国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

落葉松凋落葉水提液對(duì)苗圃土壤微生物數(shù)量和土壤酶活性的影響

2020-09-17 13:44劉瑩瑩蘇妮爾趙彩鴻楊玲
森林工程 2020年5期
關(guān)鍵詞:土壤酶活性土壤養(yǎng)分

劉瑩瑩 蘇妮爾 趙彩鴻 楊玲

摘 要:揭示落葉松凋落葉覆蓋影響土壤理化性質(zhì)的機(jī)理,為闡明落葉松凋落葉覆蓋促進(jìn)種子萌發(fā)和幼苗初期生長(zhǎng)的機(jī)理提供科學(xué)依據(jù)。本文以不同濃度(0.2、2.0、20.0 g/L)長(zhǎng)白落葉松凋落葉鮮提液或腐解液處理苗床表層土壤,測(cè)定處理前后土壤pH、土壤含水量、土壤養(yǎng)分(全氮、全碳、全磷、全鉀、有效磷、堿解氮和速效鉀)、微生物(細(xì)菌、真菌、放線菌)數(shù)量和土壤酶(水解酶類和氧化還原酶類)活性的變化。結(jié)果表明,不同濃度長(zhǎng)白落葉松凋落葉的水提液(鮮提液或腐解液)處理均提高了土壤中全磷、全鉀、速效鉀和堿解氮的含量(P<0.05),其中,0.2 g/L鮮提液處理的堿解氮含量最高(比對(duì)照增加了75.13%)。水提液(鮮提液或腐解液)處理增加了微生物(真菌、細(xì)菌、放線菌)數(shù)量,促進(jìn)了有機(jī)質(zhì)的分解。與對(duì)照相比,腐解液對(duì)微生物數(shù)量的響應(yīng)效應(yīng)由大到小排序?yàn)椋赫婢?、放線菌、細(xì)菌,其中2.0 g/L腐解液真菌增加率最高為526.90%,有機(jī)質(zhì)分解速率增加了34.7%和36.83%。不同處理中,20 g/L鮮提液和腐解液的有機(jī)質(zhì)分解速率最高。水提液(鮮提液或腐解液)處理提高了土壤中除堿性磷酸酶外的其他全部土壤酶的活性。酸性和氧化還原酶(過(guò)氧化氫酶、多酚氧化酶、過(guò)氧化物酶)均在水提液(鮮提液或腐解液)濃度為20 g/L時(shí)達(dá)到最高,而此時(shí)中性磷酸酶則最低。從而得到結(jié)論:落葉松凋落葉覆蓋可增加土壤微生物的數(shù)量,且對(duì)真菌數(shù)量的增加最顯著、落葉松凋落葉水提液可提高土壤酶活性、增加有機(jī)質(zhì)分解速率、增強(qiáng)土壤中相關(guān)營(yíng)養(yǎng)元素的轉(zhuǎn)化效率。

關(guān)鍵詞:長(zhǎng)白落葉松;凋落針葉;土壤養(yǎng)分;土壤酶活性;微生物數(shù)量

中圖分類號(hào):S723 ? ?文獻(xiàn)標(biāo)識(shí)碼:A ? 文章編號(hào):1006-8023(2020)05-0024-10

Abstract:This study reveals the mechanism of the effect of Larix chinensis litter cover on the physical and chemical properties of soil, and provides a scientific basis for clarifying the mechanism of litter cover promoting seed germination and seedling growth. Using different concentrations (0.2, 2.0, 20.0 g/L) of L. olgensis fresh extract or decomposed solution to treat seedbed surface soil, the changes of soil pH, soil moisture, soil nutrients (contents of total nitrogen, total carbon, total phosphorus, total potassium, available phosphorus, available nitrogen and available potassium), microbial (bacteria, fungi and actinomycetes) quantity and soil enzyme (hydrolases and oxidases) activity before and after treatment were measured. Results showed that: the contents of total P, total K, available K and alkali-hydrolyzed N in the soil were all increased by the treatment of water extract (fresh extract or decomposed solution) of different concentrations of L. olgensis litter (P<0.05). Among them, 0.2 g/L fresh extract had the highest alkali hydrolyzed nitrogen content (75.13% higher than the control). Water extract (fresh extract or rotten solution) treatment increased the number of microorganisms (fungi, bacteria, actinomycetes) and promoted the decomposition of organic matter. Compared with the control, the descending order of the response effect of the decomposition solution to the number of microorganisms was: fungi, actinomycetes and bacteria, and the highest increase rate of fungi in 2.0 g/L decomposition solution was 526.90%. The decomposition rate of organic matter increased by 34.7% and 36.83%. In different treatments, the decomposition rate of organic matter in 20 g/L fresh extract and?decomposition solution was the highest. The activity of all the soil enzymes except alkaline phosphatase was increased by the treatment of water extract (fresh extract or rotten solution). Acid and oxidoreductase (catalase, polyphenol oxidase, peroxidase) were the highest when the concentration of water extract (fresh extract or decomposed solution) was 20 g/L, while neutral phosphatase was the lowest. The conclusion can be drawn: L. chinensis needle litters can increase the number of soil microorganisms and fungi, increase the activity of soil enzymes, increase the decomposition rate of organic carbon, and enhance the conversion efficiency of related nutrients in the soil.

Keywords:Larix olgensis; litter needle; soil nutrient; soil enzyme activity; microbial quantity

