国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

TRMM 3B43降水數(shù)據(jù)在云南地區(qū)的降尺度適用性評價*

2020-09-17 14:31:24玉院和王金亮
中國農(nóng)業(yè)氣象 2020年9期
關(guān)鍵詞:坡向適用性降水量

玉院和,王金亮

TRMM 3B43降水數(shù)據(jù)在云南地區(qū)的降尺度適用性評價*

玉院和,王金亮**

(云南師范大學(xué)旅游與地理科學(xué)學(xué)院/云南省高校資源與環(huán)境遙感重點實驗室/云南省地理空間信息工程技術(shù)研究中心,昆明 650500)

借助云南省2009?2018年25個氣象站點逐月降水量分析TRMM 3B43降水數(shù)據(jù)特征,利用相關(guān)系數(shù)(R)、偏離率(BIAS)、均方根誤差(RMSE)和平均絕對誤差對TRMM 3B43月降水數(shù)據(jù)和各站點進行適用性分析,并探討該數(shù)據(jù)與海拔、坡度、坡向之間的關(guān)系,最后將TRMM 3B43月降水數(shù)據(jù)降尺度至季、年尺度,并對其進行適用性評價,為復(fù)雜地形地區(qū)開展區(qū)域降水研究、水文預(yù)報等提供可靠降水產(chǎn)品數(shù)據(jù)。結(jié)果表明:(1)TRMM 3B43降水數(shù)據(jù)與實測降水數(shù)據(jù)變化趨勢基本一致,降水量均表現(xiàn)為西多東少、南多北少,且大致隨海拔高度呈階梯式分布;(2)TRMM 3B43月降水量與實測降水量具有極顯著相關(guān)性,R高達0.9392,BIAS接近0,且TRMM 3B43降水數(shù)據(jù)在25個站點R值均超過0.735,大多數(shù)站點的偏離度和誤差較小,其整體精度較高;(3)TRMM 3B43數(shù)據(jù)精度受坡度的影響比海拔、坡向大,但多數(shù)站點在不同海拔高度、坡度和坡向的精度均較高,適用性較強,尤其是海拔位于1000?2000m、坡度小于4°、坡向位于160°?240°的站點數(shù)據(jù)適用性更強;(4)降時間尺度后的TRMM 3B43數(shù)據(jù)相關(guān)系數(shù)稍有降低,誤差變大,尤其是在冬季和年尺度適用性稍差。TRMM 3B43月降水數(shù)據(jù)在云南地區(qū)具有較高的精度,可為地面降水數(shù)據(jù)提供有效補充。

TRMM 3B43;降水數(shù)據(jù);適用性評價;地形因子;云南地區(qū)

降水在全球水循環(huán)、物質(zhì)和能量的交換中起著重要作用,在區(qū)域天氣和全球氣候的形成中也起著至關(guān)重要的作用[1?3]。獲取準確的高時空分辨率降水數(shù)據(jù),對水資源管理與規(guī)劃、水文研究、農(nóng)業(yè)生產(chǎn)、干旱監(jiān)測和洪水預(yù)警等同等重要[4?7]。氣象站點觀測降水的技術(shù)成熟且精度較高而被廣泛應(yīng)用[8?10],但氣象觀測法得到的降水空間分布均借助已有的氣象站點數(shù)據(jù)進行插值獲得。云南省海拔差異較大,其地形較為破碎,不同區(qū)域的降水差異較大[11],氣象站點不能全部覆蓋各個區(qū)域,因此少量的氣象站點插值結(jié)果很難準確分析實際降水的空間變化特征[12]。全球覆蓋范圍的高分辨率衛(wèi)星降水產(chǎn)品為無站點或少站點區(qū)域提供了數(shù)據(jù),也為復(fù)雜山地降水研究提供了可能性與便利性[13?15]。

熱帶降雨測量衛(wèi)星(Tropical Rainfall Measuring Mission,TRMM)是NASA和JAXA共同開發(fā)研制并于1997年11月28日在日本空間中心發(fā)射的氣象衛(wèi)星,能夠提供長時間序列且覆蓋全球大部分區(qū)域的降水速率數(shù)據(jù)。TRMM衛(wèi)星的測雨傳感器主要有測雨雷達(PR)、微波成像儀(TMI)、可見光和紅外掃描儀(VIRS)。但TRMM是通過間接的降水測量方式獲得,進行數(shù)據(jù)質(zhì)量精度評價是區(qū)域降水研究的首要工作。目前,國內(nèi)外學(xué)者在各個地區(qū)對TRMM數(shù)據(jù)進行了適用性分析,如尼洋河流域[16]、黃河流域[17]、洞庭湖流域[12]、洮河中上游[18]、廣西自治區(qū)[19]、京津冀[20]、伊朗半干旱地區(qū)[21]、印度恒河上游[22]等,研究均表明TRMM數(shù)據(jù)在各研究區(qū)的精度較高,但不同研究區(qū)的精度具有一定的差異,且TRMM降水精度的影響因素也因研究區(qū)不同而存在差異。山地、高原區(qū)域降水分布極其復(fù)雜,降水不僅與經(jīng)緯度有關(guān),還受坡度、坡向、海拔等地形因素影響,而這些復(fù)雜因素也會對TRMM衛(wèi)星探測降水的精度產(chǎn)生一定影響。如張月圓等[23]研究發(fā)現(xiàn)TRMM降水數(shù)據(jù)在紅河流域的精度受坡度和坡向影響大于高程;吳建峰等[24]在貴州高原地帶研究發(fā)現(xiàn),TRMM衛(wèi)星在降水強度過大或過小時探測能力不足,且在海拔較低的站點存在低估降水的現(xiàn)象,而TRMM在復(fù)雜山地區(qū)域的精度受到高程和坡度的影響[25]。

