基因的表達(dá)模式分析”(Y201533081),“陸地棉纖維發(fā)育相關(guān)TCP轉(zhuǎn)錄因子的挖掘和功能研究”(31601343)。

作者簡介安新艷(1994—),女,河南焦作人,碩士研究生,研究方向:藥用植物生物堿合成。*通信作者,講師,博士,從事藥用植物次生代謝調(diào)控研究。

收稿日期2019-10-11;修回日期2019-12-05

TCP轉(zhuǎn)錄因子是一類高等植物所特有的轉(zhuǎn)錄家族,由TEOSINTE BRANCHED 1(TB1)、CYCLOIDEA(CYC)和PROLIFERATING CELL FACTORS(PCFs)這3個分離到的成員的首字母縮寫而得名。鑒于TCP轉(zhuǎn)錄家族有著重要且廣泛的調(diào)控作用,區(qū)分并說明TCP轉(zhuǎn)錄因子的作用機(jī)制對研究植物生物學(xué)功能具備重要的意義。隨著不同物種基因組測序的完成,越來越多的TCP轉(zhuǎn)錄因子家族被相繼挖掘和分析鑒定,如從番茄中分離到30個TCP轉(zhuǎn)錄因子[1],從西瓜中篩選出來27個TCP轉(zhuǎn)錄因子[2],從油菜中篩選到39個TCP轉(zhuǎn)錄因子[3],不同棉花品種中的TCP轉(zhuǎn)錄因子家族也隨基因組測序的完成相繼被分離鑒定出來并進(jìn)行表達(dá)分析[4]。

許多報(bào)道表明TCP轉(zhuǎn)錄因子家族與植物成長發(fā)育的多個進(jìn)程以及脅迫條件下的生存有關(guān),因此TCP轉(zhuǎn)錄因子家族成員的功能研究受到科研工作者的普遍歡迎。筆者就植物TCP轉(zhuǎn)錄因子的最新研究進(jìn)展進(jìn)行介紹,并預(yù)測未來的研究方向。

1TCP轉(zhuǎn)錄因子的結(jié)構(gòu)特點(diǎn)及分類

TCP轉(zhuǎn)錄因子家族參與植物生物學(xué)功能的多個進(jìn)程,如植物分枝[5-6]、葉片發(fā)育[7]、激素途徑[8-9]、種子萌發(fā)[10]、晝夜節(jié)律[11]。而這些轉(zhuǎn)錄因子之所以具有這些功能特征主要是因?yàn)樗鼈儞碛斜环Q為TCP域的N末端非典型螺旋-環(huán)-螺旋(bHLH)結(jié)構(gòu)域。但是,TCP 轉(zhuǎn)錄因子又與bHLH 轉(zhuǎn)錄因子幾乎沒有同源性,并和不同于bHLH 轉(zhuǎn)錄因子識別的DNA結(jié)構(gòu)域結(jié)合[12]。 根據(jù)TCP蛋白保守結(jié)構(gòu)域的序列同源性分析,可將TCP蛋白分為兩類,即I類和Ⅱ類[13]。I類在TCP結(jié)構(gòu)域中缺失4個保守的氨基酸,Ⅱ類在TCP結(jié)構(gòu)域中插入4個保守的氨基酸,例如谷氨酸-半胱氨酸-谷氨酸(ECE)[14]延伸或富含精氨酸的R結(jié)構(gòu)域[15-16]。Ⅱ類成員可以根據(jù)TCP結(jié)構(gòu)域中的序列差異進(jìn)一步細(xì)分為CIN和CYC兩個分支[17]。CIN子代以Antirrhinum CINCINNATA(CIN)為代表[18],而CYC子代以CYC/TB1為代表[14]。