0 引言

地表覆蓋是農(nóng)林業(yè)育苗生產(chǎn)實(shí)踐中的重要措施,可以保護(hù)土壤不受侵蝕,改善土壤理化性質(zhì),提高土壤肥力,并且可以有效控制雜草、減少病蟲害的不利影響,增加土壤中生物多樣性和微生物含量,確保土壤營(yíng)養(yǎng)循環(huán)和生物氮氧化過(guò)程更有效地進(jìn)行[1-2]。土壤微生物數(shù)量變化是衡量土壤質(zhì)量、作物生產(chǎn)力以及維持土壤肥力的一個(gè)重要指標(biāo)[3]。土壤酶活性可以反映土壤生物學(xué)活性和土壤養(yǎng)分的轉(zhuǎn)化過(guò)程[4] 。向云[5]研究發(fā)現(xiàn),凋落物分解改變了土壤微生物群落,增加了土壤細(xì)菌和真菌多樣性和豐富度,進(jìn)而間接改變微生物群落結(jié)構(gòu)。大量相關(guān)研究證實(shí)凋落物組成多樣性和數(shù)量對(duì)微生物的群落組成、數(shù)量和碳代謝方面產(chǎn)生顯著影響[6-7]。國(guó)內(nèi)外苗圃在育苗中常用的地表覆蓋物有草炭、秸稈和鋸末等[8-10]。在育苗實(shí)踐中發(fā)現(xiàn),凋落針葉覆蓋可以比其他覆蓋材料更有效提高育苗成活率,并且具有成本低、資源豐富的特點(diǎn)。播種后使用不同針葉樹凋落針葉覆蓋并對(duì)種子萌發(fā)和幼苗生長(zhǎng)進(jìn)行調(diào)查發(fā)現(xiàn),用長(zhǎng)白落葉松的凋落針葉覆蓋能更好促進(jìn)林木種子萌發(fā)和幼苗生長(zhǎng)[11]。落葉松凋落針葉覆蓋不但提高了本樹種種子的萌發(fā)率,還能顯著提高胡桃楸(Juglans mandshurica)種子的發(fā)芽率和發(fā)芽指數(shù),對(duì)胡桃楸幼苗的生長(zhǎng)也有促進(jìn)作用[12]。

關(guān)于落葉松凋落針葉覆蓋促進(jìn)種子萌發(fā)和幼苗生長(zhǎng)機(jī)理的研究有過(guò)一些報(bào)道。落葉松凋落針葉覆蓋育苗可保持覆土的溫度和濕度,防止覆土干皮和幼苗灼傷[13]。落葉松凋落針葉覆蓋可降低土壤pH,提高土壤速效養(yǎng)分及有機(jī)質(zhì)含量,并對(duì)微生物數(shù)量有短期影響[14]。凋落葉分解與土壤理化性質(zhì)、土壤酶活性和微生物數(shù)量密切相關(guān)[15]。落葉松凋落針葉含有大量揮發(fā)性萜烯以及易于生物降解的成分,主要是碳水化合物和多元醇[16]。碳水化合物和多元醇是微生物分解的優(yōu)良底物[17]。因此,推測(cè)落葉松凋落針葉覆蓋措施對(duì)提高育苗效率與苗床土壤酶活性和微生物數(shù)量的變化具有密切聯(lián)系。為此,本研究以長(zhǎng)白落葉松凋落針葉為材料,模擬播種育苗操作中松針覆蓋后的水淋洗和凋落葉分解過(guò)程,在實(shí)驗(yàn)室內(nèi)利用粉碎后的落葉松凋落針葉鮮提液和腐解液培養(yǎng)苗床土壤,研究其對(duì)土壤理化性質(zhì)、有機(jī)質(zhì)分解速率、土壤微生物數(shù)量和土壤酶活性的影響,為苗圃中落葉松凋落針葉覆蓋措施促進(jìn)種子萌發(fā)和幼苗初期生長(zhǎng)的機(jī)理提供參考。

1 研究方法

1.1 研究地概況

本研究中的長(zhǎng)白落葉松人工純林和林業(yè)苗圃均隸屬于黑龍江省佳木斯市孟家崗林場(chǎng)(130°32″42′~130°52″36′ E, 46°20″16′~46°30″50′ N)。海拔170~575 m,屬于中溫帶大陸性季風(fēng)氣候,年均氣溫為2.7 ℃,最高氣溫達(dá)35.6 ℃,最低溫度達(dá)-38.6 ℃,年均降雨量為550 mm,無(wú)霜期為120 d左右,全年日照時(shí)數(shù)為1 955 h。長(zhǎng)白落葉松林為1952年造林的68 a純林,現(xiàn)林分密度為350株/hm2。林業(yè)苗圃始建于1957年,主要培育長(zhǎng)白落葉松、樟子松、紅松、云杉及少量闊葉樹種的苗木。

1.2 研究方法

1.2.1 長(zhǎng)白落葉松凋落葉采集和水提液制備

2019年10月上旬收集林場(chǎng)內(nèi)40 a長(zhǎng)白落葉松人工純林當(dāng)年新落的自然凋落針葉。從凋落物上層收集新凋落松針,去除雜質(zhì)并用水漂洗1遍,然后平鋪在干燥、通風(fēng)良好的實(shí)驗(yàn)室桌面上(避免陽(yáng)光照射),室溫下風(fēng)干3~4 d后取樣測(cè)松針含水量并粉碎松針。將粉碎后的松針與蒸餾水按照質(zhì)量1∶5的比例混合,分別于室溫下浸泡24 h得到鮮提液;參考吳燕燕等[18]的研究方法浸泡30 d得到發(fā)酵后的松針腐解液(浸泡時(shí)用四層紗布遮蓋容器口防止灰塵進(jìn)入)。浸泡結(jié)束后將液體用四層紗布過(guò)濾到50 mL離心管內(nèi),1 000 g離心10 min,取上清液用蒸餾水按照1∶10、1∶100和1∶1 000的體積比例稀釋成0.2、2.0、20.0 g/L濃度的處理液,裝入棕色瓶中,置于4 ℃的冰箱備用。

1.2.2 土壤樣品制備與理化性質(zhì)的測(cè)定

土壤樣品采集于林場(chǎng)苗圃生產(chǎn)用地苗床表面。以五點(diǎn)法隨機(jī)選取不同苗床上的0~20 cm 表層土,混合成為一個(gè)土壤樣品。采回后及時(shí)將土壤樣品在室內(nèi)陰涼通風(fēng)處風(fēng)干,剔除雜質(zhì)后研磨并過(guò)2 mm篩,土壤含水量為3.61%±0.62%。用稀釋后的不同強(qiáng)度水提液處理土壤進(jìn)行樣品測(cè)定,以蒸餾水處理為對(duì)照。

