王麗,王朝輝,2,郭子糠,陶振魁,鄭洺鈞,黃寧,高志源,張欣欣,黃婷苗
黃土高原不同地點小麥籽粒礦質(zhì)元素的含量差異
王麗1,王朝輝1,2,郭子糠1,陶振魁1,鄭洺鈞1,黃寧1,高志源1,張欣欣1,黃婷苗1
(1西北農(nóng)林科技大學(xué)資源環(huán)境學(xué)院/農(nóng)業(yè)農(nóng)村部西北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室,陜西楊凌 712100;2西北農(nóng)林科技大學(xué)/旱區(qū)作物逆境生物學(xué)國家重點實驗室,陜西楊凌 712100)
【】研究同一區(qū)域不同地點小麥籽粒養(yǎng)分含量差異與土壤養(yǎng)分供應(yīng)和作物養(yǎng)分吸收利用之間的關(guān)系,為科學(xué)施肥和培肥土壤提供依據(jù)。于2017—2018年分別在陜西永壽和楊凌布置田間試驗,在施N 180 kg·hm-2、P2O5100 kg·hm-2、K2O 75 kg·hm-2的條件下種植來自我國不同麥區(qū)的20個小麥品種,收獲期取樣測定籽粒產(chǎn)量、各器官養(yǎng)分及土壤養(yǎng)分含量,分析兩地間土壤養(yǎng)分供應(yīng)與籽粒大、中、微量元素含量差異的關(guān)系。永壽小麥籽粒氮和鉀含量比楊凌低10.6%和6.7%,兩地小麥磷含量無顯著差異。永壽土壤氮磷供應(yīng)能力、小麥氮磷鉀吸收和向籽粒的轉(zhuǎn)移均高于楊凌;但試驗?zāi)攴萦缐鄣慕邓偭考捌浞植季葪盍璧母欣谛←溕L和產(chǎn)量形成,由此引起的產(chǎn)量增幅高于籽粒氮鉀吸收量增幅、與磷吸收量增幅接近,產(chǎn)量稀釋效應(yīng)是導(dǎo)致兩地間氮磷鉀含量變化的主要原因。永壽小麥籽粒鈣和鎂含量比楊凌高19.0%和10.3%,兩地硫含量無顯著差異。永壽土壤交換性鎂供應(yīng)能力低于楊凌,交換性鈣與楊凌無差異,但永壽土壤較低的pH、速效鉀和較高的有效硫更有利于小麥鈣鎂硫的吸收和向籽粒的轉(zhuǎn)移;與楊凌相比,永壽小麥籽粒鈣鎂吸收量增幅大于產(chǎn)量增幅、硫吸收量增幅與產(chǎn)量接近,這是兩地籽粒鈣鎂硫含量變化的主要原因。永壽小麥籽粒鐵、錳和銅含量比楊凌高9.3%、22.2%和12.7%,鋅含量比楊凌低63.1%。永壽 0—20 cm土層有效鐵錳含量與楊凌無差異,銅鋅含量低于楊凌;但永壽小麥灌漿期比楊凌長,有利于小麥從土壤中吸收微量元素,而鋅吸收被較高的有效磷抑制,導(dǎo)致永壽小麥鐵錳銅吸收和向籽粒的轉(zhuǎn)移高于楊凌而鋅吸收和轉(zhuǎn)移低于楊凌,這是兩地籽粒鐵錳銅含量變化的原因。在同一區(qū)域的不同地點,土壤養(yǎng)分供應(yīng)和降水差異引起的產(chǎn)量與養(yǎng)分吸收增減幅度不同是籽粒養(yǎng)分含量變化的主要原因。與楊凌相比,永壽小麥籽粒氮含量低的主要原因是產(chǎn)量稀釋效應(yīng);小麥磷和硫含量不降低的原因是土壤較高的有效磷和有效硫供應(yīng)使得小麥磷、硫吸收量與產(chǎn)量以相近幅度增加;小麥籽粒鉀、鋅含量低的原因分別是土壤鉀鋅供應(yīng)不足和磷鋅拮抗;小麥鈣鎂含量的增加主要是因為較低的土壤pH和速效鉀促進(jìn)了鈣鎂吸收和轉(zhuǎn)移;小麥籽粒鐵錳銅含量的增加主要歸因于較長的灌漿期增加了這些元素的吸收和向籽粒的轉(zhuǎn)移。農(nóng)業(yè)生產(chǎn)中應(yīng)根據(jù)當(dāng)?shù)赝寥鲤B(yǎng)分供應(yīng)和氣候特點有針對性地調(diào)控施肥,使小麥養(yǎng)分吸收與產(chǎn)量變化相協(xié)調(diào),在實現(xiàn)增產(chǎn)的同時提高籽粒礦質(zhì)營養(yǎng)品質(zhì)。
旱地;小麥;籽粒;礦質(zhì)元素;土壤養(yǎng)分;黃土高原
【研究意義】氮和硫是蛋白質(zhì)重要組成元素,所有生物體都不可或缺[1]。鎂是葉綠素、核酸酶等的重要成分,植物缺鎂會嚴(yán)重影響光合作用,人體缺鎂會導(dǎo)致精神抑郁、心肌壞死等疾病[2]。鐵參與葉綠素合成與呼吸作用,植物缺鐵會影響?zhàn)B分吸收,人體缺鐵易導(dǎo)致缺鐵性貧血等疾病[3]。鋅與人體智力發(fā)育和免疫功能有關(guān),缺鋅易導(dǎo)致智力遲緩、免疫力下降等疾病[4]。目前全球約有1/3人口缺乏鐵、鋅等礦質(zhì)營養(yǎng)元素[5-6]。谷物是人體礦質(zhì)營養(yǎng)元素的重要來源。小麥作為我國三大主糧之一,2016年總產(chǎn)量1.3億t,占世界總產(chǎn)17.6%[7]。旱地,包括有灌溉條件的旱地,生產(chǎn)的小麥占世界小麥總產(chǎn)量的75%以上[8]。旱地土壤貧瘠、水分缺乏,限制小麥生長和營養(yǎng)元素吸收累積。關(guān)注旱地小麥的礦質(zhì)營養(yǎng)品質(zhì)對人體健康有重要意義?!厩叭搜芯窟M(jìn)展】植物吸收的養(yǎng)分主要來源于土壤和肥料。施用化學(xué)肥料尤其是氮磷鉀肥對作物營養(yǎng)品質(zhì)或元素含量的影響已有大量報道。在我國灌區(qū),適當(dāng)增加氮鉀基肥,減少后期追肥,可提高弱筋小麥籽粒蛋白質(zhì)含量[9];增加氮肥用量或追施比例可提高小麥谷醇溶蛋白比例和籽粒氮含量[10];稻田施氮160 kg N·hm-2使水稻籽粒蛋白質(zhì)含量升高9.80%,籽粒鐵和錳含量增加28.96%和22.16%,籽粒銅和鋅含量升高58.31%和16.00%[11]。在旱地,施用氮磷肥使高氮小麥品種籽粒氮含量提高37.5%,磷、鉀含量分別降低5.9%、11.9%,莖葉氮、磷、鉀含量分別增加150.0%、33.3%和28.9%[12];小麥籽粒鋅含量隨施氮量增加而升高,隨施磷量增加而降低,施氮量和施磷量每增加100 kg·hm-2,籽粒鋅含量分別增加4.0 mg·kg-1和降低9.2 mg·kg-1[13]。施用微肥或植物生長調(diào)節(jié)劑對谷物礦質(zhì)營養(yǎng)品質(zhì)也有較大影響。在非洲梅克勒大學(xué)研究站和梅爾法農(nóng)民培訓(xùn)中心的試驗發(fā)現(xiàn),開花期葉噴25 kg·hm-2硫酸鐵與低播種量(125 kg·hm-2)的小麥籽粒蛋白質(zhì)含量比高播種量(175 kg·hm-2)提高了6.04%[14]。在印度中央邦大學(xué)的試驗表明,葉噴30 kg·hm-2鋅肥可使水稻籽粒和秸稈的氮含量分別增加0.2%和11.46 kg·hm-2 [15]。在塞爾維亞的田間試驗發(fā)現(xiàn),開花期施用鋯石可顯著增加大豆粒重、β-胡蘿卜素和鐵含量,施用生物調(diào)節(jié)劑可增加大豆鐵和錳含量、降低胡蘿卜素含量[16]。