綜上,云南省地形復(fù)雜,海拔差異大,南北海拔變化與緯度變化疊加,且受西南季風和東南季風影響,降水空間分布不均等復(fù)雜因素均可能對TRMM探測能力造成影響。但目前對TRMM數(shù)據(jù)在云南省的適用性評價僅從決定系數(shù)進行簡單分析,而對TRMM降水數(shù)據(jù)偏離率等誤差和精度影響因子的研究還較為缺乏。為此,本研究以下墊面相對復(fù)雜的云南省為研究對象,選取2009?2018年云南省25個氣象站點實測降水量,分析TRMM 3B43降水數(shù)據(jù)特征,從相關(guān)系數(shù)、偏離率與均方根誤差等對TRMM 3B43月降水數(shù)據(jù)和各站點降水精度進行評價,結(jié)合地形因子分析TRMM 3B43降水數(shù)據(jù)精度,最后將月尺度數(shù)據(jù)降至季、年尺度,分析其降尺度后的適用性,進而為開展區(qū)域降水研究、水文預(yù)報和防洪減災(zāi)等提供可靠的月、季、年多個尺度的降水產(chǎn)品數(shù)據(jù)。

1 資料與方法

1.1 研究區(qū)概況

云南省地處低緯度內(nèi)陸地區(qū)(97°31′E? 106°11′E,21°8′N?29°15′N),國土總面積39.41萬km2。省內(nèi)地形多樣復(fù)雜,山地、高原面積約占94%;氣候類型基本屬于亞熱帶高原季風型,立體氣候特點顯著,干濕季分明,南北向氣溫梯度變化較明顯;總降水量的分布趨勢為南多北少,西多東少,濕季(5?10月,為雨季)降水量是全年總量的85%,降水也存在地域性差異,部分地區(qū)年降水量可達2200mm以上。

1.2 數(shù)據(jù)源及預(yù)處理

1.2.1 TRMM 3B43數(shù)據(jù)

所用的TRMM 3B43第7版數(shù)據(jù)產(chǎn)品是利用TRMM多衛(wèi)星降水分析方法(TMPA)得到的逐月產(chǎn)品數(shù)據(jù),空間分辨率為0.25°í0.25°,時間分辨率為月。2009?2018年云南省TRMM 3B43衛(wèi)星數(shù)據(jù)均下載自https://disc.gsfc.nasa.gov/。TRMM 3B43數(shù)據(jù)獲取后,利用ENVI圖像軟件對格式為.HDF的TRMM 3B43產(chǎn)品進行預(yù)處理,得到經(jīng)過坐標校正后的遙感影像。將原時間尺度為小時的TRMM 3B43數(shù)據(jù)通過累加轉(zhuǎn)換為月,即TRMM 3B43數(shù)據(jù)乘以各月的小時數(shù)生成月降水量柵格數(shù)據(jù)。

1.2.2 氣象數(shù)據(jù)

從中國氣象數(shù)據(jù)網(wǎng)站(http://cdc.cma.gov.cn/)獲取2009?2018年云南省25個氣象站點(圖1)降水量實測數(shù)據(jù),數(shù)據(jù)文件包括站號、站點經(jīng)緯度、海拔高度、逐日降水量等信息。通過整理分析,累加計算得到各站點2009?2018年月、季和年3個時間尺度的降水總量,其中季尺度劃分為春季(3?5月)、夏季(6?8月)、秋季(9?11月)、冬季(12月?翌年2月)。

圖1 云南省25個國家基準/基本氣象站點的分布

1.3 精度評價方法

由圖1可見,云南省內(nèi)經(jīng)緯跨度分別約為9°(經(jīng))和8°(緯),海拔高差約6000m,跨度大,地形破碎。整個研究區(qū)具有521個TRMM數(shù)據(jù)柵格點,借助ArcMap10.5提取分析工具,根據(jù)25個氣象站點的經(jīng)緯度,提取與各站點所對應(yīng)的TRMM 3B43格點,得到云南省各氣象站點所在格網(wǎng)的TRMM月降水數(shù)據(jù)。計算TRMM數(shù)據(jù)與氣象數(shù)據(jù)之間的評價指標,進而評價TRMM在云南省的適用性。

評價指標為:相關(guān)系數(shù)(R)、偏離率(BIAS)、均方根誤差(RMSE)和平均絕對誤差(MAE)。R表示TRMM降水數(shù)據(jù)與站點數(shù)據(jù)的相關(guān)程度,取值范圍0~1,數(shù)值越接近1表示兩者的相關(guān)程度越高。BIAS表示TRMM降水數(shù)據(jù)與站點降水數(shù)據(jù)的偏離程度,數(shù)值越接近0,數(shù)據(jù)越精確。BIAS<0,表示衛(wèi)星觀測值低估實測值,反之則高估實測降水量。RMSE(mm)評價數(shù)據(jù)的整體誤差,也用來表示實測值與衛(wèi)星觀測值之間的偏差,其值越小表示兩種數(shù)據(jù)值越接近。MAE(mm)為絕對誤差的平均值,數(shù)值越小,表示衛(wèi)星觀測降水量越接近實測降水量。各指標計算式為

