周澤楠
摘要:中國(guó)對(duì)于律學(xué)的研究有著悠久的歷史,在繆天瑞先生的《律學(xué)》一書中他就根據(jù)中國(guó)律學(xué)的發(fā)展特點(diǎn),將律學(xué)史分為了四個(gè)時(shí)期。分別是三分損益律發(fā)現(xiàn)時(shí)期、探求新律時(shí)期、十二平均律發(fā)明時(shí)期和律學(xué)研究新時(shí)期。而在研究律學(xué)史的時(shí)候,我們會(huì)發(fā)現(xiàn)由于其他律制本身存在一些缺陷,十二平均律的出現(xiàn)似乎是必然的,就讓我們通過研究前三個(gè)時(shí)期的律制來(lái)談?wù)勈?平均律的科學(xué)性。
關(guān)鍵詞:律學(xué);三分損益法;十二平均律
春秋戰(zhàn)國(guó)時(shí)期是三分損益的發(fā)現(xiàn)時(shí)期。在這個(gè)時(shí)期內(nèi),對(duì)于三分損益法最早的記載見于《管子·地員篇》(公元前475-前221年)。管仲在此書中提到:“凡將起五音,凡首,先主一而三之,四開以合九九,以是生黃鐘小素之首,以成宮。三分而益之以一,為百有八,為徵。不無(wú)有三分而去其乘,適足,以是生商。有三分,而復(fù)于其所,以是成羽。有三分,去其乘,適足,以是成角。”
這段文字從數(shù)理的角度將宮、商、角、徵、羽五音的音高進(jìn)行了說(shuō)明,用數(shù)學(xué)公式表示出來(lái)就是:
宮1×3-4=81
徵81×4/3=108
商108×2/3=72
羽72×4/3=96
角96×2/3=64
實(shí)際上,這個(gè)公式計(jì)算的是管長(zhǎng),將一根管平分為三等分,長(zhǎng)度增加管長(zhǎng)的三分之一,則音高比之前低純四度,而減少原管的三分之一,則聲音比原來(lái)高純五度。宮商角徵羽構(gòu)成的五聲調(diào)式音階的音高正是根據(jù)這管長(zhǎng)來(lái)決定的。
由于音樂不可能只用五個(gè)固定的音高進(jìn)行創(chuàng)作,隨著古代音樂的發(fā)展,人們?yōu)榱藵M足需要,便在五聲調(diào)式音階的基礎(chǔ)上繼續(xù)使用三分損益法進(jìn)行生律,加入了變徵和變宮兩個(gè)偏音,構(gòu)成了七聲調(diào)式音階。但隨后人們又發(fā)現(xiàn),一旦移動(dòng)了這幾個(gè)固定音的高度,就會(huì)造成移調(diào)的問題,所以為了能夠旋宮轉(zhuǎn)調(diào),隨后又生出五律,使一個(gè)八度內(nèi)包含12個(gè)音,得到了我國(guó)最早的十二律。呂不韋所編撰的《呂氏春秋-音律篇》(公元前239年)對(duì)此亦有所記載:
“黃鐘生林鐘……三分所生,益之一分以上生;三分所生,去其一分以下生。黃鐘、大呂、太簇、夾鐘、姑洗、仲呂、蕤賓為上;林鐘、夷則、南呂、無(wú)射、應(yīng)鐘為下。”
書中提到的“上生”是指振動(dòng)物體的長(zhǎng)度增加原先的1/3(即原來(lái)的4/3);而“下生”則是說(shuō)長(zhǎng)度減少1/3(即原來(lái)的2/3)。依照這種方式算出的十二律如下:
黃鐘81
林鐘81×2/3 =54
太簇54×4/3 =72
南呂72×2/3 =48
姑洗48×4/3=64
應(yīng)鐘64×2/3 =42.6667
蕤賓42.6667×4/3=56.8889
大呂56.8889×4/3=75.8519
夷則75.8519×2/3=50.5679
夾鐘50.5679×4/3=67.4239
無(wú)射67.4239×2/3=44.9392
仲呂44.9492×4/3=59.9323
清黃鐘59.9323×2/3=39.9549
拿一根琴弦作比較,在它的二分之一處彈奏出來(lái)的音與整弦彈奏出的音是一個(gè)高八度的關(guān)系。因此十二律結(jié)束后的十三音清黃鐘與黃鐘的長(zhǎng)度比值應(yīng)該也是二比一,但實(shí)際上清黃鐘并沒有達(dá)到黃鐘的二分之一( 39.9549<40.5)。
分析上面的數(shù)據(jù)我們可以知道,自應(yīng)鐘開始我們所計(jì)算出的管長(zhǎng)就是一個(gè)無(wú)理數(shù),而后的所有數(shù)據(jù)自然也是基于這個(gè)無(wú)理數(shù)計(jì)算得來(lái)的,可以說(shuō)應(yīng)鐘之后的每一個(gè)音都存在誤差,這也就是清黃鐘沒能達(dá)到應(yīng)有長(zhǎng)度的原因。
正因此,這一時(shí)期的探索給后世留下了一個(gè)三分損益法不能旋相為宮的世紀(jì)難題。
第二時(shí)期是探求新律時(shí)期,大約是從公元前3世紀(jì)自公元14世紀(jì),并且似乎由于古代數(shù)學(xué)在公元11世紀(jì)到14世紀(jì)期間發(fā)展到了鼎盛時(shí)期,律學(xué)的發(fā)展也得到了極大的鼓舞。