西班牙巴斯克試驗站研究發(fā)現(xiàn),小麥和油菜籽粒氮與硫含量隨施氮量的增加而增加,但施硫?qū)ψ蚜A蚝繜o影響[17]。施肥對作物養(yǎng)分含量的影響主要是通過改變土壤養(yǎng)分供應(yīng)能力來實現(xiàn)的。關(guān)于土壤養(yǎng)分供應(yīng)改變與作物籽粒礦質(zhì)元素含量關(guān)系的田間試驗研究大多在同一地點進(jìn)行。在我國黃土高原旱地,施磷提高了土壤有效磷含量、冬小麥籽粒磷和鉀含量,但籽粒氮和鋅含量降低[18]。河南旱地試驗發(fā)現(xiàn),增施氮肥可提高土壤硝態(tài)氮含量進(jìn)而提高土壤供氮能力,在花后10 d時高肥力田塊的小麥旗葉氮含量顯著高于低肥力田塊[19]。陜西長武旱地試驗表明,種植綠肥能培肥土壤,使小麥籽粒氮和鋅含量分別增加12.1%和12.6%,但對磷、硫、鐵含量無顯著影響[20]。近年來,關(guān)于不同地點的作物養(yǎng)分含量差異也有報道,但不同地點施肥量差異很大,難以確定導(dǎo)致作物養(yǎng)分含量差異的關(guān)鍵土壤自身因素。山西、陜西、甘肅的試驗發(fā)現(xiàn),覆膜栽培促進(jìn)土壤養(yǎng)分活化和吸收,使小麥籽粒產(chǎn)量提高13.7%,但籽粒硫含量降低9.0%[21]。我國不同麥區(qū)的研究表明,葉噴鋅肥平均可使籽粒鋅含量提高5.2 mg·kg-1,籽粒鋅含量變異與土壤pH、有效鋅有關(guān)[22]。我國主要麥區(qū)599個地塊取樣分析發(fā)現(xiàn),旱地小麥單作區(qū)的籽粒鋅含量與土壤有效鉀、有效鋅正相關(guān),與有效鐵負(fù)相關(guān);麥玉輪作區(qū)小麥籽粒鋅與土壤有效鋅正相關(guān),與有效磷負(fù)相關(guān);稻麥輪作區(qū)小麥籽粒鋅與土壤銨態(tài)氮和有效鋅正相關(guān)[23]?!颈狙芯壳腥朦c】可見,關(guān)于施用化學(xué)肥料、栽培措施、土壤養(yǎng)分供應(yīng)及理化性質(zhì)與谷物籽粒礦質(zhì)元素含量、營養(yǎng)品質(zhì)及養(yǎng)分吸收利用的關(guān)系已有大量研究,但針對同一區(qū)域內(nèi)不同地點土壤養(yǎng)分供應(yīng)與作物養(yǎng)分含量、養(yǎng)分吸收利用之間的關(guān)系的研究較少?!緮M解決的關(guān)鍵問題】本研究于2017—2018年選擇來自全國不同麥區(qū)的20個小麥品種,分別在黃土高原旱地兩個不同地點布置相同施肥處理的田間試驗,研究不同地點小麥籽粒礦質(zhì)元素含量差異與土壤理化性質(zhì)、養(yǎng)分供應(yīng)的關(guān)系并解釋背后的營養(yǎng)學(xué)機制,為調(diào)控作物礦物質(zhì)營養(yǎng)品質(zhì)提供理論依據(jù)。
試驗始于2017年9月在陜西永壽(34°44′N, 108°12′E)和楊凌(34°16′N, 108°04′E)同時開展。永壽平均海拔970 m,年均溫10.5℃,試驗期間降水量平均600.8 mm;楊凌地處渭河三級階地,平均海拔525 m,年均溫12.9℃,試驗期間降水量平均650.6 mm,兩地均屬典型旱作雨養(yǎng)農(nóng)業(yè)區(qū)。小麥為主要糧食作物,采用一年一熟種植,每年9月下旬到10月初播種,次年6月中旬收獲。土壤類型為土墊旱耕人為土,播前土壤(0—20 cm)和(20—40 cm)基本理化特性見表1。夏季休閑期(7、8、9月)降水量永壽分別為55.1、73.4和53.2 mm(圖1-a),楊凌分別為48.95、70.1和97.8 mm(圖1-b)。
兩地采用相同的方案。施基肥,包括施氮磷鉀肥。施肥量為N 180 kg·hm-2(尿素,N 46%)、P2O5100 kg·hm-2(過磷酸鈣,P2O516%)、K2O 75 kg·hm-2(硫酸鉀,K2O 52%),種植20個小麥品種。供試小麥品種來自我國不同麥區(qū),其中西北麥區(qū)4個,黃淮海麥區(qū)14個,長江中下游麥區(qū)1個和西南麥區(qū)1個。試驗采用隨機區(qū)組設(shè)計,小區(qū)面積 2.0 m2(2.0 m×1.0 m),常規(guī)平作、人工點播,株距2.5 cm,行距20 cm,種植 5 行,4 次重復(fù)。永壽和楊凌試驗分別于2017年9 月29日和10月20日播種,均在次年6月12日和5日收獲。整個生育期無灌溉,其他田間管理措施與當(dāng)?shù)剞r(nóng)戶一致。
表1 2017年冬小麥播種前供試土壤0—40 cm土層理化性質(zhì)
不同小寫字母表示地點間差異達(dá)5% 顯著水平 Different lowercase letters represent the significant difference between sites (<0.05)
圖1 兩個試驗點2017—2018年休閑期(7—9月)和冬小麥生長季(10月至來年6月)降水量
1.3.1 土壤樣品采集及測定 小麥播前期,采集0— 40 cm土層的土壤,20 cm為一層,每區(qū)組5 點,4 次重復(fù),同層樣品剔除根系等雜物后混勻取500 g左右,剩余土壤按層次回填田間并壓實。
新鮮土樣捏碎、混勻,采用烘干法測定土壤含水量[24],1 mol·L-1KCl溶液浸提、連續(xù)流動分析儀(AA3,德國)測定硝、銨態(tài)氮。土樣風(fēng)干后,過1 mm篩保存后取部分過0.15和0.25 mm篩。過0.15 mm篩后土樣,采用重鉻酸鉀容量法-外加熱法測定有機質(zhì),過1 mm篩后土樣,用水土比2.5﹕1 浸提測定pH,用濃硫酸消煮、連續(xù)流動分析儀測定全氮,0.5 mol·L-1NaHCO3溶液浸提、連續(xù)流動分析儀測定有效磷,1 mol·L-1中性NH4OAc 溶液浸提、火焰光度計法測定速效鉀[25],硫酸鋇比濁法測定有效硫,DTPA-TEA 浸提、原子分光光度法測定有效鐵、錳、銅、鋅,過0.25 mm篩后土樣,1 mol·L-1乙酸銨浸提、原子吸收分光光度法測定交換性鈣和鎂。
1.3.2 植物樣品采集及測定 成熟期采用盲抽法[12],在每個品種中間兩行隨機抽取30 穗小麥全株,用不銹鋼剪刀從根莖結(jié)合處剪去根系用做考種和化學(xué)分析。樣品風(fēng)干后,稱取穗和莖葉風(fēng)干重,穗脫粒分為籽粒與穎殼,稱取籽粒風(fēng)干重,差減法計算穎殼風(fēng)干重,并行考種。收割中間兩行剩余的小麥,自然風(fēng)干脫粒,與30 穗小麥一起用于計產(chǎn)。化學(xué)分析樣中,不銹鋼剪刀將莖葉剪至1 cm左右小段后,分別稱取籽粒、莖葉和穎殼20 g左右,用自來水快速沖洗兩次、蒸餾水洗3次,90℃殺酶30 min,65℃烘至恒重,計算風(fēng)干樣的含水量、小麥產(chǎn)量、生物量。小麥產(chǎn)量、生物量、千粒重均用烘干重表示。