2 結(jié)果與分析

2.1 TRMM 3B43降水數(shù)據(jù)的特征分析

由表1可見,全省各站TRMM 3B43降水數(shù)據(jù)最大值在242.25~563.52mm,而實測降水量最大值在234.20~733.90mm,兩種數(shù)據(jù)在滇西南地區(qū)(如江城、思茅和勐臘等)降水量最大,且最大值差異最為明顯,TRMM 3B43最大值低于實測值;多數(shù)站點最小值中,TRMM 3B43降水數(shù)據(jù)較實測值大;但各站點中,兩種數(shù)據(jù)的降水均值差異較小,尤其是瀘西站,兩者相差僅0.02mm。由此可知,兩種數(shù)據(jù)除了較強降水或較弱降水時差異較大外,在其余降水情況兩種數(shù)據(jù)均較為吻合。同時,兩種數(shù)據(jù)在海拔3000m以上的降水均值最小,隨著海拔的降低,平均降水量逐漸增大,直至海拔1000?1500m,降水平均值達到最大,此時多個站點(思茅、廣南、華坪、景東、江城、耿馬、瀾滄)的TRMM 3B43降水均值為111.57mm,但海拔低于1000m時,降水量有所減小。由此可發(fā)現(xiàn),兩種降水數(shù)據(jù)均隨海拔高度呈階梯式分布特征。從緯度來看,位于云南省北回歸線(23°26′N)附近的TRMM 3B43降水均值和實測降水量較為充沛,其中思茅站的平均降水差異僅為0.94mm,TRMM數(shù)據(jù)能夠較好地表達實測降水??傮w而言,TRMM 3B43降水與實測降水平均值基本一致且降水趨勢基本一致,均表現(xiàn)為西多東少、南多北少。但是,由于站點的海拔、緯度差異造成降水的空間分布差異,同時也表現(xiàn)出TRMM 3B43與實測降水的差異,故在使用TRMM數(shù)據(jù)前需要對其進行適用性評價。

表1 2009?2018年各站點所在像元TRMM 3B43月數(shù)據(jù)和實測數(shù)據(jù)系列的特征值

2.2 TRMM 3B43降水數(shù)據(jù)的精度評價

由圖2可見,所有站點TRMM 3B43月降水量與實測降水量間具有極顯著相關(guān)性,R值高達0.9392,BIAS接近0,RMSE和MAE分別為32.9776mm和20.5730mm,說明其整體精度較高。但同時由圖中可見,在TRMM 3B43月降水量小于250mm范圍內(nèi),擬合的精度相對更高一些,還有一部分數(shù)據(jù)點偏離1:1線較多,實測降水較大時TRMM 3B43數(shù)據(jù)集中卻相對較小,沒有反映出降水的實際情況。

進一步分析各站情況(表2)可見,TRMM 3B43數(shù)據(jù)集中所有站點所在像元的2009?2018年逐月降水量與實測月降水量數(shù)據(jù)系列間相關(guān)系數(shù)均超過了0.735,通過了0.01水平的顯著性檢驗,大多數(shù)站點的偏離度和誤差較小,說明TRMM 3B43數(shù)據(jù)與實測數(shù)據(jù)一致性很高。從數(shù)據(jù)整體偏離率(BIAS)看,各站情況不同,其值有正有負、偏離度有大有小,均方根誤差和平均絕對誤差也有一定差別??傮w上看,思茅、臨滄、勐臘、耿馬等多數(shù)低、中海拔站點數(shù)據(jù)的偏離度較低,基本為0;而麗江、昭通、會澤多數(shù)高海拔站點,雖偏離度稍高,但均方根誤差及平均絕對誤差較小,TRMM 3B43數(shù)據(jù)與實測值較為接近。同樣,江城、瀾滄、瀘西等一些低緯度站點的TRMM 3B43數(shù)據(jù)與實測數(shù)據(jù)相關(guān)性稍強于德欽、貢山、維西等高緯度站點,且其BIAS較高緯度站點趨近于0??梢姡谠颇系貐^(qū),TRMM 3B43月降水數(shù)據(jù)與25個站點實測數(shù)據(jù)間具有極顯著相關(guān)關(guān)系,但由于各站地理位置不同,數(shù)據(jù)的偏離度和誤差有明顯差異。

圖2 25個站點2009?2018年TRMM 3B43月降水量與實測月降水量的散點圖(n=3000)

Note: R is correlation coefficient, BIAS is deviation rate, RMSE is root mean square error, and MAE is mean absolute error between two monthly precipitation serials. The same as below.

2.3 TRMM 3B43降水數(shù)據(jù)精度與地形因子關(guān)系分析

云南省地形破碎且高差大,地勢西北高、東南低,海拔差異大,在同一省區(qū)內(nèi),寒、溫、熱(亞熱)三帶共存。降水存在明顯的空間差異性,海拔、坡度、坡向均有可能造成降水的空間差異[23],因此,從海拔、坡度、坡向探討TRMM降水精度,并分析地形因子造成的降水空間分布差異。分別以研究區(qū)25個氣象站點所在3×3像元窗口內(nèi)的高程、坡度及坡向平均值為自變量,分別以各站點TRMM 3B43降水量與實測值之間的相關(guān)系數(shù)(R)、偏離率絕對值(|BIAS|)、均方根誤差(RMSE)和平均絕對誤差(MAE)為因變量,進行回歸分析。

表2 各站點TRMM 3B43降水數(shù)據(jù)與實測值的比較結(jié)果

注:**表示相關(guān)系數(shù)通過0.01水平的顯著性檢驗。下同。 Note:**is P<0.01. The same as below.