土壤 pH采用電位測(cè)定法(水土重比為2.5∶1),全氮和全碳用Vario MACRO elements元素分析儀(廠家型號(hào))進(jìn)行測(cè)定,全磷和全鉀用硫酸-高氯酸溶-鉬銻抗比色法測(cè)定[19],堿解氮采用擴(kuò)散吸收法測(cè)定[20],有效磷選用雙酸浸提-鉬銻抗比色法測(cè)定[21],速效鉀用乙酸銨浸提后用火焰光度計(jì)測(cè)定[20],有機(jī)質(zhì)分解速率用堿液吸收法測(cè)定[20-21]。

1.2.3 土壤微生物培養(yǎng)和微生物數(shù)量統(tǒng)計(jì)

用500 mL棕色廣口瓶作培養(yǎng)容器,在人工氣候箱內(nèi)進(jìn)行土壤培養(yǎng)。將大小合適的10層濾紙鋪于培養(yǎng)瓶底部,取100 g烘干土均勻地平鋪于培養(yǎng)瓶底部的濾紙上面。將0.1 L提取液分5次均勻地混入土壤中,在氣候箱中25 ℃下培養(yǎng)10 d后收集土樣進(jìn)行微生物培養(yǎng)。每種提取液做3個(gè)重復(fù)試驗(yàn),以蒸餾水替代提取液培養(yǎng)的土壤樣品作為對(duì)照。培養(yǎng)后的土壤稀釋液的制備:在盛有99 mL無(wú)菌水的錐形瓶中加入1 g土樣,震蕩10~20 min制成10-2的土壤稀釋液,進(jìn)而繼續(xù)稀釋制成10-4、10-5、10-6和10-7的土壤稀釋液。細(xì)菌培養(yǎng)用10-4、10-5和10-6的土壤稀釋液,真菌培養(yǎng)用10-2、10-3和10-4的土壤稀釋液,放線菌用10-3、10-4和10-5的土壤稀釋液。

微生物數(shù)量用平板梯度稀釋法[22],把已滅過(guò)菌的培養(yǎng)基冷卻到45 ℃左右時(shí)倒入培養(yǎng)皿內(nèi)平鋪,待培養(yǎng)基完全冷卻后倒置放于30 ℃恒溫箱中培養(yǎng)。細(xì)菌采用牛肉膏蛋白胨培養(yǎng)基培養(yǎng)12~24 h,真菌采用馬丁培養(yǎng)基培養(yǎng)3~5 d,放線菌采用高氏合成一號(hào)培養(yǎng)基培養(yǎng)5~7 d。每個(gè)處理重復(fù)3次。微生物數(shù)量計(jì)算如下:

每克含菌樣品中微生物的活細(xì)胞數(shù)=(同一稀釋度的3個(gè)平板上的菌落平均數(shù)×稀釋倍數(shù))÷ 含菌樣品克數(shù)

1.2.4 土壤酶活性測(cè)定

測(cè)定的水解酶包括蔗糖酶、脲酶、蛋白酶和磷酸酶,均采用比色法測(cè)定[23-24]。測(cè)定的氧化還原酶包括過(guò)氧化氫酶、多酚氧化酶和過(guò)氧化物酶。過(guò)氧化氫酶采用容量法測(cè)定,多酚氧化酶和過(guò)氧化物酶采用比色法測(cè)定[25]。

1.2.5 數(shù)據(jù)處理與統(tǒng)計(jì)分析

用IBM SPSS Statistics 21 統(tǒng)計(jì)分析軟件進(jìn)行數(shù)據(jù)處理和單因素方差分析、多重比較分析,使用Sigmaplot(2011,v.12.5,SYSTAT,美國(guó))繪圖。

2 結(jié)果與分析

2.1 長(zhǎng)白落葉松凋落葉水提液對(duì)土壤理化性質(zhì)的影響

長(zhǎng)白落葉松凋落葉鮮提液和腐解液處理影響了土壤理化性質(zhì),但不同處理液、不同濃度之間差異有的顯著,有的不顯著(表1和表2)。

(1)以鮮提液或腐提液濃度是0時(shí)為對(duì)照,堿解氮分別為178.60 μg/g和173.80 μg/g。當(dāng)鮮提液濃度為0.2 g/L時(shí),鮮提液處理對(duì)堿解氮影響最為顯著,與對(duì)照相比增加了61.83%,腐解液處理對(duì)堿解氮的影響不顯著,兩種處理液對(duì)其他土壤理化性質(zhì)和養(yǎng)分均不顯著。

(2)當(dāng)濃度為2.0 g/L時(shí),腐解液處理對(duì)堿解氮影響不顯著,與對(duì)照相比增加了22.10%;鮮提液處理增加了全磷含量,與對(duì)照相比增加了5.31%。

(3)高濃度(20.0 g/L濃度)的水提液(鮮提液或腐提液)處理均增加了土壤中速效鉀的含量;提高了土壤的pH,比對(duì)照分別增加了2.66%和2.70%,腐解液處理效果大于鮮提液;腐解液處理增加了土壤中全鉀含量,與對(duì)照相比增加了1.46%。

(4)水提液(鮮提液或腐解液)處理減少了土壤有機(jī)碳含量、全氮含量,隨著處理液濃度增加,土壤中有機(jī)碳含量和全氮量增加,但均少于對(duì)照。

2.2 長(zhǎng)白落葉松凋落葉水提液對(duì)土壤有機(jī)質(zhì)分解速率的影響

用不同濃度落葉松松針?biāo)嵋禾幚砻绱餐寥?,鮮提液對(duì)土壤有機(jī)質(zhì)分解速率影響的差異顯著(P<0.05),而腐解液對(duì)土壤有機(jī)質(zhì)分解速率影響差異不顯著(P>0.05)。如圖1所示,水提液處理濃度是0時(shí)為對(duì)照,鮮提液和腐提液土壤有機(jī)質(zhì)分解速率分別為8.3%和6.87%。水提液(鮮提液或腐解液)處理使土壤有機(jī)質(zhì)分解速率先減少后增加,當(dāng)水提液濃度為20.0 g/L時(shí),有機(jī)質(zhì)分解速率最大(11.18%和9.40%),與對(duì)照相比增加了34.70%和36.83%。當(dāng)水提液濃度為0.2 g/L時(shí)有機(jī)質(zhì)分解速率最低(7.12%和6.27%),比對(duì)照減少了14.22%和8.73%。