烘干的植物樣用球磨儀(RETSCH MM400,Germany,氧化鋯研磨罐)粉碎后,用 H2SO4(95%)-H2O2(優(yōu)級純)聯(lián)合消解,用全自動連續(xù)流動分析儀(AA3, SEAL Analytical,Germany)測定消解液中的氮和磷含量,火焰光度計測定鉀含量;用濃HNO3-H2O2(優(yōu)級純)液微波消解,電感耦合等離子體質(zhì)譜儀(ICP-MS,美國)測定消解液中的鈣、鎂、硫、鐵、錳、銅、鋅含量。不同器官的養(yǎng)分含量均以烘干重為基數(shù)表示。
籽粒養(yǎng)分吸收量=籽粒養(yǎng)分含量×籽粒產(chǎn)量/1000;
地上部養(yǎng)分吸收量=(籽粒養(yǎng)分含量×籽粒產(chǎn)量+莖葉養(yǎng)分含量×莖葉生物量+穎殼養(yǎng)分含量×穎殼生物量)/1000;
養(yǎng)分收獲指數(shù)=籽粒養(yǎng)分吸收量/地上部養(yǎng)分吸收量×100%。
式中,氮、磷、鉀、鈣、鎂、硫養(yǎng)分含量單位為 g·kg-1,鐵、錳、銅、鋅養(yǎng)分含量單位為 mg·kg-1,氮、磷、鉀、鈣、鎂、硫吸收量單位為kg·hm-2,鐵、錳、銅、鋅養(yǎng)分含量單位為 g·hm-2,籽粒與生物量單位為kg·hm-2。
試驗數(shù)據(jù)采用 Microsoft Excel 2016 進(jìn)行整理計算,SigmaPlot 12.5作圖,采用IBM SPSS Statistics 22.0 進(jìn)行方差分析。
兩個地點間,永壽的小麥籽粒產(chǎn)量、生物量、收獲指數(shù)、穗數(shù)分別比楊凌顯著高出31.7%、11.3%、18.8%和22.7%(表 2);千粒重顯著低于楊凌4.3%,穗粒數(shù)差異不顯著??梢?,兩個地點間產(chǎn)量、生物量、收獲指數(shù)、穗數(shù)均存在差異,穗粒數(shù)相對穩(wěn)定。
對小麥播前土壤大量營養(yǎng)元素的測定表明,0—20 cm土層全氮、硝態(tài)氮、銨態(tài)氮、速效鉀含量地點間差異不顯著,永壽的有效磷含量高出楊凌4.9 倍(表1);20—40 cm土層,永壽的全氮顯著高出楊凌16.7%,硝態(tài)氮、銨態(tài)氮、有效磷含量分別高出3.8倍、53倍和10.6倍,速效鉀顯著低于楊凌9.7%??梢?,永壽土壤氮、磷供應(yīng)充分,鉀相對較低,楊凌鉀供應(yīng)充分,氮、磷較低。
分析兩地土壤的中微量營養(yǎng)元素發(fā)現(xiàn)(表3),0—20 cm土層硫、鈣、鐵、錳含量地點間差異不顯著,永壽的交換性鎂、有效銅和有效鋅含量顯著低于楊凌54.3%、9.6%和29.8%。20—40 cm土層硫、鈣、鐵、錳、銅、鋅含量地點間差異不顯著,永壽的交換性鎂含量顯著低于楊凌57.9%。結(jié)果表明,楊凌土壤交換性鎂含量高,0—20 cm土層有效銅和有效鋅含量高。
表2 兩個地點的小麥籽粒產(chǎn)量、生物量和收獲指數(shù)及產(chǎn)量構(gòu)成
不同小寫字母表示地點間差異達(dá)5% 顯著水平。下同
Different lowercase letters represent the significant difference between sites (<0.05). The same as below
表3 播前表層(0—40 cm)土壤的中、微量營養(yǎng)元素含量
分析收獲期小麥籽粒大量營養(yǎng)元素含量發(fā)現(xiàn),永壽籽粒氮含量顯著低于楊凌10.6%,磷含量無差異,鉀含量顯著低于楊凌6.7%(圖2-A)。比較兩地小麥養(yǎng)分吸收和轉(zhuǎn)移發(fā)現(xiàn),永壽小麥的吸收氮、磷及鉀的量顯著高出楊凌17.8%、32.1%和22.4%(圖2-B)。永壽小麥地上部氮、磷吸收量顯著高出楊凌12.5%和26.5%,鉀吸收量差異不顯著(圖2-C)。氮磷鉀養(yǎng)分收獲指數(shù)永壽顯著高出楊凌4.9%、4.4%和31.4%(圖2-D)。說明兩地小麥的籽粒大量營養(yǎng)元素含量存在差異,永壽籽粒氮和鉀含量顯著低于楊凌,籽粒氮、鉀吸收量及收獲指數(shù)顯著高于楊凌,地上部氮吸收量顯著高于楊凌,鉀吸收量地點間差異不顯著;兩地籽粒磷含量差異不顯著,永壽籽粒和地上部磷吸收量及收獲指數(shù)顯著高于楊凌。
柱子上部不同小寫字母表示在永壽和楊凌各個指標(biāo)差異顯著(P<0.05)。下同
比較兩地的中量元素養(yǎng)分發(fā)現(xiàn)(圖3-A),永壽小麥籽粒的鈣、鎂含量顯著高出楊凌19.0%和10.3%,硫含量地點間差異不顯著。永壽籽粒吸收鈣、鎂及硫的量顯著高于楊凌57.7%、46.1%和34.2%(圖3-B),地上部鈣、鎂、硫吸收量顯著高出楊凌26.2%、18.3%和27.8%(圖3-C),鈣、鎂、硫養(yǎng)分收獲指數(shù)顯著高出楊凌23.1%、23.7%和3.9%(圖3-D)??梢?,兩地小麥籽粒中量營養(yǎng)元素含量存在差異,永壽籽粒鈣、鎂含量顯著高于楊凌,硫含量在兩地差異不顯著,鈣、鎂、硫吸收量及收獲指數(shù)顯著高于楊凌。
圖3 兩個地點的旱地冬小麥籽粒鈣、鎂、硫含量,吸收量和養(yǎng)分收獲指數(shù)
微量營養(yǎng)元素的測定結(jié)果表明,永壽小麥籽粒鐵、錳、銅含量顯著高出楊凌 9.3%、22.2%和12.7%,鋅含量顯著低于楊凌63.1%(圖4-A)。比較兩地小麥籽粒養(yǎng)分吸收和轉(zhuǎn)移發(fā)現(xiàn),永壽小麥鐵、錳、銅吸收量顯著高出楊凌44.6%、62.7%和48.3%,籽粒鋅吸收量顯著低于楊凌50.4%(圖4-B)。永壽小麥地上部鐵、錳、銅的吸收量顯著高出楊凌23.9%、25.8%和29.0%,地上部鋅吸收量永壽顯著低于楊凌53.0%(圖4-C)。分析養(yǎng)分收獲指數(shù)發(fā)現(xiàn),永壽鐵、錳、銅養(yǎng)分收獲指數(shù)顯著高出楊凌22.6%、31.3%和14.1%,鋅養(yǎng)分收獲指數(shù)地點間差異不顯著。說明永壽小麥籽粒鐵、錳、銅含量,吸收量和收獲指數(shù)顯著高于楊凌,而籽粒鋅含量和吸收量顯著低于楊凌。
圖4 兩個地點的旱地冬小麥鐵、錳、銅、鋅含量,吸收量和養(yǎng)分收獲指數(shù)