由圖3可知,海拔位于1000?2000m時,多數(shù)站點所處地形較為平坦且起伏度較小,因而其相關(guān)系數(shù)R很高,|BIAS|基本為0,RMSE和MAE均處于中間值??梢奣RMM 3B43降水數(shù)據(jù)在中低海拔地區(qū)具有較高的精度。但同時由圖可見,高海拔地區(qū)的多個站點因地形起伏度較大等原因造成相關(guān)性較弱,然而其誤差值較小,說明TRMM 3B43降水數(shù)據(jù)精度受海拔的影響較小,在研究區(qū)各海拔高度內(nèi)均具有較強的適用性。

進一步分析TRMM 3B43降水數(shù)據(jù)精度與坡度間的關(guān)系(圖4)可見,坡度與相關(guān)系數(shù)(R)、均方根誤差(RMSE)和平均絕對誤差(MAE)的相關(guān)系數(shù)分別為0.8167、0.7071和0.6865,且均通過了0.01水平顯著性檢驗,呈現(xiàn)較強的二次函數(shù)關(guān)系特征,隨著坡度的增大,TRMM 3B43降水量與實測值兩種降水數(shù)據(jù)間的相關(guān)系數(shù)逐漸減小,誤差逐漸增大。坡度大于12°的貢山站的R最低,偏離率絕對值(|BIAS|)和兩種誤差最大,此外,全省大部分站點位于0?4°的坡度范圍時R較大,誤差較小,說明TRMM 3B43數(shù)據(jù)的精度較高,在云南地區(qū)具有較強的適用性。

再進一步分析TRMM 3B43降水數(shù)據(jù)精度與坡向間的關(guān)系(圖5)可見,坡向與R、|BIAS|、RMSE和MAE的相關(guān)系數(shù)分別為0.3493、0.3376、0.3896和0.371,呈現(xiàn)較弱的相關(guān)性。同一坡向不同站點的|BIAS|具有一定的差異,麗江、廣南、瀘西、昆明、瀾滄等位于160°?240°坡向的站點誤差(RMSE、MAE)較小,TRMM 3B43數(shù)據(jù)較為接近實測值。總體來說,所有站點中,除位于東坡的貢山站和位于東北坡的維西站相關(guān)系數(shù)較低,其余站點相關(guān)性均較高,說明TRMM 3B43數(shù)據(jù)在不同坡向的降水精度均較高??傮w來說,除貢山站和維西站的TRMM 3B43降水數(shù)據(jù)精度較低外,其余站點在不同海拔高度、坡度和坡向的精度均較高,說明TRMM 3B43數(shù)據(jù)在云南省月尺度中具有較強的適用性。

圖3 站點海拔高度與兩數(shù)據(jù)序列相關(guān)系數(shù)、偏離率絕對值、均方根誤差、平均絕對誤差間關(guān)系(n=25)

圖4 站點坡度與兩數(shù)據(jù)序列相關(guān)系數(shù)、偏離率絕對值、均方根誤差、平均絕對誤差間關(guān)系(n=25)

圖5 站點坡向與兩數(shù)據(jù)序列相關(guān)系數(shù)、偏離率絕對值、均方根誤差、平均絕對誤差間關(guān)系(n=25)

2.4 TRMM 3B43數(shù)據(jù)降尺度適用性評價

2.4.1 季尺度

云南省地處低緯高原季風區(qū),立體氣候顯著,降水在季節(jié)上分配極不均勻,且干濕季降水差異極為明顯,故將TRMM 3B43月尺度降至季尺度,并分析TRMM 3B43季尺度數(shù)據(jù)在云南省的適用性。由圖6可見,所有站點TRMM 3B43季降水量與實測降水量均具有極顯著相關(guān)性,四個季節(jié)的相關(guān)系數(shù)(R)均超過了0.80,且均通過了0.01水平的顯著性檢驗,偏離度均在0.1以下,說明該數(shù)據(jù)在季尺度表現(xiàn)出較好的一致性。由圖還可見,夏、秋兩季R較高,而冬、春兩季R略低,與1:1趨勢線偏離較大。云南省TRMM 3B43降水量與實測降水量在各季的RMSE均在97mm以下,MAE均在78mm以下,以夏季最大??梢姡琓RMM 3B43季尺度數(shù)據(jù)的適用性比月尺度稍差。

2.4.2 年尺度

由圖7可見,所有站點TRMM 3B43年降水量與實測年降水量同樣具有較強的相關(guān)性,相關(guān)系數(shù)R高達0.8791,且通過了0.01水平的顯著性檢驗,BIAS接近0,線性方程斜率為0.738,反映了TRMM 3B43數(shù)據(jù)與實測數(shù)據(jù)在整體上具有較高的一致性。但同時由圖可見,在年降水量1100~1600mm區(qū)間內(nèi),擬合的精度相對更高些,還有一部分數(shù)據(jù)點偏離1:1趨勢線較多,TRMM 3B43數(shù)據(jù)在降水量小于1400mm時對降水高估。與此同時,由于誤差的傳遞性,使其RMSE、MAE均偏大,因此,在年尺度上TRMM 3B43不能較精確地反映實際降水情況。

圖6 25個站點2009?2018年由TRMM 3B43月值序列降尺度得到的各季降水量與實測值間散點圖

圖7 25個站點2009?2018年由TRMM 3B43月值序列降尺度得到的年降水量與實測值間散點圖

3 結(jié)論與討論

3.1 討論

TRMM 3B43月數(shù)據(jù)在云南省具有較好的適用性,這與馮海濤等[26]利用云南省12個氣象站點對TRMM 3B43數(shù)據(jù)進行精度評價的結(jié)果基本一致。但在降水量大于250mm時,TRMM 3B43存在低估降水現(xiàn)象,造成這一原因與TRMM降水強度有關(guān),通常表現(xiàn)為對大雨低估[27]。同時,TRMM 3B43月數(shù)據(jù)在25個站點適用性較強,其中TRMM 3B43數(shù)據(jù)在低海拔地區(qū)和低緯度地區(qū)具有較強的適用性,這與黃國如等[28]在北江飛來峽流域的研究結(jié)果一致。