已知Ⅱ類TCP蛋白調(diào)節(jié)許多植物生長過程,最顯著的是植物發(fā)育(如枝葉分化[5]、腋生分生組織發(fā)育[9,19]、激素信號傳導(dǎo)[20]和脅迫[21]等)。例如,擬南芥中的AtBRC1[5]、水稻中的OsFC1[6]和郁金香中的TgTB1[22]參與腋芽的發(fā)育和分枝控制。另外,I類TCP成員參與植物子葉發(fā)育、生長和增殖[23-24]。如在擬南芥中,AtTCP15在雌蕊發(fā)育過程中調(diào)節(jié)內(nèi)部遺傳物質(zhì)復(fù)制以及細(xì)胞分裂素和生長素的刺激[8],AtTCP14和AtTCP15共同調(diào)節(jié)植物節(jié)間長度[7]和種子發(fā)芽[10],而AtTCP23參與植物開花節(jié)律和植物發(fā)育[25-26]。然而,由于它們結(jié)合的順式調(diào)控競爭位點(diǎn)相似,使得這兩類基因共同參與調(diào)控植物生長和發(fā)育[24,27]。

Liu等[28]利用系統(tǒng)發(fā)育分析表明TCP家族中的每個基因類別在其進(jìn)化過程中均保守地分布在陸地植物中,并且Ⅱ類基因的CYC和CIN基因在陸地植物建立之初就出現(xiàn)了(圖1)。

2TCP轉(zhuǎn)錄因子的生物學(xué)功能

最初的報(bào)道顯示TCP轉(zhuǎn)錄因子家族與細(xì)胞增殖和植物生長的調(diào)控有關(guān),此后又有許多研究表明TCP家族不同成員的詳細(xì)作用,這些研究揭示了TCPs參與調(diào)控了多個生物學(xué)功能的進(jìn)程并以不同的機(jī)制來發(fā)揮作用。

2.1植物生長發(fā)育功能

據(jù)報(bào)道TCP轉(zhuǎn)錄因子普遍參與了植物生長發(fā)育的生物學(xué)進(jìn)程。研究表明,TCP轉(zhuǎn)錄因子的Ⅱ類(CIN)成員主要參與葉片發(fā)育。之前的研究已經(jīng)報(bào)道了包括TCP2、TCP3、TCP4、TCP10和TCP24在內(nèi)的擬南芥TCP基因具有miR319結(jié)合位點(diǎn)。而miR319已經(jīng)證實(shí)了對這些AtTCP轉(zhuǎn)錄物具有切割活性,TCP轉(zhuǎn)錄因子的Ⅱ類(CIN)成員起著抑制葉子中細(xì)胞增殖的作用。具有高水平的miR319或低水平的miR319結(jié)合位點(diǎn)的TCP蛋白可能會導(dǎo)致過量的細(xì)胞增殖,從而導(dǎo)致擬南芥、金魚草和番茄中的皺葉或單子葉植物(大米和蔓生的草皮)中的葉變大[29];AtTCP3間接調(diào)節(jié)邊界特異性基因CUC和LOB的表達(dá)[30];在番茄LA中,這類基因主要參與調(diào)節(jié)葉片的形成[31]。除此之外,還有研究表明幾個CIN同源基因在細(xì)胞增殖中起到明顯作用[32];另外還有一些CYC家族成員參與調(diào)節(jié)枝條分化,如豌豆TCP轉(zhuǎn)錄因子PsBRC1作用于Strigolactones的下游以抑制芽的生長和控制枝條的分枝[32];有些基因在花的生長發(fā)育過程中起著重要作用[33-34]??傊?,這些結(jié)果表明CIN和CYC兩類基因主要參與植物發(fā)育,此外,雖然I類成員也參與調(diào)節(jié)植物的發(fā)育,但與Ⅱ類成員的作用相反。其中最顯著的功能是葉片發(fā)育的調(diào)節(jié):I類成員促進(jìn)細(xì)胞增殖,而Ⅱ類(CIN)成員則負(fù)調(diào)控此過程[35-36]。除此之外,I類成員還可以在許多其他發(fā)育功能過程中發(fā)揮作用。如擬南芥中的AtTCP14和AtTCP15基因在節(jié)間、葉片和花組織的細(xì)胞增殖中起作用,并影響節(jié)間長度和葉片形狀[7];菊花CmTCP14基因調(diào)節(jié)器官大小[37],蝴蝶蘭PePCF10基因影響胚珠發(fā)育[3];陸地棉GhTCP14基因參與植物生長素介導(dǎo)的棉纖維發(fā)育[38]。