不同鮮提液濃度對(duì)土壤有機(jī)質(zhì)分解速率影響的多重比較結(jié)果顯示:20.0 g/L的鮮提液對(duì)土壤有機(jī)質(zhì)分解速率的影響與對(duì)照相比差異不顯著,但與0.2 g/L和2.0 g/L的鮮提液相比,差異均顯著。

2.3 長(zhǎng)白落葉松凋落葉水提液對(duì)土壤微生物數(shù)量的影響

2.3.1 凋落葉水提液對(duì)細(xì)菌數(shù)量的影響

長(zhǎng)白落葉松凋落葉鮮提液和腐解液處理增加了土壤細(xì)菌數(shù)量,但不同濃度之間差異不顯著(P=0.78和0.36),如圖2所示。鮮提液和腐解液在濃度為0 g/L時(shí)細(xì)菌數(shù)量分別為1.65×105 個(gè)/g和2.48×105 個(gè)/g,隨著松針鮮提液濃度的增加,土壤中細(xì)菌數(shù)量增加。對(duì)照(蒸餾水)中土壤細(xì)菌數(shù)量最少(1.65×105 個(gè)/g)。當(dāng)鮮提液濃度為20.0 g/L時(shí),細(xì)菌數(shù)量最多(2.23×105 個(gè)/g,與對(duì)照相比增加了35.15%)。較低濃度(0.2 g/L和2.0 g/L)腐解液處理降低了細(xì)菌數(shù)量,而較高濃度(20.0 g/L)的腐解液處理增加了細(xì)菌數(shù)量。各處理中,以2.0 g/L腐解液處理的土壤細(xì)菌數(shù)量最少(為1.55×105 個(gè)/g,與對(duì)照相比減少了37.50%), 20.0 g/L腐解液處理的細(xì)菌數(shù)量最多(2.93×105個(gè)/g,與對(duì)照相比增加了18.15%)。

2.3.2 凋落葉水提液對(duì)真菌數(shù)量的影響

凋落葉鮮提液和腐解液處理增加了土壤真菌數(shù)量,但不同濃度之間差異不顯著(P=0.74和0.10),鮮提液處理差異不顯著,腐解液處理的差異處于邊緣顯著,如圖3所示。2.0 g/L和20.0 g/L鮮提液處理增加了土壤中真菌數(shù)量。當(dāng)鮮提液濃度為20.0 g/L時(shí),真菌數(shù)量最多,為3.13×104個(gè)/g,與對(duì)照相比增加了20.50%。腐解液處理增加了土壤中真菌數(shù)量。2.0 g/L腐解液對(duì)真菌數(shù)量的影響與對(duì)照相比差異顯著,而其余兩個(gè)濃度則不顯著。在0~2.0 g/L濃度范圍內(nèi),隨著腐解液處理濃度的增加真菌數(shù)量增多。當(dāng)腐解液濃度為2.0 g/L時(shí),真菌數(shù)量最多(1.63×105個(gè)/g,與對(duì)照相比增加了526.90%)。高濃度的腐解液抑制了土壤中真菌的數(shù)量。20.0 g/L腐解液使真菌數(shù)量降為1.23×105個(gè)/g,但仍比對(duì)照增加371.80%(對(duì)照中真菌數(shù)量最低,2.60×104個(gè)/g)。

2.3.3 凋落葉水提液對(duì)放線菌數(shù)量的影響

凋落葉鮮提液和腐解液處理增加了放線菌數(shù)量,不同鮮提液濃度之間差異不顯著(P=0.14),不同腐解液濃度之間差異顯著(P=0.02),如圖4所示。

對(duì)照處理下,鮮提液和腐解液中放線菌數(shù)量分別為8.13×105 ?個(gè)/g和9.83×105 ?個(gè)/g,較低濃度(0.2 g/L和2.0 g/L)的鮮提液處理增加了放線菌數(shù)量,當(dāng)鮮提液濃度為2.0 g/L時(shí)放線菌數(shù)量最多(1.57×106 個(gè)/g,與對(duì)照相比增加了93.11%),但與0.2 g/L濃度相比差異不顯著。較高濃度的鮮提液(20.0 g/L)處理則抑制了放線菌的數(shù)量(6.23×105個(gè)/g,與對(duì)照相比減少了23.37%),與2.0 g/L濃度相比差異顯著,但與對(duì)照以及0.2 g/L濃度相比,差異不顯著。

腐解液處理增加了土壤中放線菌的數(shù)量,當(dāng)腐解液濃度為20.0 g/L時(shí),放線菌數(shù)量達(dá)到最多(2.59×106個(gè)/g,與對(duì)照相比增加了163.26%),與對(duì)照相比差異顯著。0.2 g/L和2.0 g/L的腐解液處理對(duì)放線菌數(shù)量的影響與對(duì)照相比差異不顯著。

2.4 長(zhǎng)白落葉松凋落葉水提液對(duì)土壤酶活性的影響

不同濃度凋落葉鮮提液和腐解液處理對(duì)土壤中性磷酸酶活性影響均差異極顯著(P=0.008和0.009),但對(duì)脲酶、蔗糖酶、蛋白酶、中性磷酸酶、酸性磷酸酶和堿性磷酸酶活性的影響差異不顯著。與對(duì)照相比,除了堿性磷酸酶活性下降外,其余水解酶的活性均有所提高,但是提高的幅度不同(表3和表4)。

(1)不同濃度鮮提液處理下脲酶活性相同,均為0.21 mg/g(與對(duì)照相比分別增加了10.53 %)。不同濃度腐解液處理中,2.0 g/L濃度腐解液處理后的酶活性最高(比對(duì)照增加了5.26%)。

(2)蔗糖酶活性隨著鮮提液和腐解液處理濃度的增加而下降,當(dāng)處理液濃度為0.2 g/L時(shí),蔗糖酶活性最高(與對(duì)照相比分別增加了12.31%和5.39%)。當(dāng)處理液濃度為20.0 g/L時(shí),蔗糖酶活性最低(與對(duì)照相比分別降低了1.39 %和9.22%)。