研究表明,永壽的小麥籽粒氮、鉀含量低于楊凌,而磷含量兩地?zé)o顯著差異。從兩地的土壤養(yǎng)分來看,0—20 cm表層全氮、硝態(tài)氮、銨態(tài)氮含量地點間差異不顯著,但永壽20—40 cm土層全氮顯著高出楊凌16.7%,硝態(tài)氮、銨態(tài)氮分別高出3.8倍和53倍,但較強的下層土壤供氮能力并沒有使永壽小麥籽粒含氮量提高。進(jìn)一步分析原因在于兩地的產(chǎn)量和養(yǎng)分吸收差異。雖然永壽的氮收獲指數(shù)顯著高出楊凌4.9%,但地上部和籽粒吸氮量僅高出楊凌12.5%、17.8%,小麥產(chǎn)量卻顯著高出楊凌31.7%,產(chǎn)量稀釋效應(yīng)導(dǎo)致籽粒氮含量低。美國長期定位試驗也表明,小麥籽粒含氮量與產(chǎn)量呈負(fù)相關(guān)[26]。江蘇品種試驗發(fā)現(xiàn),施磷108 kg·hm-2時,產(chǎn)量增加31.8%,籽粒吸氮量增加26.3%,結(jié)果蛋白質(zhì)含量降低3.7%[27]。陜西永壽定位試驗還發(fā)現(xiàn),產(chǎn)量每增加1 000 kg·hm-2,小麥籽粒含氮量3年平均降低1.1 g·kg-1[12],均說明產(chǎn)量增加導(dǎo)致的稀釋效應(yīng)會使籽粒氮含量降低。兩土層,永壽有效磷含量分別高出楊凌4.9和10.6倍,永壽產(chǎn)量、地上部和籽粒吸磷量顯著高出楊凌31.7%、26.5%和32.1%,磷收獲指數(shù)也高出楊凌4.4%,產(chǎn)量與籽粒吸收增幅比例相近,產(chǎn)量未能對籽粒的磷吸收造成稀釋,因而兩地點間小麥籽粒磷含量差異不顯著。華北平原44 個地點的調(diào)研發(fā)現(xiàn),玉米產(chǎn)量增加21.3% 時,而總磷吸收量只增加15.3%,所以籽粒磷含量降低4.3%[28]。印度新德里盆栽試驗表明,磷肥基施,施鋅5 kg·hm-2使水稻產(chǎn)量增加5.92%,吸磷量增加了5.88%,結(jié)果籽粒磷含量僅降低0.06%[29]。均說明產(chǎn)量增加會使籽粒磷含量降低。
兩地點間,0—20 cm土層速效鉀含量差異不顯著,20—40 cm土層永壽速效鉀含量顯著低于楊凌9.7%,地上部吸鉀量在兩地?zé)o差異,但永壽籽粒吸鉀量和鉀收獲指數(shù)高出楊凌22.4%和31.4%,說明在土壤速效鉀缺乏的情況下,永壽小麥雖然能將鉀優(yōu)先向籽粒分配,可是永壽小麥產(chǎn)量高出楊凌31.7%,產(chǎn)量的稀釋效應(yīng)仍導(dǎo)致永壽小麥籽粒鉀含量降低,顯著低于楊凌。丹麥磷鉀肥用量試驗發(fā)現(xiàn),由于年份間小麥成熟期降雨量增加,籽粒產(chǎn)量增加8.4%導(dǎo)致其鉀含量降低11.3%[30]。河北廊坊秸稈還田試驗發(fā)現(xiàn),秸稈還田使小麥產(chǎn)量和籽粒中的鉀吸收量增加16.5%和32.7%,沒有引起籽粒鉀含量變化,但不同年份間產(chǎn)量和籽粒鉀含量呈負(fù)相關(guān),其中產(chǎn)量每增加1 000 kg·hm-2,鉀含量平均降低1 g·kg-1[31]。斯里蘭卡品種試驗也表明,水稻籽粒鉀含量隨產(chǎn)量增加而降低[32],均表明產(chǎn)量增加導(dǎo)致的稀釋效應(yīng)會使籽粒鉀含量降低。
結(jié)果表明,在相同的施肥條件下,永壽的小麥產(chǎn)量高于楊凌。分析永壽和楊凌兩地的降雨量發(fā)現(xiàn),10月份(出苗期)時,永壽降雨量高于楊凌,充足的水分利于小麥出苗,4月份小麥拔節(jié)至開花期時,永壽充足的降水促進(jìn)小麥生長發(fā)育、有效穗形成和干物質(zhì)累積,5月份小麥開花期至灌漿期,兩地降雨量相近??梢?,在小麥生長的關(guān)鍵時期,永壽降雨量高于楊凌,有利于小麥生長發(fā)育,是小麥產(chǎn)量提高的關(guān)鍵。小麥對于氮磷鉀的吸收離不開土壤養(yǎng)分供應(yīng),適量施肥增加了土壤氮磷鉀養(yǎng)分供應(yīng),從而提高小麥籽粒氮磷鉀吸收,但籽粒養(yǎng)分含量能否提高還取決于施肥和土壤養(yǎng)分供應(yīng)引起的籽粒產(chǎn)量變化。
研究表明,永壽小麥籽粒鈣和鎂含量高于楊凌,硫含量在兩地差異不顯著。從兩地的土壤養(yǎng)分來看,兩個土層的土壤交換性鈣在地點間無顯著差異,永壽產(chǎn)量顯著高出楊凌31.7%,但地上部和籽粒鈣吸收量分別比楊凌高出26.2%和57.7%,鈣收獲指數(shù)高出楊凌23.1%??梢姡c產(chǎn)量的變化相比,永壽小麥吸收和向籽粒轉(zhuǎn)移鈣的能力更強,故永壽籽粒鈣含量顯著高于楊凌。這可能與pH 有關(guān)。永壽兩土層pH 顯著低于楊凌,有利于活化土壤的鈣[33],促進(jìn)了小麥對鈣的吸收。波蘭的施肥用量試驗發(fā)現(xiàn),鉀和鈣具有拮抗作用,缺鉀肥時可以增加冬油菜和冬小麥營養(yǎng)器官鈣含量[34]。兩地0—20 cm土層速效鉀含量地點間差異雖不顯著,但永壽低于楊凌16.0%,20—40 cm土層土壤速效鉀含量永壽顯著低于楊凌,這可能是永壽小麥籽粒鈣高于楊凌的另一個原因。
永壽兩層土壤的交換性鎂含量均顯著低于楊凌,永壽地上部和籽粒鎂吸收量顯著高出楊凌18.3%和46.1%,養(yǎng)分收獲指數(shù)顯著高出楊凌23.7%,說明永壽土壤供鎂少,但小麥吸收鎂的能力強,且向籽粒中分配得多,故永壽籽粒鎂含量顯著高于楊凌,這可能與土壤速效鉀含量低有關(guān)。鉀對鎂的吸收具有拮抗作用[35],鉀抑制根系對鎂的吸收和向地上部轉(zhuǎn)移[36]。20—40 cm土層中永壽速效鉀含量顯著低于楊凌,因而籽粒鎂含量顯著高于楊凌。pH 與土壤交換性鎂具有正相關(guān)性[37],0—20 cm和20—40 cm土層中永壽土壤pH 顯著低于楊凌,可能是其土壤交換性鎂顯著低于楊凌主要原因。湖北省紅壤土盆栽試驗研究發(fā)現(xiàn),隨施鉀用量增加,油菜植株中鈣和鎂含量呈下降趨勢,說明鉀與鈣鎂之間存在著明顯的拮抗作用,且鉀對鈣的影響程度大于鎂[35,38]。永壽鈣和鎂含量顯著高于楊凌,這一結(jié)果與上述結(jié)果一致。
兩地點間土壤有效硫雖無顯著差異,但永壽兩土層有效硫分別高出楊凌60.6%、67.2%,永壽地上部和籽粒硫吸收量顯著高出楊凌27.8%、34.2%,硫養(yǎng)分收獲指數(shù)顯著高出楊凌3.9%,說明土壤有效硫充足可以促進(jìn)小麥對硫的吸收及向籽粒分配,由于永壽產(chǎn)量高于楊凌31.7%,籽粒對硫的吸收增幅接近產(chǎn)量增幅,沒有造成小麥籽粒硫含量差異。有研究指出,氮和硫之間具有協(xié)同作用[39],小麥籽粒硫含量每增加1.0 mg·kg-1,籽粒蛋白質(zhì)含量增加1.7%[40]。在有效硫為5.84 mg·kg-1的土壤上施硫可增加根系和旗葉硝酸還原酶活性,從而增加蛋白質(zhì)含量[41]。在施氮磷鉀的基礎(chǔ)上,合理配施硫肥60 kg·hm-2可促進(jìn)后期干物質(zhì)及籽粒氮、硫累積,提高產(chǎn)量[42]。永壽籽粒氮含量顯著低于楊凌,籽粒硫含量在兩地差異卻不顯著,與上述結(jié)果并不一致。可見,鉀與鈣和鎂之間具有拮抗作用,pH與土壤交換性鎂具有正相關(guān)性,硫和氮之間具有協(xié)同作用,但小麥對硫的吸收和籽粒硫含量取決于土壤的供硫能力及產(chǎn)量變化,因此在實踐中適宜施肥及考慮元素間的相互作用對提高籽粒養(yǎng)分含量和產(chǎn)量尤為重要。
