国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

異速對(duì)輥式玉米秸稈粉碎還田裝置設(shè)計(jì)與試驗(yàn)

2020-09-21 13:46:54李艷潔李洪文王慶杰盧彩云張振國(guó)李紹華
關(guān)鍵詞:切角彎角刀刃

劉 鵬,何 進(jìn),李艷潔,李洪文,王慶杰,盧彩云,張振國(guó),3,李紹華

·農(nóng)業(yè)裝備工程與機(jī)械化·

異速對(duì)輥式玉米秸稈粉碎還田裝置設(shè)計(jì)與試驗(yàn)

劉 鵬1,何 進(jìn)1※,李艷潔2,李洪文1,王慶杰1,盧彩云1,張振國(guó)1,3,李紹華4

(1. 中國(guó)農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083;2. 北京林業(yè)大學(xué)工學(xué)院,北京 100083;3. 新疆農(nóng)業(yè)大學(xué)機(jī)電工程學(xué)院,烏魯木齊 830052;4. 內(nèi)蒙古長(zhǎng)明機(jī)械有限公司,赤峰 024200)

針對(duì)玉米秸稈量大、韌性強(qiáng),導(dǎo)致還田后秸稈粉碎不均勻影響后續(xù)整地和播種等問題,該研究提出了一種異速對(duì)輥及動(dòng)態(tài)雙支撐形式的玉米秸稈粉碎還田方式,并研制了相應(yīng)的玉米秸稈還田裝置,主要由撿拾粉碎單元、對(duì)輥滑切支撐單元、支撐板和機(jī)殼等組成。在異速動(dòng)態(tài)雙支撐條件下,通過對(duì)作業(yè)過程中玉米秸稈動(dòng)力學(xué)分析和秸稈漏撿面積分析,對(duì)撿拾粉碎刀和對(duì)輥滑切支撐刀進(jìn)行設(shè)計(jì),建立了影響秸稈粉碎合格率的數(shù)學(xué)模型。以撿拾粉碎刀轉(zhuǎn)速、L型甩刀折彎角、L型甩刀刃口長(zhǎng)度和滑切支撐刀滑切角為因素,秸稈粉碎合格率為試驗(yàn)指標(biāo)進(jìn)行Box-Behnken試驗(yàn)。田間試驗(yàn)結(jié)果表明:當(dāng)滑切支撐刀滑切角45°、撿拾粉碎刀轉(zhuǎn)速1 700 r/min、L型甩刀刃口長(zhǎng)度45 mm和L型甩刀折彎角40°時(shí),玉米秸稈粉碎合格率為92.58%,與預(yù)測(cè)值誤差<5%,滿足國(guó)家標(biāo)準(zhǔn)要求。該研究提出的秸稈粉碎還田方式和研制的秸稈粉碎裝置為玉米秸稈粉碎還田機(jī)設(shè)計(jì)和優(yōu)化提供新的方案和技術(shù)支撐。

農(nóng)業(yè)機(jī)械;速度;粉碎合格率;秸稈粉碎;異速;動(dòng)態(tài)雙支撐

0 引 言

玉米秸稈含有豐富的氮磷鉀等營(yíng)養(yǎng)元素,是寶貴的可再生生物質(zhì)資源[1]。秸稈粉碎還田可以增加土壤有機(jī)質(zhì)含量,改善土壤結(jié)構(gòu),增加作物產(chǎn)量[2-5],但是如果粉碎質(zhì)量不合格,反而會(huì)影響后續(xù)播種質(zhì)量,造成負(fù)面影響。

在中國(guó),由于需要搶農(nóng)時(shí),為防止玉米秸稈堵塞播種機(jī),從而降低播種質(zhì)量,因此對(duì)玉米秸稈粉碎質(zhì)量要求較高。為提高秸稈粉碎質(zhì)量,相關(guān)學(xué)者圍繞刀具結(jié)構(gòu)、粉碎形式等方面開展了一系列研究。如章志強(qiáng)等設(shè)計(jì)的可調(diào)節(jié)式秸稈粉碎還田機(jī),通過對(duì)粉碎刀、機(jī)殼等關(guān)鍵部件的設(shè)計(jì),實(shí)現(xiàn)對(duì)秸稈的多次砍切、撕裂和揉搓[6];鄭智旗等設(shè)計(jì)的動(dòng)定刀支撐滑切式秸稈粉碎裝置和和秸稈撿拾粉碎掩埋復(fù)式還田機(jī),均通過粉碎定刀與高速旋轉(zhuǎn)的粉碎動(dòng)刀組合形成有支撐切割[7-8];張姬等設(shè)計(jì)的鋸盤式玉米秸稈粉碎裝置,通過差速鋸齒圓盤來提高粉碎質(zhì)量[9];張喜瑞等應(yīng)用滑切原理優(yōu)化了粉碎刀片的刀刃曲線,并設(shè)計(jì)了滑切防纏式香蕉秸稈還田機(jī)[10];張紅霞等通過增加定刀排數(shù),提高秸稈粉碎質(zhì)量[11]。賈洪雷等通過分析現(xiàn)有粉碎還田刀的特點(diǎn),設(shè)計(jì)了一種V-L型秸稈粉碎還田刀,并確定了刀具的關(guān)鍵結(jié)構(gòu)參數(shù)[12]。郭俊等仿鼴鼠足趾排列設(shè)計(jì)了一種旋耕-秸稈粉碎鋸齒刀片[13]。Lundin和Persson研究表明在粉碎刀刃口開有鋸齒有助于提高秸稈粉碎質(zhì)量[14-15]。上述粉碎裝置大多采用動(dòng)定刀組合,雖然有利于秸稈支撐粉碎,但當(dāng)定刀與動(dòng)刀間距設(shè)置不合理,尤其是在秸稈量大、韌性強(qiáng)的情況,導(dǎo)致在還田作業(yè)中秸稈粉碎不均影響后續(xù)整地和播種作用。