2.2非生物脅迫功能

Mukhopadhyay等[39]證實(shí)了過表達(dá)OsTCP19可以誘導(dǎo)一些反應(yīng)通路如JA、ABA、IAA、CK和ET通路,并能促進(jìn)脂肪滴合成、降低水分損失和減少氧離子,進(jìn)而提高轉(zhuǎn)基因株系的甘露醇處理和高鹽的耐受力。

Guan等[40]、Almeida等[41]研究表明,使用一個雜化酵母(Y1H)系統(tǒng),可以確定5個TCP轉(zhuǎn)錄因子,使OSPCF2、OSCPP5、AtTCP20這3個轉(zhuǎn)錄因子去結(jié)合OsNHX1啟動子。研究發(fā)現(xiàn)這些轉(zhuǎn)錄因子編碼的基因在OsNHX1作用下可以參與調(diào)節(jié)不同的非生物脅迫反應(yīng),并證實(shí)OsPCF2調(diào)節(jié)參與鹽脅迫。

通過使用硝酸鹽增強(qiáng)劑篩選酵母單雜交系統(tǒng)中擬南芥轉(zhuǎn)錄因子的文庫,鑒定了轉(zhuǎn)錄因子基因TEOSINTE BRANCHED1 / CYCLOIDEA / PROLIFERATING的細(xì)胞因子1-20(TCP20)。TCP20屬于古老植物特有的基因家族,可調(diào)控芽、花和胚的發(fā)育。該植物具有結(jié)合100多個受硝酸鹽調(diào)節(jié)的基因能力,從而參與了硝酸鹽信號傳導(dǎo)。根據(jù)TCP20插入突變體的分析表明,它們在均質(zhì)硝酸鹽培養(yǎng)基上具有正常的初生和側(cè)根生長,但在分裂根中的異質(zhì)培養(yǎng)基上,其優(yōu)先側(cè)根生長(根覓食)受到損害。即使銨鹽均勻地存在于培養(yǎng)基中,突變體仍優(yōu)先抑制側(cè)根生長,這表明TCP20對硝酸鹽的刺激具有一定的響應(yīng)。比較TCP20突變體與NLP7突變體,發(fā)現(xiàn)TCP20突變體在根生長的局部控制方面有缺陷,但在根覓食反應(yīng)中沒有缺陷,這表明TCP20功能獨(dú)立于NLP7功能且與NLP7功能不同。進(jìn)一步的分析表明,無論局部硝酸鹽濃度如何,TCP20突變體均缺乏對根生長的系統(tǒng)控制??傊?,TCP20在介導(dǎo)擬南芥根硝酸鹽覓食的系統(tǒng)信號傳導(dǎo)途徑中起著關(guān)鍵作用[42]。

2.3生物脅迫功能

研究表明,在植物免疫中TCP基因有著顯著的作用。如擬南芥中的一些TCP基因,如Ⅱ類(CIN)成員中的AtTCP13和I類成員中的AtTCP14,15,19和21是作為病原體的效應(yīng)目標(biāo)[43]。在對旱稻(O.sativa)報(bào)道中,Ⅱ類(CIN)成員中的OsTCP21參與病原體防御[44]。在對西紅柿(S.lycopersicum)報(bào)道中,AtTCP14-2(AtTCP14的直系同源物)有助于增強(qiáng)對辣椒疫霉菌的免疫力[45]。同時,許多Ⅱ類TCP基因已被證明是植原體效應(yīng)[46]。如在擬南芥中,SAP11作用在Ⅱ類不穩(wěn)定的不同成員中,因此導(dǎo)致嚴(yán)重的葉起皺和茉莉酸水平下調(diào)[44,46]。最近,一些Ⅱ類(CYC)成員也被證明是SAP11效應(yīng)子(如小麥藍(lán)矮植原體效應(yīng)子SWP1[47-48])。研究表明TCP13、TCP14和TCP19 這3種免疫互作因子是2種病原體效應(yīng)物的直接靶標(biāo)[49]。進(jìn)一步的功能研究也表明了tcp13、tcp14和tcp19單突變體對2種不同的無毒性Hyalop-eronosporaarabidopsidis(Hpa)分離株(Emwa1和Emoy2)更敏感,因此這3種TCP轉(zhuǎn)錄因子中的每一種都是完整免疫系統(tǒng)功能所必需的;此外,TCP15突變體對毒性Hpa分離株Noco2的抗病性在增強(qiáng)[50]。