從TRMM 3B43數(shù)據(jù)與坡度關(guān)系來看,坡度越小,降水精度越高,這與張月圓等[23]研究認為在地勢比較平坦的區(qū)域精度較高的結(jié)果一致。然而位于坡度>12°的貢山站精度最低,造成精度低的原因不僅與坡度有關(guān),也與貢山站立體氣候和小區(qū)域氣候特征顯著,一年之中出現(xiàn)2個雨季,即2?4月的“桃花汛”和6?10月的主汛期等原因息息相關(guān)[29]。

山體迎風坡與背風坡的降水有明顯的差異,一般迎風坡降水量大于背風坡[30],如受到東南季風影響的滇東南地區(qū),迎風坡東南坡的降水量大于西北坡,西北?東南走向的哀牢山山脈,山脈西側(cè)(東南坡)降水量大于東側(cè)(西北坡)。但從TRMM 3B43數(shù)據(jù)與坡向關(guān)系來看,坡向?qū)邓鹊挠绊戄^小,這與周秋文等[30]研究認為TRMM降水精度受坡度的影響大于坡向和高程的結(jié)果一致。

在云南省具有較強適用性的TRMM 3B43月降水數(shù)據(jù),經(jīng)降尺度至季尺度和年尺度后精度稍有減小,其中季尺度中冬、春兩季的精度低于夏秋兩季。冬季擬合較差的原因在于該季降水較其它季節(jié)極其稀少,且冬季地表溫度過低而影響微波降水的反演[23];春季存在“桃花汛”的貢山站,由于衛(wèi)星對短時、雨量大的探測能力有限,從而導(dǎo)致相關(guān)系數(shù)偏低且存在低估實測降水量BIAS<0和偏離1:1趨勢線的現(xiàn)象。夏季雖相關(guān)系數(shù)最大,但其誤差也最大,這是因為云南省25個氣象站點所監(jiān)測的夏季降水量均值為583.82mm,且多為強降雨,進而給TRMM衛(wèi)星精確地觀測降水帶來巨大挑戰(zhàn)。對于年尺度,由于誤差的傳遞性導(dǎo)致TRMM 3B43降水數(shù)據(jù)的誤差較大,說明TRMM 3B43月尺度數(shù)據(jù)的精度是影響季尺度和年尺度數(shù)據(jù)精度的主要原因。因此,在利用季尺度或年尺度降水數(shù)據(jù)時,應(yīng)考慮坡度等地形因子對原始TRMM 3B43數(shù)據(jù)進行校正來提高降水數(shù)據(jù)精度,同時本研究也可為云南省及其它地形復(fù)雜的高原、山地地區(qū)降水產(chǎn)品校正研究、區(qū)域降水時空分布特征研究等提供可靠的科學(xué)依據(jù)。

3.2 結(jié)論

(1)TRMM 3B43降水數(shù)據(jù)與實測降水數(shù)據(jù)的最大值差異較大,均值差異較小,兩種數(shù)據(jù)變化趨勢基本一致,降水量均表現(xiàn)為西多東少、南多北少,且大致隨海拔高度呈階梯式分布。

(2)TRMM 3B43月降水量與實測降水量間具有極顯著相關(guān)性,相關(guān)系數(shù)高達0.9392,偏離率接近0,均方根誤差和平均絕對誤差分別為32.9776mm和20.5730mm,其整體精度較高。TRMM 3B43數(shù)據(jù)集中的25個站點所在像元2009?2018年逐月降水量與實測月降水量數(shù)據(jù)系列間相關(guān)系數(shù)均超過了0.735,通過了0.01水平的顯著性檢驗,大多數(shù)站點的偏離率和誤差較小,TRMM 3B43數(shù)據(jù)與實測數(shù)據(jù)間一致性很高。

(3)TRMM 3B43數(shù)據(jù)精度受坡度的影響比海拔、坡向大,但除貢山站和維西站的TRMM 3B43降水數(shù)據(jù)精度較低外,其余站點在不同海拔高度、坡度和坡向的精度均較高,適用性較強,尤其是海拔位于1000?2000m、坡度小于4°、坡向位于160°? 240°的站點數(shù)據(jù)適用性更強。

(4)經(jīng)時間降尺度后的TRMM 3B43數(shù)據(jù)相關(guān)系數(shù)稍有降低、誤差稍有變大,尤其是在冬季和年尺度適用性稍差,故在進行月尺度以上的降水研究時應(yīng)對數(shù)據(jù)進行精度校正。

[1]Cao Y,Zhang W,Wang W.Evaluation of TRMM 3B43 data over the Yangtze River Delta of China[J].Scientific Reports,2018,8(1):5290.

[2]鄭杰,閭利,馮文蘭,等.基于TRMM 3B43數(shù)據(jù)的川西高原月降水量空間降尺度模擬[J].中國農(nóng)業(yè)氣象,2016,37(2):245-254.Zheng J,Lv L,Feng W L,et al.Spatial downscaling mimulation of monthly precipitation based on TRMM 3B43 data in the Western Sichuan Plateau[J].Chinese Journal of Agrometeorology,2016,37(2):245-254.(in Chinese)

[3]李豪,雷苑.復(fù)雜地形下TRMM降水數(shù)據(jù)的降尺度研究:以四川省為例[J].中國農(nóng)業(yè)氣象,2019,40(10):607-619.Li H,Lei Y.Spatial dwnscaling of TRMM precipitation data in areas of complex terrain:a case study in Sichuan Province[J].Chinese Journal of Agrometeorology,2019,40(10):607-619.(in Chinese)

[4]玉院和,王金亮,李曉鵬.基于MODIS數(shù)據(jù)的滇中地區(qū)干旱監(jiān)測[J].灌溉排水學(xué)報,2018,37(11):91-98.Yu Y H,Wang J L,Li X P.Monitoring the occurrence of drought in Central Yunnan Province based on MODIS data[J].Journal Irrigation Drainage,2018,37(11):91-98.(in Chinese)

[5]Zhou Z,Guo B,Su Y,et al.Multidimensional evaluation of the TRMM 3B43V7 satellite-based precipitation product in mainland China from 1998-2016[J].Peer J,2020,8:e8615.