研究表明,永壽籽粒鐵、錳和銅含量顯著高于楊凌,鋅含量顯著低于楊凌。從土壤養(yǎng)分來看,土壤有效鐵和錳含量地點間無顯著差異,永壽地上部和籽粒鐵吸收量顯著高出楊凌23.9%和44.6%,地上部和籽粒錳吸收量顯著高出楊凌25.8%和62.7%,養(yǎng)分收獲指數(shù)顯著高出楊凌22.6%和31.3%,說明永壽小麥對鐵和錳的吸收及向籽粒分配高于楊凌,產(chǎn)量顯著高出楊凌31.7%,小麥籽粒吸收的增幅高于產(chǎn)量增幅,故永壽籽粒鐵和錳含量高。中國小麥主產(chǎn)區(qū)的調(diào)研發(fā)現(xiàn),籽粒產(chǎn)量每增加1 000 kg·hm-2,春小麥和冬小麥籽粒鐵含量分別降低2.1和1.3 mg·kg-1[43]。河南的田間試驗也發(fā)現(xiàn),施氮240 kg·hm-2和施磷209 kg·hm-2后,小麥產(chǎn)量增加8.7%,籽粒鐵吸收量僅增加6.6%,因而鐵含量降低1.8%[44]。美國的調(diào)研也發(fā)現(xiàn),產(chǎn)量升高,小麥籽粒鐵含量每年平均降低0.3%[45]。印度的品種試驗發(fā)現(xiàn),兩種錳水平下,小麥產(chǎn)量增加18.5%,籽粒錳吸收量降低9.8%,錳含量降低26.9%[46]。歐洲布拉格的肥料用量試驗也發(fā)現(xiàn),大麥籽粒錳含量和產(chǎn)量之間呈負(fù)相關(guān),主要由稀釋效應(yīng)導(dǎo)致[47]。均說明產(chǎn)量的稀釋效應(yīng)會使小麥籽粒鐵和錳含量降低。本試驗中永壽小麥地上部鐵和錳吸收量及向籽粒的分配遠(yuǎn)高于楊凌,使得籽粒養(yǎng)分吸收量增幅高于產(chǎn)量增幅,籽粒錳含量因此高于楊凌。華北任丘、北京、趙縣的試驗發(fā)現(xiàn),過多的降水不利于小麥對鐵和錳的吸收[48],在小麥灌漿期時永壽降雨量低于楊凌,這可能是永壽籽粒鐵和錳含量高的另一個原因。
分析土壤0—20 cm土層有效銅含量結(jié)果發(fā)現(xiàn),永壽顯著低于楊凌9.6%,但永壽籽粒銅吸收量和銅收獲指數(shù)顯著高于楊凌48.3%和14.1%,產(chǎn)量顯著卻僅高出楊凌31.7%。說明在土壤銅元素缺乏的情況下,永壽籽粒對銅的吸收和分配高于楊凌,故籽粒銅含量高。在楊凌的田間試驗發(fā)現(xiàn),相對于秸稈覆蓋,地膜覆蓋使小麥產(chǎn)量增加了10.7%,籽粒銅吸收量增加了2.5%,銅含量降低7.5%[49]。泰國的試驗發(fā)現(xiàn),相對于干旱脅迫,充分灌水使玉米產(chǎn)量提高14.5%,籽粒銅吸收量增加了13%,銅含量降低1.3%[50]。說明在土壤有效銅缺乏的情況下,永壽小麥對銅的吸收和向籽粒的分配高于楊凌,是其籽粒銅含量高的一個主要原因。pH與土壤有效銅呈極顯著負(fù)相關(guān)[51],pH降低使土壤吸附銅離子的能力降低,因此土壤中有效態(tài)銅離子增加[52]。永壽兩土層pH顯著低于楊凌,這會促進(jìn)土壤銅的有效化和小麥對銅的吸收。陜西長武綠肥與冬小麥輪作試驗發(fā)現(xiàn),影響土壤有效銅的關(guān)鍵時期是灌漿期[53],永壽灌漿期比楊凌長,這可能是永壽小麥銅含量高的另一個原因。
永壽土壤0—20 cm 土層有效鋅顯著低于楊凌29.8%,永壽籽粒鋅吸收量顯著低于楊凌50.4%,鋅養(yǎng)分收獲指數(shù)地點間差異不顯著,說明土壤有效鋅缺乏時,永壽小麥對鋅的吸收低于楊凌,永壽產(chǎn)量卻顯著高出楊凌31.7%,故土壤有效鋅缺乏和產(chǎn)量稀釋效應(yīng)導(dǎo)致永壽小麥籽粒鋅含量低于楊凌。英國的小麥品種試驗表明,籽粒產(chǎn)量和鋅含量呈負(fù)相關(guān),高產(chǎn)品種籽粒鋅含量下降約20%—30%[54]。巴基斯坦的田間試驗發(fā)現(xiàn),施磷使玉米產(chǎn)量提高12%,籽粒鋅含量卻顯著降低10%,原因是籽粒鋅吸收量僅升高0.1%[55]。楊凌田間長期定位試驗也發(fā)現(xiàn),施磷使小麥籽粒產(chǎn)量增加15%,其鋅吸收量卻降低19%,因而鋅含量降低31%[56]。均說明產(chǎn)量增加導(dǎo)致的稀釋效應(yīng)使籽粒鋅含量降低,磷和鋅之間存在拮抗作用[57]。永壽土壤0—20 cm和20—40 cm 土層速效磷顯著高出楊凌4.9和10.6倍,可能是其籽粒鋅含量降低的另一個原因。
可見,產(chǎn)量的稀釋效應(yīng)會影響籽粒微量元素含量,但不同地點的土壤和氣候存在差異,永壽小麥對鐵、錳、銅吸收和向籽粒的分配多于楊凌,因而籽粒鐵、錳、銅含量高。降水增加會影響小麥對鐵和錳的吸收,pH低促進(jìn)小麥對銅的吸收,永壽土壤有效鋅低而有效磷高,磷和鋅存在拮抗作用,因而籽粒鋅含量低于楊凌。
旱地條件下,永壽小麥籽粒氮含量低主要是產(chǎn)量稀釋效應(yīng)導(dǎo)致的,較高的土壤有效磷和硫供應(yīng)雖然有利于永壽小麥籽粒和地上部磷和硫吸收量提高,但由于吸收量與產(chǎn)量增幅相近,故沒有造成其含量降低,土壤鉀、鋅供應(yīng)不足和磷、鋅拮抗影響了永壽小麥籽粒鉀、鋅累積,低pH、低速效鉀促進(jìn)了永壽小麥鈣、鎂吸收和轉(zhuǎn)移,較長的灌漿期及其低降雨量有利于小麥鐵、錳、銅元素吸收和向籽粒轉(zhuǎn)移。因此,同一區(qū)域地點間土壤養(yǎng)分和降雨不同引起的小麥產(chǎn)量與養(yǎng)分吸收量增減不一是造成其籽粒養(yǎng)分含量差異的主要原因。在旱地小麥生產(chǎn)中,需根據(jù)當(dāng)?shù)鼐唧w的土壤養(yǎng)分和氣候特點調(diào)控施肥,實現(xiàn)增產(chǎn)的同時,調(diào)控籽粒養(yǎng)分含量。
[1] TEA I, GENTER T, NAULET N, BOYERV,LUMMERZHEIMM, KLEIBER D. Effect of foliar sulfur and nitrogen fertilization on wheat
storage protein composition and dough mixing properties., 2004, 81(6): 759-766.