[6] TAKEDA T,SUWA Y,SUZUKI M,et al.The OsTB1 gene negatively regulates lateral branching in rice[J].The plant journal,2010,33(3):513-520.

[7] KIEFFER M,MASTER V,WAITES R,et al.TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis[J].Plant J,2011,68(1):147-158.

[8] LUCERO L E,UBERTIMANASSERO N G,ARCE A L,et al.TCP15 modulates cytokinin and auxin responses during gynoecium development in Arabidopsis[J].The plant journal,2015,84(2):267-282.

[9] NICOLAS M,CUBAS P.TCP factors:New kids on the signaling block[J].Current opinion in plant biology,2016,33:33-41.

[10] TATEMATSU ?K,NAKABAYASHI K,KAMIYA Y,et al.Transcription factor AtTCP14 regulates embryonic growth potential during seed germination in Arabidopsis thaliana[J].The plant journal,2010,53(1):42-52.

[11] PRUNEDAPAZ J L,BRETON G,PARA A,et al.A functional genomics approach reveals CHE as a component of the Arabidopsis?circadian clock[J].Science,2009,323(5920):1481-1485.

[12] KOSUGI S,OHASHI Y.PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene[J].The plant cell,1997,9(9):1607-1619.

[13] NAVAUD O,DABOS P,CARNUS E,et al.TCP transcription factors predate the emergence of land plants[J].Journal of molecular evolution,2007,65(1):23-33.

[14] HOWARTH D G,DONOGHUE M J.Phylogenetic analysis of the “ECE”(CYC/TB1)clade reveals duplications predating the core eudicots[J].Proceedings of the national academy of sciences of the United States of America,2006,103(24):9101-9106.

[15] CUBAS P,LAUTER N,DOEBLEY J,et al.The TCP domain:A motif found in proteins regulating plant growth and development[J].The plant journal,2010,18(2):215-222.

[16] NAVAUD O,DABOS P E,CARNUS E,et al.TCP transcription factors predate the emergence of land plants[J].Journal of molecular evolution,2007,65(1):23-33.

[17] MARTNTRILLO M,CUBAS P.TCP genes:A family snapshot ten years later[J].Trends in plant science,2009,15(1):31-39.

[18] CRAWFORD B C W,NATH U,CARPENTER R,et al.CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum[J].Plant Physiol,2004,135(1):244-253.

[19] DOEBLEY J,STEC A,HUBBARD L.The evolution of apical dominance in maize[J].Nature,1997,386(6624):485-488.

[20] LUO D,CARPENTER R,VINCENT C,et al.Origin of floral asymmetry in Antirrhinum[J].Nature,1996,383(6603):794-799.

[21] LI S T.The Arabidopsis thaliana?TCP transcription factors:A broadening horizon beyond development[J].Journal plant signaling & behavior,2015,10(7):1-12.

[22] MORENOPACHON N M,MUTIMAWURUGO M C,HEYNEN E,et al.Role of Tulipa gesneriana TEOSINTE BRANCHED1(TgTB1 )in the control of axillary bud outgrowth in bulbs[J].Plant reproduction,2017,31(2):1-13.

[23] VIOLA I L,UBERTI MANASSERO N G,RIPOLL R,et al.The Arabidopsis?class I TCP transcription factor AtTCP11 is a developmental regulator with distinct DNAbinding properties due to the presence of a threonine residue at position 15 of the TCP domain[J].Biochem J,2011,435(1):143-155.