[6]Yu Y H,Wang J L,Cheng F,et al.Soil moisture by remote sensing retrieval in the tropic of cancer of Yunnan Province[J].Polish Journal of Environmental Studies,2020,29(2):1981-1993.

[7]童德明,白雲(yún),張莎,等.干旱嚴重程度指數(shù)(DSI)在山東省干旱遙感監(jiān)測中的適用性[J].中國農(nóng)業(yè)氣象,2020,41(2):102-112.Tong D M,Bai Y,Zhang S,et al.Applicability of drought severity index(DSI) in remote sensing monitoring of drought in Shandong Province[J].Chinese Journal of Agrometeorology,2020,41(2):102-112.(in Chinese)

[8]張冬冬,魯帆,嚴登華,等.云南省干旱時空演變規(guī)律及季節(jié)連旱的概率特征分析[J].應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報,2014,22(4):705-717.Zhang D D,Lu F,Yan D H,et al.Spatio-temporal analysis of droughts and the characteristic of continuous seasonal droughts probability in Yunnan Province[J].Journal of Hydraulic Engineering,2014,22(4):705-717.(in Chinese)

[9]劉小剛,冷險險,孫光照,等.基于1961-2100年SPI和SPEI的云南省干旱特征評估[J].農(nóng)業(yè)機械學(xué)報,2018,49(12):236-245.Liu X G,Leng X X,Sun G Z,et al.Assessment of drought characteristics in Yunnan Province based on SPI and SPEI from 1961 to 2100[J].Transactions of the Chinese Society for Agricultural Machinery,2018,49(12):236-245.(in Chinese)

[10]任菊章,黃中艷,鄭建萌.基于相對濕潤度指數(shù)的云南干旱氣候變化特征[J].中國農(nóng)業(yè)氣象,2014,35(5):567-574.Ren J Z,Huang Z Y,Zheng J M.Analysis on drought climate change in Yunnan based on relative moisture index[J].Chinese Journal of Agrometeorology,2014,35(5):567-574.(in Chinese)

[11]王昊,姜超,王鶴松,等.中國西南部區(qū)域雨季極端降水指數(shù)時空變化特征[J].中國農(nóng)業(yè)氣象,2019,40(1):1-14.Wang H,Jiang C,Wang H S,et al.Spatial and temporal variation of extreme precipitation indices in southwestern China in the rainy season[J].Chinese Journal of Agrometeorology,2019,40(1):1-14.(in Chinese)

[12]楊東,劉雯,朱靖軒,等.TRMM降水數(shù)據(jù)在洞庭湖流域的精度評估和應(yīng)用[J].水土保持研究,2019,26(3):279-284.Yang D,Liu W,Zhu J X,et al.Accuracy evaluation and application of the TRMM precipitation data in Dongting Lake Basin[J].Research of Soil and Water Conservation,2019,26(3):279-284.(in Chinese)

[13]Gumindoga W,Rientjes T,Haile A T,et al.Performance evaluation of CMORPH satellite precipitation product in the Zambezi Basin[J].International Journal of Remote Sensing,2019,40(20):7730-7749.

[14]Yan Y,Wu H,Gu G,et al.Climatology and interannual variability of floods during the TRMM Era (1998-2013)[J].Journal of Climate,2020,33(8):3289-3305.

[15]Maghsood F F,Hashemi H,Hosseini S H,et al.Ground validation of GPM IMERG precipitation products over Iran[J].Remote Sensing,2020,12(1):48.

[16]孟慶博,劉艷麗,劉冀,等.TRMM衛(wèi)星降水產(chǎn)品在尼洋河流域的適用性定量分析[J].水資源與水工程學(xué)報,2019,30(1):89-96.Meng Q B,Liu Y L,Liu J,et al.Quantitative analysis on the applicability of TRMM satellite precipitation products in the Niyang River Basin[J].Journal of Water Resources & Water Engineering,2019,30(1):89-96.(in Chinese)

[17]黃桂平,曹艷萍.TRMM衛(wèi)星3B43降水數(shù)據(jù)在黃河流域的精度分析[J].遙感技術(shù)與應(yīng)用,2019,34(5):1111-1120.Huang G P,Cao Y P.Accuracy analysis of TRMM 3B43 precipitation data in the Yellow River Basin[J].Remote Sensing Technology and Applicatior,2019,34(5):1111-1120.(in Chinese)

[18]程立真,楊梅學(xué),王學(xué)佳,等.TRMM 3B42降水產(chǎn)品在洮河中上游的精度評估分析[J].高原氣象,2020,39(1):185-195.Cheng L Z,Yang M X,Wang X J,et al.Analysis of the accuracy of TRMM 3B42 rainfall data in the upper and middle reaches of Taohe River[J].Plateau Meteorology,2020,39(1):185-195.(in Chinese)

[19]楊星星,楊云川,鄧思敏,等.廣西TRMM降雨產(chǎn)品多時間尺度精度評估[J].熱帶氣象學(xué)報,2019,35(4):567-576.Yang X X,Yang Y C,Deng S M,et al.Accuracy assessment of TRMM rainfall data in Guangxi at multiple time scales[J].Journal of Tropical Meteorology,2019,35(4):567-576.(in Chinese)

[20]楊榮芳,曹根華,張婧.TRMM 3B43衛(wèi)星降水數(shù)據(jù)在京津冀地區(qū)的適用性研究[J].冰川凍土,2019,41(3):689-696.Yang R F,Cao G H,Zhang J.Research of TRMM3 B43 satellite precipitation data applicability in Beijing-Tianjin-Hebei Region[J].Journal of Glaciology and Geocryology,2019,41(3):689-696.(in Chinese)

[21]Mahbod M,Veronesi F,Shirvani A.An evaluative study of TRMM precipitation estimates over multi-day scales in a semi-arid region,Iran[J].International Journal of Remote Sensing,2019,40(11):4143-4174.