[2] MA D, ZHANG J P, ZHANG Y Y, ZHANG X, HAN X, SONG T, ZHANG Y, CHU L. Inhibition of myocardial hypertrophy by magnesium isoglycyrrhizinate through the TLR4/NF-κB signaling pathway in mice., 2017, 55: 237-244.
[3] EVANS W J, PIERCE A G. Interaction of phytic acid with the metal ions, copper (ii), cobalt (ii), iron (iii), magnesium (ii), and manganese (II)., 1982, 47(3): 1014-1015.
[4] SEVER L E. Zinc and human development: A review., 1975, 3(1): 43-57.
[5] World Health Organization. Micronutrient deficiencies: Iron Deficiency Anemia[EB/OL]. http://www.who.int/nutrition/topics/ida/en/#, 2016- 4-5.
[6] PRASAD R. Micro mineral nutrient deficiencies in humans, animals and plants and their amelioration., 2012, 82(2): 225-233.
[7] 中華人民共和國國家統(tǒng)計局. 中國統(tǒng)計年鑒. 北京: 中國統(tǒng)計出版社, 2017.
National Bureau of Statistics of the People’s Republic of China.Beijing: China Statistics Press, 2017. (in Chinese)
[8] LI S X, WANG Z H. Dryland agriculture in Eastern Asia//PETERSON G, UNGER P W, PAYNE W A.. ASA-CAAA- SSSA. Madisom, Wisconsin: USA Publishers, 2006: 671-722
[9] 武際, 郭熙盛, 王允青, 汪建來, 楊曉虎. 氮鉀配施對弱筋小麥氮、鉀養(yǎng)分吸收利用及產(chǎn)量和品質(zhì)的影響. 植物營養(yǎng)與肥料學(xué)報, 2007, 13(6): 1054-1061.
WU J, GUO X S, WANG Y Q, WANG J L, YANG X H. Effects of combined application of nitrogen and potassium on absorption of N and K, grain yield and quality of weak gluten wheat., 2007,13(6): 1054-1061. (in Chinese)
[10] 戴廷波, 孫傳范, 荊奇, 姜東, 曹衛(wèi)星. 不同施氮水平和基追比對小麥籽粒品質(zhì)形成的調(diào)控. 作物學(xué)報, 2005(2): 248-253.
DAI T B, SUN C Y, JING Q, JIANG D, CAO W X. Regulation of nitrogen rates and dressing ratios on grain quality in wheat., 2005(2): 248-253. (in Chinese)
[11] HAO H L, WEI Y Z, YANG X E, FENG Y,WU C Y. Effects of different nitrogen fertilizer levels on Fe, Mn, Cu and Zn concentrations in shoot and grain quality in rice ()., 2007, 14(4): 290-294.
[12] 刁超朋. 旱地高產(chǎn)小麥品種籽粒氮磷含量差異與產(chǎn)量形成及養(yǎng)分吸收利用的關(guān)系[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2018.
DIAO C P. Difference in grain nitrogen and phosphorus contents of high-yielding wheat cultivars and its relation to yield formation and nutrients uptake and utilization in drylands [D]. Yangling: Northwest A&F University, 2018. (in Chinese)
[13] 靳靜靜, 王朝輝, 戴健, 王森, 高雅潔, 曹寒冰, 于榮. 長期不同氮、磷用量對冬小麥籽粒鋅含量的影響. 植物營養(yǎng)與肥料學(xué)報, 2014, 20(6): 1358-1367.
JIN J J, WANG Z H, DAI J, WANG S, GAO Y J, CAO H B, YU R. Effects of long-term N and P fertilization with different rates on Zn concentration in grain of winter wheat., 2014, 20(6): 1358-1367. (in Chinese)
[14] MELASH A A, MENGISTU D K, ABERRA D A, TSEGAY A. The influence of seeding rate and micronutrients foliar application on grain yield and quality traits and micronutrients of durum wheat., 2019, 85(1): 221-227.
[15] MISHRA U S, SHARMA D, RAGHUBANSHI B P S. Effect of zinc and boron on yield, nutrient content and quality of blackgram (L.)., 2018, 19(1): 34-37.
[16] DRAGI?EVI? V, NIKOLI? B, WAISI H, STOJILJKOVI? M, ?UROVI? S, SPASOJEVI? L, PERI? V. Alterations in mineral nutrients in soybean grain induced by organo-mineral foliar fertilizers., 2015, 2(1): 12.
[17] GALLEJONES P, PRADO A D, UNAMUNZAGA O, AIZPURUA A. Nitrogen and sulphur fertilization effect on leaching losses, nutrient balance and plant quality in a wheat–rapeseed rotation under a humid Mediterranean climate., 2012, 93(3): 337-355.
[18] 馬清霞, 王朝輝, 惠曉麗, 張翔, 張悅悅, 侯賽賓, 黃寧, 羅來超, 張世君, 黨海燕. 基于產(chǎn)量和養(yǎng)分含量的旱地小麥?zhǔn)┝琢亢屯寥烙行Я變?yōu)化. 中國農(nóng)業(yè)科學(xué), 2019, 52(1): 73-85.
MA Q X, WANG Z H, HUI X L, ZHANG X, ZHANG Y Y, HOU S B, HUANG N, LUO L C, ZHANG S J, DANG H Y. Optimization of phosphorus rate and soil available phosphorus based on grain yield and nutrient contents in dryland wheat production.2019, 52(1): 73-85. (in Chinese)
[19] 杜盼, 張娟娟, 郭偉, 馬新明, 郭建彪. 施氮對不同肥力土壤小麥氮營養(yǎng)和產(chǎn)量的影響. 植物營養(yǎng)與肥料學(xué)報, 2019, 25(2): 176-186.
DU P, ZHANG J J, GUO W, MING X M, GUO J B. Effect of nitrogen application on nitrogen nutrition and yield of wheat in fields of different fertility., 2019, 25(2): 176-186. (in Chinese)
[20] 何紅霞, 王朝輝, 包明, 馬小龍, 佘旭, 何剛, 邱煒紅. 栽培模式對旱地小麥產(chǎn)量和籽粒養(yǎng)分含量的影響. 應(yīng)用生態(tài)學(xué)報, 2018, 29(3): 818-826.
HE H X, WANG Z H, BAO M, MA X L, SHE X, HE G, QIU W H .Effects of cultivation patterns on wheat yield and grain nutrient concentration in dryland., 2018, 29(3): 818-826. (in Chinese)
[21] 羅來超, 王朝輝, 惠曉麗, 張翔, 馬清霞, 包明, 趙岳, 黃明, 王森. 覆膜栽培對旱地小麥籽粒產(chǎn)量及硫含量的影響. 作物學(xué)報, 2018, 44(6): 886-896.
LUO L C, WANG Z H, HUI X L, ZHANG X, MA Q X, BAO M, ZHAO Y, HUANG M, WANG S. Effects of plastic film mulching on grain yield and sulfur concentration of winter wheat in dryland of loess plateau., 2018, 44(6): 886-896. (in Chinese)
[22] 楊月娥, 王森, 王朝輝, 劉慧, 王慧. 我國主要麥區(qū)小麥籽粒鋅含量對葉噴鋅肥的響應(yīng). 植物營養(yǎng)與肥料學(xué)報, 2016, 22(3): 579-589.