(3)相同濃度鮮提液和腐解液對(duì)蛋白酶活性影響差異顯著,2.0 g/L鮮提液處理時(shí)蛋白酶活性最低,而此濃度腐解液處理的蛋白酶活性最高。

(4)松針鮮提液和腐解液處理后堿性磷酸酶活性均比對(duì)照低,2.0 g/L鮮提液處理的酶活性最低,酶促產(chǎn)物對(duì)硝基酚含量為10.52 mg/g,與對(duì)照相比減少了26.33 %。0.2 g/L腐解液處理的酶活性最低,比對(duì)照降低了36%。

(5)當(dāng)鮮提液和腐解液濃度為20.0 g/L時(shí),酸性磷酸酶活性達(dá)到最高,其酶促產(chǎn)物對(duì)硝基酚的含量為22.58 mg/g和25.32 mg/g,與對(duì)照相比增加了15.91%和23.63%。

(6)0.2 g/L鮮提液和腐解液處理均使中性磷酸酶活性高于對(duì)照,此后,隨著處理液濃度增加,酶活性下降。當(dāng)鮮提液和腐解液濃度為20.0 g/L時(shí),中性磷酸酶活性最低,酶促產(chǎn)物對(duì)硝基酚含量分別為19.47 mg/g和23.54 mg/g,但與對(duì)照相比仍增加了1.4%和3.11%。

不同濃度凋落葉鮮提液和腐解液處理后土壤氧化還原酶活性均有所提高,影響差異不顯著(P過(guò)氧化氫酶=0.64和0.61,P多酚氧化酶=0.16和0.13,P過(guò)氧化物酶=0.64和0.38)。

(1)不同濃度鮮提液處理均提高了過(guò)氧化氫酶的活性,20.0 g/L腐解液處理處理后酶活性最高。

(2)20.0 g/L鮮提液的多酚氧化酶活性最高,比對(duì)照增加了100%,其余濃度處理活性與對(duì)照相等。不同濃度腐解液均提高了多酚氧化酶活性,在0.2 g/L濃度下的活性最高,與對(duì)照相比增加了103.8%。

(3)不同濃度鮮提液處理中,以20.0 g/L濃度下的過(guò)氧化物酶活性最高(其酶促產(chǎn)物沒食子酸含量為0.29 mg/g),與對(duì)照相比增加了45.0 %;2.0 g/L腐解液處理的過(guò)氧化物酶活性最高,與對(duì)照相比增加了73.08%。

3 結(jié)論與討論

在苗圃播種育苗作業(yè)中,播種后的落葉松凋落松針覆蓋措施可以通過(guò)水淋洗過(guò)程(產(chǎn)生水溶液)對(duì)苗床土壤產(chǎn)生生物化學(xué)作用,即水提取液中存在的物質(zhì)可增加土壤中微生物數(shù)量,促進(jìn)有機(jī)質(zhì)分解,進(jìn)而釋放出氮、磷和鉀等礦物質(zhì)營(yíng)養(yǎng),為種子萌發(fā)和苗木的生長(zhǎng)創(chuàng)造良好的條件[26]。土壤酸堿度是反映土壤理化性質(zhì)的重要指標(biāo),對(duì)微生物的生命活動(dòng)有較大影響。凋落物對(duì)于土壤pH的影響尚無(wú)定論[27]。本研究發(fā)現(xiàn),不同濃度長(zhǎng)白落葉松鮮提液或腐解液培養(yǎng)對(duì)土壤pH的影響不存在顯著差異,但隨著鮮提液和腐解液濃度增加,土壤pH有增加趨勢(shì),且腐解液處理后的pH高于鮮提液的(表1)。類似地,劉增文等[28]研究發(fā)現(xiàn),客置闊葉樹枯落葉后可使針葉林地土壤由偏酸性向中性方向發(fā)展。長(zhǎng)白落葉松凋落松針鮮提液和腐解液處理后不僅提高了土壤pH,土壤中全磷、速效鉀、全鉀和水解性氮的含量也均有所提高。與之相反,土壤有機(jī)碳、全氮和有效磷的含量顯示出了減少的趨勢(shì),不同濃度水提液處理的變化幅度不同。這與Innangi等[29]的結(jié)論類似。Innangi等發(fā)現(xiàn)橄欖(Olive pomace)渣覆蓋對(duì)土壤養(yǎng)分以及土壤微生物和土壤酶有顯著影響且可以提高土壤養(yǎng)分含量。但廖良寧等[30]的研究卻發(fā)現(xiàn)針葉凋落物與土壤養(yǎng)分呈負(fù)相關(guān)關(guān)系,這可能與凋落物種類不同有關(guān)。

凋落物自身化學(xué)成分差異給土壤微生物群落帶來(lái)不同的影響,而不同微生物群落、土壤酶的代謝方式也決定著凋落物的分解效率和土壤營(yíng)養(yǎng)物質(zhì)的形成、維持和循環(huán)以及生態(tài)系統(tǒng)中的生物修復(fù)[31-33]。本研究發(fā)現(xiàn),長(zhǎng)白落葉松凋落針葉提取液對(duì)土壤微生物的生命活動(dòng)有刺激作用,增加了微生物的數(shù)量,促進(jìn)了有機(jī)質(zhì)的分解。與對(duì)照相比,放線菌數(shù)量增加了92.95%和163.26%,細(xì)菌數(shù)量增加了35.15%和18.15%,真菌數(shù)量增加了20.50%和526.90%,有機(jī)質(zhì)分解速率增加了41.96%和34.70%。腐解液對(duì)微生物數(shù)量的影響效應(yīng)由大到小排序?yàn)椋赫婢?、放線菌、細(xì)菌。二者相比較,腐解液的處理效果大于鮮提液,可能是由于分解后期凋落物的參與為土壤中多種微生物提供了更適宜的生存環(huán)境及更多樣化的營(yíng)養(yǎng)物質(zhì)。因此認(rèn)為長(zhǎng)白落葉松凋落葉分解后期對(duì)苗床土壤中真菌數(shù)量的影響大于放線菌和細(xì)菌。