[22]Shukla A K,Ojha C S P,Singh R P,et al.Evaluation of TRMM precipitation dataset over Himalayan Catchment:the upper Ganga Basin,India[J].Water,2019,11(3):613.

[23]張月圓,李運剛,季漩,等.紅河流域TRMM衛(wèi)星降水數(shù)據(jù)精度評價[J].水資源與水工程學(xué)報,2017,28(2):1-8.Zhang Y Y,Li Y G,Ji X,et al.Accuracy evaluation of TRMM satellite precipitation product over the Red River basin[J].Journal of Water Resources & Water Engineering,2017,28(2):1-8.(in Chinese)

[24]吳建峰,林淑貞,李威,等.貴州高原地帶TRMM 3B42衛(wèi)星降水數(shù)據(jù)的精度評價[J].水文,2018,38(4):87-91.Wu J F,Lin S Z,Li W,et al.Evaluation of TRMM 3B42 satellite precipitation data accuracy of Guizhou Plateau[J].Journal of China Hydrology,2018,38(4):87-91.(in Chinese)

[25]吳建峰,陳阿林,嵇濤,等.TRMM降水數(shù)據(jù)在復(fù)雜山地的精度評估:以重慶市為例[J].水土保持通報,2014,34(4):201-207.Wu J F,Chen A L,Ji T,et al.Accuracy evaluation of Tropical Rainfall Measuring Mission precipitation data in complex mountainous areas:taking Chongqing City as an example[J].Bulletin of Soil and Water Conservation,2014,34(4):201-207.(in Chinese)

[26]馮海濤,于國榮,楊具瑞.基于TRMM 3B43 V7數(shù)據(jù)的云南降水與干旱監(jiān)測及精度評價[J].水資源與水工程學(xué)報,2014,25(4):89-96.Feng H T,Yu G R,Yang J R.Precipitation and drought monitoring based on TRMM 3B43 V7data and precision evaluation in Yunnan[J].Journal of Water Resources & Water Engineering,2014,25(4):89-96.(in Chinese)

[27]李瓊,楊梅學(xué),萬國寧,等.TRMM 3B43降水數(shù)據(jù)在黃河源區(qū)的適用性評價[J].冰川凍土,2016,38(3):620-633.Li Q,Yang M X,Wang G N,et al.Analysis of the accuracy of TRMM 3B43 precipitation data in the Source Region of the Yellow River[J].Journal of Glaciology and Geocryology,2016,38(3):620-633.(in Chinese)

[28]黃國如,陳曉麗.北江飛來峽流域TRMM衛(wèi)星降雨數(shù)據(jù)適應(yīng)性研究[J].南水北調(diào)與水利科技,2019(4):27-36.Huang G R,Chen X L.Adaptability of TRMM satellite rainfall data in Feilaixia Catchment of Beijiang River Basin[J].South-to-North Water Transfers and Water Science &.Technology,2019(4):27-36.(in Chinese)

[29]徐東,鄒進,陸穎,等.TRMM衛(wèi)星降水數(shù)據(jù)在怒江流域的適用性分析[J].水土保持研究,2019,26(1):240-244.Xu D,Zou J,Lu Y,et al.Evaluation on applicability of TRMM satellite precipitation product in the Nujiang River Basin[J].Research of Soil and Water Conservation,2019,26(1):240-244.(in Chinese)

[30]周秋文,李芳.TRMM降雨數(shù)據(jù)在喀斯特地區(qū)的適用性分析:以貴州省為例[J].水資源與水工程學(xué)報,2018,29(2):76-83.Zhou Q W,Li F.Applicability analysis of the TRMM precipitation data in Karst region:a case study in Guizhou Province,China[J].Journal of Water Resources & Water Engineering,2018,29(2):76-83.(in Chinese)

Applicability Evaluation of TRMM 3B43 Precipitation Data for Downscaling in Yunnan Province

YU Yuan-he, WANG Jin-liang

(College of Tourism and Geographic Sciences, Yunnan Normal University/Key Laboratory of Resources and Environmental Remote Sensing for Universities in Yunnan/Center for Geospatial Information Engineering and Technology of Yunnan Province, Kunming 650500, China)