[24] DANISMAN S,VAN DER WAL F,DHONDT S,et al.Arabidopsis class I and class Ⅱ TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically[J].Plant Physiol,2012,159(4):1511-1523.

[25] LI Z Y,LI B,DONG A W.The Arabidopsis transcription factor AtTCP15 regulates endoreduplication by modulating expression of key cellcycle genes[J].Molecular plant,2012,5(1):270-280.

[26] BALSEMOPIRES E,ANDRADE L R,SACHETTOMARTINS G,et al.Functional study of TCP23 in Arabidopsis thaliana?during plant development[J].Plant physiology and biochemistry,2013,67(3):120-125.

[27] LI S T.The Arabidopsis thaliana?TCP transcription Factors:A broadening horizon beyond development[J].Plant signaling &behavior,2015,10(7):1-12.

[28] LIU MM,WANGMM,YANG J,et al. Evolutionary and comparative expression analyses of TCP transcription factor gene family in land plants[J].Molecular scienes,2019,20(14):359.

[29] BRESSO E G,CHOROSTECKI U,RODRIGUEZ R E,et al.Spatial control of gene expression by miR319regulated TCP transcription factors in leaf development[J].Plant Physiol,2017,176(2):1694-1708.

[30] SZKLARCZYK D,MORRIS J H,COOK H,et al.The STRING database in 2017:Qualitycontrolled proteinprotein association networks,made broadly accessible[J].Nucleic acids research,2017,45:362-368.

[31] ZUO J H,ZHU B Z,F(xiàn)U D Q,et al.Sculpting the maturation,softening and ethylene pathway:The influences of microRNAs on tomato fruits[J].BMC Genomics,2012,13(1):1-12.

[32] VADDE B V L,CHALLA K R,NATH U.The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana[J].The plant journal,2018,93(2):259-269.

[33] BROHOLM S K,THTIHARJU S,LAITINEN R A E,et al.A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera(Asteraceae)inflorescence[J].PNAS,2008,105(26):9117-9122.

[34] YUAN Z,GAO S,XUE D W,et al.RETARDED PALEA1 controls palea development and floral zygomorphy in rice[J].Plant physiology,2009,149(1):235-244.

[35] LI C X,POTUSCHAK T,COLNCARMONA A,et al.Arabidopsis?TCP20 links regulation of growth and cell division control pathways[J].PNAS,2005,102(36):12978-12983.

[36] AGUILARMARTNEZ J A,SINHA N J.Analysis of the role of Arabidopsis class I TCP?genes AtTCP7,AtTCP8,AtTCP22,and AtTCP23?in leaf development[J].Front Plant Sci,2013,4(1):1-13.

[37] ZHANG T,QU Y X,WANG H B,et al.The heterologous expression of a chrysanthemum TCPP transcription factor CmTCP14 suppresses organ size and delays senescence in Arabidopsis thaliana[J].Plant physiology and biochemistry,2017,115:239-248.

[38] WANG M Y,ZHAO P M,CHENG H Q,et al.The cotton transcription factor TCP14 functions in auxinmediated epidermal cell differentiation and elongation[J].Plant physiology,2013,162(3):1669-1680.

[39] MUKHOPADHYAY P,TYAGI A K.OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4mediated pathways[J].Scientific reports,2015,5:1-11.

[40] GUAN P Z,RIPOLL J J,WANG R H,et al.Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J].PNAS,2017,114(9):2419-2424.

[41] ALMEIDA D M,GREGORIO G B,OLIVEIRA M M,et al.Five novel transcription factors as potential regulators of OsNHX1?gene expression in a salt tolerant rice genotype[J].Plant molecular biology,2016,93(1/2):61-77.

[42] GUAN P Z,WANG R C,NACRY P,et al.Nitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway[J].Proceedings of the national academy of sciences of the United States of America,2014,111(42):15267-15272.

[43] LOPEZ J A,SUN Y,BLAIR P B,et al.TCP threeway handshake:Linking developmental processes with plant immunity[J].Trends in plant science,2015,20(4):238-245.

[44] ZHANG C,DING Z M,WU K C,et al.Suppression of jasmonic acidmediated defense by viralinducible MicroRNA319 facilitates virus infection in rice[J].Molecular plant,2016,9(9):1302-1314.