YANG Y E, WANG S, WANG Z H, LIU H, WANG H. Response of wheat grain Zn concentration to foliar sprayed Zn in main wheat production regions of China., 2016, 22(3): 579-589. (in Chinese)
[23] HUANG T M, HUANG Q N, SHE X, MA X L, HUANG M, CAO H B, HE G, LIU J S, LIANG D L, WANG Z H. Grain zinc concentration and its relation to soil nutrient availability in different wheat cropping regions of China., 2019, 191: 57-65.
[24] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法. 北京: 中國農(nóng)業(yè)科技出版社, 2000.
LU R K.. Beijing: China Agriculture Science and Technology Press, 2000. (in Chinese)
[25] 鮑士旦. 土壤農(nóng)化分析. 3版. 北京: 中國農(nóng)業(yè)出版社, 2000.
BAO S D.. Beijing: China Agriculture Press, 2000. (in Chinese)
[26] LOLLATO R P, FIGUEIREDO B M, DHILLON J S, ARNALL D B, RAUN W R. Wheat grain yield and grain-nitrogen relationships as affected by N, P, and K fertilization: A synthesis of long-term experiments., 2019, 236: 42-57.
[27] ZHU X K , LI C Y , JIANG Z Q, HUANG L L, FENG C N, GUO W S, PENG Y X. Responses of phosphorus use efficiency, grain yield, and quality to phosphorus application amount of weak-gluten wheat., 2012, 11(7): 1103-1110.
[28] WU L, CUI Z, CHEN X, YUE S C, SUN Y X, ZHAO R F, DENG Y, ZAHNG W, CHEN K. Change in phosphorus requirement with increasing grain yield for Chinese maize production., 2015, 180: 216-220.
[29] SHAHANE A A, SHIVAY Y S, KUMAR D, PRASANNA R. Interaction effect of nitrogen, phosphorus, and zinc fertilization on growth, yield, and nutrient contents of aromatic rice varieties., 2018,41(18): 2344-2355.
[30] J?RGENSEN J R, DELEURAN L C, WOLLENWEBER B. Prospects of whole grain crops of wheat, rye and triticale under different fertilizer regimes for energy production., 2007, 31(5): 308-317.
[31] BAI Y L, WANG L, LU Y L, YANG L P, ZHOU L P, NI L, CHENG M F. Effects of long-term full straw return on yield and potassium response in wheat-maize rotation., 2015, 14(12): 2467-2476.
[32] KEKULANDARA D S, SIRISENA D N, BANDARANAYAKE P C G, SAMARASINGHE G, WISSUWA M, SURIYAGODA L D B. Variation in grain yield, and nitrogen, phosphorus and potassium nutrition of irrigated rice cultivars grown at fertile and low-fertile soils., 2019, 434(1/2): 107-123.
[33] 周衛(wèi), 林葆. 土壤中鈣的化學(xué)行為與生物有效性研究進(jìn)展. 土壤肥料, 1996(5): 20-23, 45.
ZHOU W, LIN B. Advances in research on chemical behavior and bioavailability of calcium in soil., 1996(5): 20-23, 45. (in Chinese)
[34] BRODOWSKA M S, FILIPEK T, KURZYNA-SZKLAREK M. Content of magnesium and calcium in cultivated plants depending on various soil supply with nitrogen, potassium, magnesium and sulfur., 2017, 22(4): 1167-1177.
[35] 張竹青, 魯劍巍. 施鉀水平對油菜吸收鈣和鎂的影響. 安徽農(nóng)業(yè)大學(xué)學(xué)報, 2003(3): 276-279.
ZHANG Z Q, LU J W. Influence of potassium fertilization on calcium and magnesium absorption in cole., 2003(3): 276-279. (in Chinese)
[36] OHNO T, GRUNES D L. Potassium-magnesium interactions affecting nutrient uptake by wheat forage 1., 1985, 49(3): 685-690.
[37] 王亮, 李雙異, 汪景寬, 顧鑫, 孟凡奎. 長期施肥與地膜覆蓋對棕壤交換性鈣、鎂的影響. 植物營養(yǎng)與肥料學(xué)報, 2013, 19(5): 1200-1206.
WANG L, LI S Y, WANG J K, GU X, MENG F K. Influence of potassium fertilization on calcium and magnesium absorption in cole., 2013, 19(5): 1200-1206. (in Chinese)
[38] ELZAM O E, HODGES T K. Calcium Inhibition of potassium absorption in corn roots., 1967, 42(11): 1483-1488.
[39] SALVAGIOTTI F, JULIO M, CASTELLARIíN, MIRAALLES D J, PEDROL H M. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake., 2009, 113(2): 170-177.
[40] 白金順, 曹衛(wèi)東, 畢軍, 李學(xué)敏, 楊璐, 高嵩涓, 熊靜. 速效硫肥對冬小麥產(chǎn)量、品質(zhì)和經(jīng)濟(jì)效益的影響. 中國農(nóng)學(xué)通報, 2013, 29(27): 105-110.
BAI J S, CAO W D, BI J, LI X M, YANG L, GAO S J, XIONG J. Effects of rapid release sulphur fertilizer on grain yield, quality and economic profit for winter wheat.2013, 29(27): 105-110. (in Chinese)
[41] 王東, 于振文, 王旭東. 硫素對冬小麥籽粒蛋白質(zhì)積累的影響. 作物學(xué)報, 2003(6): 878-883.
WANG D, YU Z W, WANG X D. Effects of sulfur on protein accumulation in kernels of winter wheat.2003(6): 878-883. (in Chinese)
[42] 張輝, 朱云集, 田文仲, 謝迎新. 不同灌水條件下施硫?qū)Χ←溙?、氮、硫物質(zhì)積累及產(chǎn)量的影響. 植物營養(yǎng)與肥料學(xué)報, 2011, 17(4): 838-844.
ZAHNG H, ZHU Y J, TIAN W Z, XIE Y X. Effects of sulphur applicationon accumulations of carbon, nitrogen and sulphur and grain yield of winter wheat under different irrigation conditions., 2011, 17(4): 838-844. (in Chinese)
[43] LIU H, WANG Z H, LI F, YANG Y E, HUANG D L, HUANG D L, LIANG D L, ZHAO H B, MAO H. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China., 2014, 156: 151-160.
[44] 黃鑫, 李耀光, 孫婉, 侯俊峰, 馬英, 張劍, 馬冬云, 王晨陽, 郭天財. 不同粒色小麥籽粒鐵鋅含量和生物有效性及其對氮磷肥的響應(yīng). 作物學(xué)報, 2018, 44(10): 1506-1516.
HUANG X, LI Y G, SUN W, HOU J F, MA Y, ZHANG J, MA D Y, WANG C Y, GUO T C. Variation of grain iron and zinc contents and their bioavailability of wheat cultivars with different-colored grains under combined nitrogen and phosphorus fertilization., 2018, 44(10): 1506-1516. (in Chinese)
[45] GARVIND F, WELCH R M, FINLEY J W. Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm., 2006, 86(13): 2213-2220.
[46] JHANJI S, SADANA U S, SEKHON N K, KHURANA M P S, SHARMA A, SHUKLA A K. Screening diverse wheat genotypes for manganese efficiency based on high yield and uptake efficiency., 2013, 154(3): 127-132.
[47] HEJCMAN M, BERKOVA M, KUNZOVA E. Effect of long-term fertilizer application on yield and concentrations of elements (N, P, K, Ca, Mg, As, Cd, Cu, Cr, Fe, Mn, Ni, Pb, Zn) in grain of spring barley., 2013, 59(7): 329-334.
[48] 常旭虹, 趙廣才, 王德梅, 楊玉雙, 馬少康, 李振華, 李輝利, 賈二紅, 陳楓. 生態(tài)環(huán)境與施氮量協(xié)同對小麥籽粒微量元素含量的影響. 植物營養(yǎng)與肥料學(xué)報, 2014, 20(4): 885-895.