公元前77年,漢代律學(xué)家京房為了解決三分損益法產(chǎn)生的音差問題提出了京房六十律。他在十二律的基礎(chǔ)上繼續(xù)用三分損益進(jìn)行數(shù)學(xué)演算,從“仲呂”之后向下生律,在推演到到第五十四律“色育”的時(shí)候就已經(jīng)與首音的黃鐘只差六分之一個(gè)古代音差,而后又為了符合八卦繼續(xù)將之演算到第六十律“南事”。
南宋錢樂之也同京房一樣,他在京房六十律的基礎(chǔ)上又從“南事”再生三百律到了“安運(yùn)”,最后算出的音差只差三十分之一個(gè)古代音差,比“小微音差”(兩音分)還要小。
這兩人雖然沒有完全解決十二律旋宮轉(zhuǎn)調(diào)的問題,但卻將三分損益產(chǎn)生的音差減少到了極致。并且,從六十律計(jì)算到三百六十律就將音差從1/6縮小到1/30,在如今這個(gè)科技發(fā)達(dá)的時(shí)代,人們利用計(jì)算機(jī)未嘗不能實(shí)現(xiàn)用三分損益反相為宮。當(dāng)然了,就算能夠?qū)崿F(xiàn),這也只建立在理論上能夠解決音差問題,畢竟計(jì)算量太大,并不能運(yùn)用于實(shí)際的操作之中。
繼京房與錢樂之之后,人們逐漸意識(shí)到使用三分損益法并不能將十二旋宮換于黃鐘,于是轉(zhuǎn)而在十二律內(nèi)部解決問題。
南宋律學(xué)家何承天可以說(shuō)是“世界上最早用數(shù)學(xué)解決十二律的人”①。根據(jù)《隋書-音樂志》的記載,公元445年,他公開反對(duì)京房六十律,認(rèn)為“京房不悟,謬為六十”②,并且提出將十二律之間的差數(shù)等分為十二份,并將之加在原先的十二律上,得到新律,是首個(gè)不使用三分損益法解決音差問題的人,邁出了律學(xué)史上新的一步。但是何承天新律也沒有解決旋宮轉(zhuǎn)調(diào)的問題,他將差數(shù)等分之后只是將黃鐘與清黃鐘之間變?yōu)?:2的關(guān)系,與其余的音并不是一個(gè)等比的關(guān)系,因此轉(zhuǎn)調(diào)時(shí)也會(huì)移調(diào)。
在這個(gè)時(shí)期之中,關(guān)于律學(xué)的研究可以說(shuō)是圍繞解決三分損益產(chǎn)生的音差這一個(gè)問題而展開的。六十律、三百六十律與新律三者雖然沒有完全的解決這一問題,但是也為后人的研究也提供了許多思路。
16世紀(jì),是十二平均律的發(fā)展時(shí)期,明朝的朱載堉在《律歷通融》(1581年)中提出了“新法密率”。他先將舊三分損益法中的分母縮小,求得十二律里面的五度與四度的比值,然后依照生律順序求出十二平均律,而這樣求出的十二律與今天的十二平均律完全一致??梢哉f(shuō)這就是我國(guó)最早計(jì)算出的完全準(zhǔn)確的十二平均律。
此后朱載堉在1596年編著的《律呂精義》一書里面,又將如何利用勾股定理和開方求得新法密率的計(jì)算方式進(jìn)行了詳細(xì)的論述。他先將十二律等分為十二份,之后將純八度開平方,算出蕤賓的頻率比為1.41421356(原朱載培將之計(jì)算到小數(shù)點(diǎn)后二十多位,這里只寫到第八位),再由蕤賓開方得到南呂1.18920711;最后得到應(yīng)鐘1.05946309。這里我們就可以得出兩個(gè)相鄰的音的頻率比為(約為1.0594631)。
由相鄰兩音之間的比我們可以算出十二律每個(gè)音的頻率比為:
黃鐘1
大呂 1.105964
太簇1.122462
夾鐘1.189207
姑洗1.259921
仲呂 1.334839
蕤賓1.414213
林鐘1 498307
夷則1.587401
南呂1.681792
無(wú)射1.781797
應(yīng)鐘1.887748
由于每半音之間的比值一致,明代朱載堉發(fā)明的十二平均律徹底解決了三分損益法不能旋宮轉(zhuǎn)調(diào)的問題。
十二平均律更具有科學(xué)性主要體現(xiàn)在:1.轉(zhuǎn)調(diào)上,十二平均律每個(gè)半音之間間隔一致,以任意一個(gè)音為首音都能構(gòu)成平均律,因此轉(zhuǎn)調(diào)更為方便;2.計(jì)算上,十二平均律以1.0594631的比值可以求出所有的音,比起三分損益法要更精確與簡(jiǎn)便。
當(dāng)然,十二平均律也有他的不足之處,比如在和聲上他沒有純律那么和諧,在單音音樂上也沒有三分損益自然協(xié)調(diào),但十二平均律在轉(zhuǎn)調(diào)上的優(yōu)勢(shì)則是無(wú)可取代的。
注釋:
①繆天瑞《律學(xué)》.
②《隋書·律歷志》“上下相生,三分損益其一……而京房不悟,謬為六十,”