Precipitation exerts an important role in the exchange of matter and energy in the global water cycle, affecting soil moisture, vegetation growth, and surface runoff. By employing existing station data, the spatial distribution of precipitation obtained by the meteorological observation method was obtained by interpolation. However, the interpolation results of a small number of meteorological stations are challenging to accurately analyze the spatial variation characteristics of actual precipitation. Launched on 28 November 1997, the Tropical Rainfall Measuring Mission (TRMM) was jointly developed by the United States National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA), thus providing long time series and covering most regions of the world with precipitation rate data. Nevertheless, TRMM was obtained by indirect precipitation measurement. Meanwhile, there were related errors and uncertainties. As a result, TRMM accuracy evaluation was the primary work of regional precipitation research. The terrain of Yunnan Province is complex, and the altitude difference is large. In addition, it is affected by the southwest monsoon and southeast monsoon. Complex factors such as the uneven distribution of precipitation may affect the detection capabilities of TRMM satellites. However, the current evaluation of the applicability of TRMM data in Yunnan Province is only a simple analysis of the coefficient of determination. Besides, the research on the factors affecting the accuracy of TRMM precipitation data and errors such as deviation rate is still lacking. In the present study, the accuracy of TRMM 3B43 precipitation data was evaluated in Yunnan, where the terrain was complex, aiming to provide reliable precipitation product data for regional precipitation research and hydrological forecasting. Monthly precipitation from 25 meteorological stations in Yunnan province from 2009 to 2018 provided by the China Meteorological Data Service Center was used to analyze the characteristics of TRMM 3B43 precipitation data. The correlation coefficient(R), BIAS, root mean square error (RMSE) and mean absolute error (MAE) were used to analyze the applicability between TRMM 3B43 monthly precipitation data and meteorological station data. Then, the relationship between the TRMM 3B43 precipitation data corresponding to each station and the elevation, slope, and aspect was discussed in this study. Finally, the data was downscaled to the seasonal and annual scales. At the same time, its applicability was evaluated. Some results the current study showed that: (1) the mean difference between TRMM 3B43 precipitation data and measured precipitation data was small, especially at Luxi station, where the difference was only 0.02mm. The TRMM 3B43 precipitation data was basically in consistence with the measured precipitation data, showing that there were more in the west and south and less in the east and north. It was roughly distributed step by step with the altitude. However, the difference in the spatial distribution of precipitation caused by the difference in altitude and latitude of each station also revealed the difference between TRMM 3B43 and the measured precipitation. Therefore, it is of much necessity to evaluate its applicability before using TRMM data.(2) With an R as high as 0.9392, BIAS close to zero, RMSE as low as 32.9776mm, and MAE as low as 20.5730mm, TRMM 3B43 displayed an extremely significant correlation between monthly precipitation and measured precipitation. In the range of TRMM 3B43 monthly precipitation less than 250mm, the accuracy of the fitting was relatively higher. The TRMM 3B43 precipitation data exceeded 0.735 at 25 stations, which passed the significance test at the 0.01 level, and the deviation and error of most stations were small with high overall accuracy. However, due to the different geographical locations of the stations, the deviation and error of the data presented certain differences. (3) The accuracy of TRMM 3B43 data was more affected by the slope than the altitude and aspect. The correlation coefficients of slope and R, RMSE and MAE were 0.8167, 0.7071 and 0.6865 respectively, showing strong quadratic function relationship characteristics. Except for the TRMM 3B43 precipitation data at Gongshan station and Weixi station, the accuracy of most stations at different altitudes, slopes and aspect was higher, having stronger applicability. Particularly, the data applicability was stronger for sites located at an altitude of 1000?2000m, slope less than 4°, and slope direction of 160°?240°. (4) The correlation coefficient of TRMM 3B43 data after time downscaling was slightly reduced. The error was slightly larger, especially in the winter and the annual scale slightly remained less suitable. With the largest error in summer, the RMSE and MAE of the TRMM 3B43 precipitation in Yunnan Province and the measured precipitation in each season were both less than 97mm and 78mm, respectively. The transmissibility of errors caused the RMSE and MAE of the annual scale TRMM data to become larger, and the applicability was the worst compared to other time scales. Therefore, the TRMM 3B43 monthly precipitation data had high accuracy in Yunnan region, which could thus provide effective supplement to the surface precipitation data.

TRMM 3B43; Precipitation data; Applicability evaluation; Topographic factor; Yunnan Province

2020?04?27

王金亮,E-mail:jlwang@ynnu.edu.cn

國家重點研發(fā)計劃政府間/港澳臺重點專項項目(2018YFE0184300);云南基礎(chǔ)研究重點項目(2019FA017);國家自然基金項目(41561048);云南省高校高原山地資源環(huán)境遙感監(jiān)測與評估科技創(chuàng)新團隊

玉院和,E-mail:14787870652@163.com

10.3969/j.issn.1000-6362.2020.09.004

玉院和,王金亮.TRMM 3B43降水數(shù)據(jù)在云南地區(qū)的降尺度適用性評價[J].中國農(nóng)業(yè)氣象,2020,41(9):575-586

猜你喜歡
坡向適用性降水量
繪制和閱讀降水量柱狀圖
強調(diào)簡潔和適用性 MICHI by Rotel X5/X3合并功放
DEM地表坡向變率的向量幾何計算法
降水量是怎么算出來的
啟蒙(3-7歲)(2019年8期)2019-09-10 03:09:08
環(huán)保技術(shù)在土木工程領(lǐng)域的適用性探討
小議階級分析理論的適用性
1988—2017年呼和浩特市降水演變特征分析
新一代車上轉(zhuǎn)換裝置在廠礦企業(yè)鐵路運輸中的適用性研究
基于小波變換的三江平原旬降水量主周期識別
青藏高原東緣高寒草甸坡向梯度上植物光合生理特征研究
土壤與作物(2015年3期)2015-12-08 00:46:55
成都市| 故城县| 吉安市| 吐鲁番市| 徐水县| 遂溪县| 密山市| 舟曲县| 西乌珠穆沁旗| 东海县| 绥江县| 准格尔旗| 富阳市| 长丰县| 张家港市| 博罗县| 锦屏县| 元氏县| 错那县| 惠来县| 巩义市| 南平市| 苍南县| 元氏县| 许昌市| 无为县| 陇南市| 建湖县| 蒙自县| 铜陵市| 祁连县| 五莲县| 青川县| 城固县| 霍林郭勒市| 德令哈市| 虎林市| 昌乐县| 平湖市| 太湖县| 葵青区|