CHANG X H, ZHAO G C, WANG D M, YANG Y S, MA S K, LI Z H, LI H L, JIA E H, CHEN F. Effects of ecological environment and nitrogen application rate on microelement contents of wheat grain., 2014, 20(4): 885-895. (in Chinese)
[49] 李峰, 田霄鴻, 陳玲, 李生秀. 栽培模式、施氮量和播種密度對小麥子粒中鋅、鐵、錳、銅含量和攜出量的影響. 土壤肥料, 2006(2): 42-46.
LI F, TIAN X H, CHEN L, LI S X. Effect of planting model, N fertilization and planting density on concentration and uptake of Zn, Fe, Mn and Cu in grains of winter wheat.2006(2): 42-46. (in Chinese)
[50] FEIL B, MOSER S B, JAMPATONG S, STAMP P. Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization., 2005, 45(2): 516-523.
[51] 張玥琦, 程奇, 關(guān)之昊, 姚瀾, 王業(yè)迪, 張慧, 楊麗娟. 稻草與生石灰對設(shè)施土壤微量元素含量和番茄產(chǎn)量的影響. 水土保持學(xué)報, 2019, 33(4): 228-233, 348.
ZHANG Y Q, CHENG Q, GUAN Z H, YAO L, WANG Y D, ZHANG H, YANG L J. Effects of straw and lime additions on the DTPA- extractable micronutrients contents and tomato yield in greenhouse soil.2019, 33(4): 228-233, 348. (in Chinese)
[52] 于君寶, 王金達(dá), 劉景雙, 齊曉寧, 王洋. 典型黑土pH值變化對微量元素有效態(tài)含量的影響研究. 水土保持學(xué)報, 2002(2): 93-95.
YU J B,WANG J D,LIU J S,QI X N,WANG Y. Effect of soil ph value variation on effective content of trace elements in typical black soil.2002(2): 93-95. (in Chinese)
[53] 楊寧. 豆科綠肥—冬小麥輪作提高小麥產(chǎn)量和營養(yǎng)元素含量的效應(yīng)與土壤機制[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2012.
YANG N. The effect and soil mechanism of improving wheat yield and nutrients content with legume-winter wheat rotations[D]. Yangling: Northwest A&F University, 2012. (in Chinese)
[54] FAN M S, ZHAO F J, FAIRWEATHER-TAIT S J, POULTON P R, DUNHAM S J, MCGRATH S P. Evidence of decreasing mineral density in wheat grain over the last 160 years., 2008, 22(4): 315-324.
[55] IMRAN M, REHIM A, SARWAR N, HUSSAIN S. Zinc bioavailability in maize grains in response of phosphorous-zinc interaction., 2016, 179(1): 60-66.
[56] 惠曉麗, 王朝輝, 羅來超, 馬清霞, 王森, 戴健, 靳靜靜. 長期施用氮磷肥對旱地冬小麥籽粒產(chǎn)量和鋅含量的影響. 中國農(nóng)業(yè)科學(xué), 2017, 50(16): 3175-3185.
HUI X L, WANG Z H, LUO L C, MA Q X, WANG S, DAI J, JIN J J. Winter wheat grain yield and zinc concentration affected by long-term N and P application in dryland., 2017, 50(16): 3175-3185. (in Chinese)
[57] ZHANG W, LIU D, LI C, CUI Z L, CHEN X P, RUSSELL Y, ZHOU C Q. Zinc accumulation and remobilization in winter wheat as affected by phosphorus application., 2015, 184(184): 155-161.
Differences of Main Nutrient Concentration in Wheat Grain Between Typical Locations of the Loess Plateau
WANG Li1, WANG ZhaoHui1, 2, GUO ZiKang1, TAO ZhenKui1, ZHENG MingJun1, HUANG Ning1, GAO ZhiYuan1, ZHANG XinXin1, HUANG TingMiao1
(1College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi;2Northwest A&F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling 712100, Shaanxi)
【】This study was performed to understand the differences of wheat grain nutrient concentrations and their relations to soil nutrient and crop nutrient uptake and utilization among different locations at the same region, in order to guide reasonable fertilizer application and improve soil fertility for local farmers. 【】Field experiments were conducted at Yongshou and Yangling in Shaanxi province from 2017 to 2018. At each site, twenty wheat cultivars from different wheat production areas were planted under conditions of 180 kg N·hm-2, 100 kg P2O5·hm-2and 75 kg K2O·hm-2. The aboveground wheat plant and soil samples were collected at maturity to determine the grain yield and nutrient concentration in different organs and soil available macro- and micronutrients, for investigating the relationships between soil nutrient supply and grain nutrient concentration at two locations. 【】Compared to Yangling, the grain nitrogen (N) and potassium (K) concentrations were decreased by 10.6% and 6.7% at Yongshou, respectively, but no difference was observed for phosphorus (P) concentration between two locations. Soil N and P supply capacity, N, P and K uptake and harvest index at Yongshou were higher than that of Yangling, but the total rainfall and its distribution at Yongshou were more beneficial to grain yield formation to Yangling. The increase magnitude of grain yield caused by the rainfall was larger than the magnitude of grain N and K uptake increase, and close to that of grain P uptake. Thus, the decrease of grain N, P and K concentrations was mainly attributed to the yield dilution. The concentrations of grain calcium (Ca) and magnesium (Mg) at Yongshou were 19.0% and 10.3% higher than that at Yangling, respectively, and the difference for sulfur (S) concentration was not significantly different between two locations. Soil exchangeable Mg at Yongshou was lower than that at Yangling, and no difference of soil exchangeable Ca was found between two locations. However, the lower soil pH and available K, and higher available S promoted the uptake and translocation of Ca and Mg to grain at Yongshou. Compared with Yangling, the increase of Ca and Mg absorption in wheat grains was greater than that of yield increase, and the increase of S absorption was close to that of the yield. Therefore, Ca and Mg concentration in grains increased, and the S concentration did not change significantly. The concentrations of grain iron (Fe), manganese (Mn) and copper (Cu) at Yongshou were 9.3%, 22.2% and 12.7% higher than those at Yangling, respectively, and grain zinc (Zn) concentration was 63.1% lower than Yangling. No significant difference was observed for soil available Mn between two locations, but soil available Cu and Zn at Yongshou were lower than that of Yangling. The longer filling period promoted the uptake of micronutrients in wheat grain, whereas the higher soil available P inhibited Zn uptake, this resulted in a higher Fe, Mn and Cu uptake and translocation to grain, and lower Zn uptake and translocation to grain. The higher Fe, Mn and Cu uptake in grain increased their concentrations, while the Zn concentration decreased. 【】 Therefore, the discordance between variation of grain yield and its nutrient uptake caused by different precipitation and soil nutrient supply capacities between locations were the key reason for their nutrient concentration variation in dryland. Compared with Yangling, the yield dilution influence was the main reason for the lower N concentration in wheat grain of Yongshou. It was the higher soil available P and available S supply, so that the higher P and S absorption of grain and aboveground at Yongshou did not decrease its grain P and S concentrations. The lower soil available K and Zn as well as the P and Zn antagonistic inhibited the accumulation of wheat grain K and Zn at Yongshou. Low pH and low available K promoted the plant absorption and transfer of Ca and Mg to grain at Yongshou, and the longer grain-filling period benefitted the absorption of Fe, Mn and Cu and the transfer to grain. In practical crop production, the optimized fertilization practice should be taken according to the specific soil nutrient supply and climate conditions for the purpose to coordinate the crop nutrient uptake and yield change, to produce wheat with high yield and high grain nutrient quality.
dry land; wheat; grain; soil nutrients; Loess Plateau
10.3864/j.issn.0578-1752.2020.17.010
2019-10-27;
2020-02-16
國家重點研發(fā)計劃(2018YFD0200400)、國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(CARS-3)
王麗,E-mail:371860842@qq.com。通信作者王朝輝,E-mail:w-zhaohui@263.net
(責(zé)任編輯 李云霞)