土壤pH和碳氮比是衡量微生物群落結(jié)構(gòu)的重要指標(biāo)[34-35]。pH高的環(huán)境有利于真菌的生長(zhǎng)[36],也能使真菌更有效地利用凋落物產(chǎn)生的有機(jī)物質(zhì)[37]。研究表明,真菌比細(xì)菌更適應(yīng)于pH較高的環(huán)境。腐解液處理后土壤pH高于鮮提液處理,且腐解液促進(jìn)土壤微生物數(shù)量增加的作用強(qiáng)于鮮提液(腐解液處理后的真菌數(shù)量增加幅度大于細(xì)菌的)。推測(cè)凋落物分解后期更適合于真菌的生存,可能由于隨著凋落物的分解,土壤pH的提高,土壤中的營(yíng)養(yǎng)物質(zhì)的增加,真菌的生存環(huán)境趨于適宜的中性條件。這與王珍[38]結(jié)論相似,王珍研究發(fā)現(xiàn),土壤pH與土壤微生物量碳氮呈顯著正相關(guān)。

土壤酶作用于土壤有機(jī)質(zhì)的降解、轉(zhuǎn)化和礦化,從而維持生態(tài)系統(tǒng)的生物地球化學(xué)循環(huán)和能量流[39-40]。Pan 等[41]發(fā)現(xiàn),凋落物與土壤養(yǎng)分、土壤微生物和土壤酶有正相關(guān)關(guān)系,即凋落物覆蓋是影響微生物和土壤酶的重要因素。本研究發(fā)現(xiàn),長(zhǎng)白落葉松凋落葉鮮提溶液和腐解溶液處理土壤均可以提高土壤中蔗糖酶、脲酶、蛋白酶、酸性磷酸酶、中性磷酸酶、過(guò)氧化氫酶、過(guò)氧化物酶和多酚氧化酶的活性,但使土壤堿性磷酸酶活性降低。腐解液處理后土壤氧化還原酶的含量高于鮮提液,說(shuō)明長(zhǎng)白落葉松凋落葉分解后期對(duì)土壤氧化還原酶活性影響顯著。真菌在森林生態(tài)系統(tǒng)凋落物的分解過(guò)程中扮演著重要角色[42-44],前面研究發(fā)現(xiàn),腐解液處理增加了土壤中真菌的數(shù)量,這可能與后期土壤酶活性提高有關(guān)[45-46]。

長(zhǎng)白落葉松凋落葉水提取液可增加苗圃土壤中微生物的數(shù)量,提高土壤酶活性,提高有機(jī)碳分解速率,從而增強(qiáng)土壤中相關(guān)營(yíng)養(yǎng)元素的轉(zhuǎn)化效率。凋落葉發(fā)酵后的腐解液對(duì)真菌數(shù)量的影響大于其他微生物種類,且對(duì)土壤氧化還原酶活性的影響更顯著。本研究結(jié)果表明苗圃播種育苗后用落葉松凋落針葉覆蓋土壤表層可以促進(jìn)種子萌發(fā)和幼苗初期生長(zhǎng),為該操作機(jī)理提供了參考依據(jù)。

【參 考 文 獻(xiàn)】

[1]HARUNA S I, NKONGOLO N V. Cover crop management effects on soil physical and biological properties[J]. Procedia Environmental Sciences, 2015, 29: 13-14.

[2]WORTMAN S E, FRANCIS C A, BERNARDS M L, et al. Optimizing cover crop benefits with diverse mixtures and an alternative termination method[J]. Agronomy Journal, 2012, 104(5): 1425-1435.

[3]張建軍,黨翼,趙剛,等.留膜留茬免耕栽培對(duì)旱作玉米田土壤養(yǎng)分、微生物數(shù)量及酶活性的影響[J].草業(yè)學(xué)報(bào),2020,29(2):123-133.

ZHANG J J, DANG Y, ZHAO G, et al. Effects of no till cultivation with film and stubble on soil nutrients, microbial quantity and enzyme activity in dryland corn field[J]. Acta Pratica Sinica, 2020, 29 (2): 123-133.

[4]李蝶.施氮與凋落物處理對(duì)海岸沙地濕地松人工林土壤性質(zhì)的影響[D].福州:福建農(nóng)林大學(xué),2019.

LI D. Effects of nitrogen application and litter treatment on soil properties of Pinus elliottii plantation in coastal sandy land[D]. Fuzhou: Fujian Agricultural and Forestry University, 2019.

[5]向云.黃土丘陵區(qū)草地枯落物分解特征及其對(duì)土壤性質(zhì)的影響[D].楊凌:西北農(nóng)林科技大學(xué),2018.

XIANG Y. Decomposition characteristics of litter and its influence on soil properties in Loess Hilly Area[D]. Yangling: Northwest University of Agriculture and Forestry Science and Technology, 2018.

[6]鐘哲科,高智慧.楊樹、水杉林帶枯落物對(duì)土壤微生物C、N的影響[J].林業(yè)科學(xué),2003,49(2):153-157.

ZHONG Z K, GAO Z H. Effect of litter in poplar and Metasequoia forest belt on soil microorganism C and N[J]. Forestry Science, 2003, 49(2): 153-157.

[7]王春陽(yáng),周建斌,夏志敏,等.黃土高原區(qū)不同植物凋落物搭配對(duì)土壤微生物量碳、氮的影響[J].生態(tài)學(xué)報(bào),2011,31(8):2139-2147.

WANG C Y, ZHOU J B, XIA Z M, et al. Effects of different plant litter combinations on soil microbial biomass carbon and nitrogen in the Loess Plateau[J]. Journal of Ecology, 2011, 31(8): 2139-2147.

[8]ZHU K W, LIU Z, TAN X C, et al. Study on the ecological potential of Chinese straw resources available for bioenergy producing based on soil protection functions[J]. Biomass and Bioenergy, 2018, 116: 26-38.

[9]REICHEL R, WEI J, ISLAM M S, et al. Potential of wheat straw, spruce sawdust, and lignin as high organic carbon soil amendments to improve agricultural nitrogen retention capacity: an incubation study[J]. Frontiers in Plant Science, 2018, 9: 900.

[10]王波,李琴,朱煒,等.毛竹林覆蓋經(jīng)營(yíng)對(duì)土壤養(yǎng)分含量、酶活性及微生物生物量的影響[J].林業(yè)科學(xué),2019,55(1):110-118.