[45] SONG T Q,MA Z C,SHEN D Y,et al.An oomycete CRN effector reprograms expression of plant HSP genes by targeting their promoters[J].PLOS Pathogens,2015,11(12):1-30.

[46] SUGIO A,KINGDOM H N,MACLEAN A M,et al.Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis[J].Proceedings of the national academy of sciences of the United States of America,2011,108(48):19111-19112.

[47] MINATO N,HIMENO M,HOSHI A,et al.The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways[J].Scientific reports,2014,4:1-17.

[48] FAN G Q,ZHANG S,ZHAI X Q,et al.Effects of antibiotics on the paulownia witches broom phytoplasmas and pathogenic protein related to witches broom symptom[J].Scientia silvae sinicae,2007,43(3):138-142.

[49] MASUDA H P,CABRAL L M,DE VEYLDER L,et al.ABAP1 is a novel plant Armadillo BTB protein involved in DNA replication and transcription[J].The EMBO Journal,2014,27(20):2746-2756.

[50] KEBROM T H,BURSON B L,F(xiàn)INLAYSON S A.Phytochrome B represses Teosinte Branched1?expression and induces sorghum axillary bud outgrowth in response to light signals[J].Plant physiology,2006,140(3):1109-1117.

[51] SUGIO A,KINGDOM H N,MACLEAN A M,et al.Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis[J].PNAS,2011,108(48):19111-19112.

[52] ROBINSON F R,F(xiàn)UCHS A F.The role of the cerebellum in voluntary eye movements[J].Annual review of neuroscience,2001,24(1):981-1004.

[53] MARTNTRILLO M,CUBAS P.TCP genes:A family snapshot ten years later[J].Trends in plant science,2010,15(1):31-39.

[54] HAO J,TU L L,HU H Y,et al.GbTCP,a cotton TCP transcription factor,confers fibre elongation and root hair development by a complex regulating system[J].Journal of experimental botany,2012,63(17):6267-6281.

[55] KOYAMA T,MITSUDA N,SEKI M,et al.TCP transcription factors regulate the activities of ASYMMETRIC LEAVES1 and miR164,as well as the auxin response,during differentiation of leaves in Arabidopsis[J].The plant cell,2010,22(11):3574-3588.

[56] UBERTIMANASSERO N G,LUCERO L E,VIOLA I L,et al.The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CINlike TCP proteins[J].Journal of experimental botany,2012,63(2):809-823.

[57] KROUK G,LACOMBE B,BIELACH A,et al.Nitrateregulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants[J].Development cell,2010,18(6):927-937.

[58] LI S T,ZACHGO S.TCP3 interacts with R2R3MYB proteins,promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana[J].The plant journal,2013,76(6):901-913.

猜你喜歡
生長發(fā)育
避雨栽培對宿遷地區(qū)早熟桃生長發(fā)育及果實(shí)品質(zhì)的影響
秸稈覆蓋和保水劑對烤煙生長發(fā)育的影響
溫度與降水條件對玉米生長發(fā)育的影響
冬油菜栽培技術(shù)探析
研究早期綜合干預(yù)對高危兒生長發(fā)育近期影響
兒童保健在兒童成長發(fā)育中的應(yīng)用效果分析
發(fā)展性照顧護(hù)理模式對低出生體重兒生長發(fā)育的影響
龙海市| 勐海县| 中西区| 洛宁县| 仙游县| 武夷山市| 兴业县| 瑞金市| 明溪县| 宜君县| 平昌县| 安徽省| 清水河县| 景洪市| 缙云县| 于田县| 双城市| 新竹县| 鄂伦春自治旗| 海兴县| 博野县| 和林格尔县| 云梦县| 河源市| 镇坪县| 阿合奇县| 吉木乃县| 麦盖提县| 奎屯市| 洱源县| 得荣县| 大理市| 沁阳市| 哈尔滨市| 花莲市| 天门市| 青海省| 凉山| 疏勒县| 读书| 昌乐县|