WANG B, LI Q, ZHU W, et al. Effects of mulching management on nutrient contents, enzyme activities, and microbial biomass in the soils of moso bamboo forests[J]. Scientia Silvae Sinicae, 2019, 55(1): 110-118.

[11]沈曉莉,沈海龍,梁曉東,等.落葉松枯落針葉水浸液對(duì)落葉松和云杉種子的萌發(fā)影響[J].林業(yè)科技開發(fā),2012,26(4):19-22.

SHEN X L, SHEN H L, LIANG X D, et al. Effect of aqueous extract of larch needles on seed germination of larch and Korean spruce[J]. China Forestry Science and Technology, 2012, 26(4): 19-22.

[12]楊立學(xué).落葉松水浸液對(duì)胡桃楸種子萌發(fā)和幼苗生長(zhǎng)的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2006,17(6):1145-1147.

YANG L X. Effects of Larix gmelini aqueous extracts on seed germination and seedling growth of Juglans mandshurica[J]. Chinese Journal of Applied Ecology, 2006, 17(6): 1145-1147.

[13]徐品三,劉旭勝,安利佳,等.土壤施用松針對(duì)越橘生長(zhǎng)·葉片礦質(zhì)元素含量的影響[J].安徽農(nóng)業(yè)科學(xué),2008,36(10):4044-4045.

XU P S, LIU X S, AN L J, et al. Effects of applying pine needle in soil on the growth of blueberry and the content of mineral elements in the leaf [J]. Journal of Anhui Agricultural Sciences, 2008, 36(10): 4044-4045.

[14]TAO L, LIU T, TANG C, et al. Impacts of organic manure partial substitution for chemical fertilizer on cotton yield, soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition[J]. Acta Ecologica Sinica, 2014, 34(21): 6137-6146.

[15]SNCHEZ DE CIMA D, TEIN B, EREMEEV V, et al. Winter cover crop effects on soil structural stability and microbiological activity in organic farming[J]. Biological Agriculture & Horticulture, 2016, 32(3): 170-181.

[16]ISIDOROV V A, VINOGOROVA V T, RAFAOWSKI K. HS-SPME analysis of volatile organic compounds of coniferous needle litter[J]. Atmospheric Environment, 2003, 37(33): 4645-4650.

[17]BANI A, BORRUSO L, FORNASIER F, et al. Microbial decomposer dynamics: diversity and functionality investigated through a transplantation experiment in boreal forests[J]. Microbial Ecology, 2018, 76(4): 1030-1040.

[18]吳燕燕,李明,黃結(jié)雯,等.重茬土壤、枯葉腐解液對(duì)廣藿香扦插苗生理生化指標(biāo)的影響[J].北方園藝,2017,41(10):149-153.

WU Y Y, LI M, HUANG J W, et al. Effects of soil and decomposed solution of dead leaves on physiological and biochemical indexes of Pogostemon cablin cutting[J]. Northern Horticulture, 2017, 41(10): 149-153.

[19]楊賀.湘西不同程度石漠化地區(qū)植物多樣性與土壤理化性質(zhì)相關(guān)性研究[D].長(zhǎng)沙:中南林業(yè)科技大學(xué),2019.

YANG H. Study on the correlation between plant diversity and soil physical and chemical properties in different degree of rocky desertification in Western Hunan[D]. Changsha: Central South University of Forestry Science and Technology, 2019.

[20]董珊珊,竇森,林琛茗,等.玉米秸稈在土壤中的分解速率及其對(duì)腐殖質(zhì)組成的影響[J].吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,38(5):579-586.

DONG S S, DOU S, LIN C M, et al. Decomposition rate of corn straw in soil and its effects on soil humus composition[J]. Journal of Jilin Agricultural University, 2016, 38(5): 579-586.

[21]魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法[M].北京:中國(guó)農(nóng)業(yè)科學(xué)出版社,2000:146-195.

LU R K. Soil agrochemical analysis method[M]. Beijing: China Agricultural Science Press, 2000:146-195.

[22]陶磊,褚貴新,劉濤,等.有機(jī)肥替代部分化肥對(duì)長(zhǎng)期連作棉田產(chǎn)量、土壤微生物數(shù)量及酶活性的影響[J].生態(tài)學(xué)報(bào),2014,34(21):6137-6146.

TAO L, CHU G X, LIU T, et al. Impacts of organic manure partial substitution for chemical fertilizer on cotton yield, soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition[J]. Acta Ecologica Sinica, 2014, 34(21): 6137-6146.

[23]LUNGMUANA, SINGH S B, VANTHAWMLIANA, et al. Impact of secondary forest fallow period on soil microbial biomass carbon and enzyme activity dynamics under shifting cultivation in North Eastern Hill region, India[J]. Catena, 2017, 156: 10-17.

[24]WEINTRAUB M N, SCOTT-DENTON L E, SCHMIDT S K, et al. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem[J]. Oecologia, 2007, 154(2): 327-338.

[25]BLANKINSHIP J C, BECERRA C A, SCHAEFFER S M, et al. Separating cellular metabolism from exoenzyme activity in soil organic matter decomposition[J]. Soil Biology and Biochemistry, 2014, 71: 68-75.

[26]SRIVASTAVA S C, SINGH J S. Microbial C, N and P in dry tropical forest soils: Effects of alternate land-uses and nutrient flux[J]. Soil Biology and Biochemistry, 1991, 23(2): 117-124.

[27]ALFARO F D, MANZANO M, MARQUET P A, et al. Microbial communities in soil chronosequences with distinct parent material: the effect of soil pH and litter quality[J]. Journal of Ecology, 2017, 105(6): 1709-1722.

[28]劉增文,段而軍,高文俊,等.秦嶺山區(qū)人工林地枯落葉客置對(duì)土壤生物、化學(xué)性質(zhì)的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2008,19(4):704-710.

LIU Z W, DUAN E J, GAO W J, et al. The impact of litter on soil biological and chemical properties in Qinling Mountains[J]. Journal of Applied Ecology, 2008,19(4): 704-710.

[29]INNANGI M, NIRO E, DASCOLI R, et al. Effects of olive pomace amendment on soil enzyme activities[J]. Applied Soil Ecology, 2017, 119: 242-249.

[30]廖良寧,盧姿瑾,李遠(yuǎn)發(fā),等.桂西北細(xì)葉云南松天然林凋落物及土壤養(yǎng)分特征[J].西北林學(xué)院學(xué)報(bào),2019,34(1):31-38.

LIAO L N, LU Z J, LI Y F, et al. Litter and soil nutrient characteristics of Pinus yunnanensis var. tenuifolia natural forest in Northwest Guangxi[J]. Journal of Northwest Forestry University, 2019, 34(1): 31-38.

[31]龍健,趙暢,張明江,等.不同坡向凋落物分解對(duì)土壤微生物群落的影響[J].生態(tài)學(xué)報(bào),2019,39(8):2696-2704.

LONG J, ZHAO C, ZHANG M J, et al. Effect of litter decomposition on soil microbes on different slopes[J]. Acta Ecologica Sinica, 2019, 39(8): 2696-2704.

[32]BANI A, PIOLI S, VENTURA M, et al. The role of microbial community in the decomposition of leaf litter and deadwood[J]. Applied Soil Ecology, 2018, 126: 75-84.

[33]INGWERSEN J, POLL C, STRECK T, et al. Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface[J]. Soil Biology and Biochemistry, 2008, 40(4): 864-878.

[34]WAN X H, HUANG Z Q, HE Z M, et al. Soil C: N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations[J]. Plant and Soil, 2015, 387(1/2): 103-116.

[35]倪雪,張煥朝,楊秀蓮,等.覆蓋物對(duì)土壤性質(zhì)及微生物生物量碳氮的影響[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,41(1):89-95.

NI X, ZHANG H C, YANG X L, et al. Effects of mulching on soil property and microbial biomass carbon and nitrogen[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2017, 41(1): 89-95.

[36]GROSSO F, BTH E, DE NICOLA F. Bacterial and fungal growth on different plant litter in Mediterranean soils: Effects of C/N ratio and soil pH[J]. Applied Soil Ecology, 2016, 108: 1-7.

[37]ROUSK J, BROOKES P C, BTH E. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil[J]. Soil Biology and Biochemistry, 2010, 42(6): 926-934.

[38]王珍.酸雨區(qū)不同配比凋落物分解過(guò)程中微生物多樣性分析[D].福州:福建農(nóng)林大學(xué),2017.

WANG Z. Microbial diversity analysis of litter decomposition in different proportions in acid rain area[D]. Fuzhou: Fujian Agricultural and Forestry University, 2017.

[39]ZHENG H F, LIU Y, ZHANG J, et al. Factors influencing soil enzyme activity in Chinas forest ecosystems[J]. Plant Ecology, 2018, 219(1): 31-44.

[40]成艷紅,黃欠如,武琳,等.稻草覆蓋和香根草籬對(duì)紅壤坡耕地土壤酶活性和微生物群落結(jié)構(gòu)的影響[J].中國(guó)農(nóng)業(yè)科學(xué),2017,50(23):4602-4612.

CHENG Y H, HUANG Q R, WU L, et al. Effects of straw mulching and vetiver grass hedgerows on soil enzyme activities and soil microbial community structure in red soil sloping land[J]. Scientia Agricultura Sinica, 2017, 50(23): 4602-4612.

[41]PAN F J, ZHANG W, LIANG Y M, et al. Increased associated effects of topography and litter and soil nutrients on soil enzyme activities and microbial biomass along vegetation successions in Karst ecosystem, Southwestern China[J]. Environmental Science and Pollution Research, 2018, 25(17): 16979-16990.

[42]張東來(lái),毛子軍,張玲,等.森林凋落物分解過(guò)程中酶活性研究進(jìn)展[J].林業(yè)科學(xué),2006,52(1):105-109.

ZHANG D L, MAO Z J, ZHANG L, et al. Research progress of enzyme activity in forest litter decomposition[J]. Forestry Science, 2006, 52(1): 105-109.

[43]蘇妮爾,沈海龍,丁佩軍,等.不同坡位紅皮云杉林木生長(zhǎng)與土壤理化性質(zhì)比較[J].森林工程,2020,36(2):6-11.

SU N E, SHEN H L, DING P J, et al. Comparison of growth and soil physical and chemical properties of Picea koraiensis in different slope positions[J]. Forest Engineering, 2020, 36(2): 6-11.

[44]葉鈺倩,趙家豪,劉暢,等.間伐對(duì)馬尾松人工林根際土壤氮含量及酶活性的影響[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,42(3):193-198.

YE Y Q,ZHAO J H,LIU C,et al.Effects of thinning on nitrogen contents and enzyme activitiesof rhizosphere soil in Pinus massoniana plantations[J].Journal of Nanjing Forestry University(Natural Science Edition),2018,42(3):193-198.

[45]羅傳文.均勻論[M].北京:科學(xué)出版社,2014.

LUO C W. Uniform Theory[M]. Beijing: Science Press, 2014.

[46]劉建明,溫愛亭,姚穎,等.榛子天然林、榛子人工林及農(nóng)田土壤理化性質(zhì)分析研究[J].森林工程,2019,35(6):26-30.

LIU J M, WEN A T, YAO Y, et al . Analysis of physical and chemical properties of hazelnut natural forest, hazelnut plantation and farmland soil[J]. Forest Engineering, 2019, 35(6): 26-30.

猜你喜歡
土壤酶活性土壤養(yǎng)分
海岸帶森林生態(tài)系統(tǒng)中土壤酶活性研究進(jìn)展
不同施肥模式對(duì)油茶植株?duì)I養(yǎng)生長(zhǎng)和土壤養(yǎng)分的影響
廣靈縣平川區(qū)土壤養(yǎng)分變化及施肥建議
稻蟹共作模式下稻蟹產(chǎn)出與土壤理化性質(zhì)的研究
孝義市不同種植方式耕作土壤養(yǎng)分狀況研究
茶園土壤養(yǎng)分狀況與分布
重金屬污染對(duì)土壤微生物及土壤酶活性影響的研究進(jìn)展
遼西半干旱區(qū)果糧間作對(duì)土壤微生物和酶的影響
通川區(qū)耕地土壤養(yǎng)分現(xiàn)狀與變化趨勢(shì)
施氮時(shí)期對(duì)大豆結(jié)瘤和生長(zhǎng)的影響