針對(duì)在秸稈量大、韌性強(qiáng),現(xiàn)有秸稈粉碎裝置無法滿足粉碎要求的問題[16],本文設(shè)計(jì)了一種針對(duì)玉米秸稈的異速對(duì)輥式玉米秸稈粉碎還田裝置,擬通過對(duì)關(guān)鍵部件運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)分析,得到其關(guān)鍵參數(shù)范圍;通過Box-Behnken試驗(yàn),對(duì)粉碎裝置不同結(jié)構(gòu)參數(shù)和運(yùn)動(dòng)參數(shù)組合的試驗(yàn)結(jié)果進(jìn)行分析,從而得出異速對(duì)輥式玉米秸稈粉碎還田裝置的較優(yōu)的參數(shù)組合,以期為玉米秸稈粉碎還田機(jī)的研究和發(fā)展提供參考。

1 裝置結(jié)構(gòu)及工作原理

1.1 裝置結(jié)構(gòu)

異速對(duì)輥式玉米秸稈粉碎還田裝置主要由懸掛裝置、傳動(dòng)裝置、粉碎裝置、支撐板和機(jī)殼組成。傳動(dòng)裝置主要由變速箱、主帶輪、撿拾粉碎刀左帶輪、撿拾粉碎刀右?guī)л?、滑切支撐刀帶輪組成。粉碎裝置主要包括撿拾粉碎單元和對(duì)輥滑切支撐單元,其中撿拾粉碎單元主要包括撿拾粉碎刀、撿拾粉碎刀座和撿拾粉碎刀軸;對(duì)輥滑切支撐單元主要包括滑切支撐刀、支撐刀座和滑切刀軸組成,具體結(jié)構(gòu)如圖1所示。

1.懸掛裝置 2.變速箱 3.主帶輪 4.撿拾粉碎刀左帶輪 5.撿拾粉碎刀 6.撿拾粉碎刀軸 7.撿拾粉碎刀座 8.撿拾粉碎刀右?guī)л?9.支撐板 10.滑切支撐刀帶輪 11.滑切支撐刀軸 12.滑切支撐刀 13.機(jī)殼 14.支撐刀座

1.Suspension device 2.Gearbox 3.Major belt wheel 4.Left belt wheel of chopping and collecting blade 5.Chopping and collecting blade 6.Shaft of chopping and collecting blade 7.Chopping and collecting blade holder 8.Right belt wheel of chopping and collecting blade 9.Supporting plate 10.Belt wheel of slide-cutting supporting blade 11.Blade shaft of slide-cutting supporting blade 12.Slide-cutting supporting blade 13.Shell 14.Slide-cutting supporting blade holder

注:ωω分別是撿拾粉碎刀和滑切支撐刀的角速度,rad·s-1。

Note: ωandωare the angular speed of the chopping and collecting blade and slide-cutting supporting blade, respectively, rad·s-1.

圖1 異速對(duì)輥式玉米秸稈粉碎還田裝置結(jié)構(gòu)示意圖

Fig.1 Structural diagram of double rollers maize stalk chopping device with different rotation speeds

1.2 工作原理及技術(shù)特點(diǎn)

在作業(yè)過程中,相對(duì)裝置前進(jìn)方向,撿拾粉碎刀和滑切支撐刀均逆時(shí)針高速轉(zhuǎn)動(dòng),使得機(jī)殼內(nèi)氣體流速加快,從而在機(jī)殼喂入口形成負(fù)壓區(qū)。在撿拾粉碎刀與和入口負(fù)壓作用下,秸稈被吸入機(jī)殼內(nèi),并隨撿拾粉碎刀做圓周運(yùn)動(dòng)。當(dāng)滑切支撐刀和撿拾粉碎刀位置存在重合時(shí),滑切支撐刀和撿拾粉碎刀同時(shí)對(duì)玉米秸稈進(jìn)行砍切,并互為支撐,從而有助于對(duì)玉米秸稈切斷與粉碎?;兄蔚掇D(zhuǎn)速小于撿拾粉碎刀轉(zhuǎn)速,從而使得粉碎后的玉米秸稈隨撿拾粉碎刀運(yùn)動(dòng),并向后拋出,完成秸稈粉碎作業(yè)。因此設(shè)計(jì)的異速對(duì)輥式玉米秸稈粉碎還田裝置具有以下優(yōu)勢(shì):

1)異速對(duì)切,利于撕裂,增加秸稈流動(dòng)性。撿拾粉碎刀和滑切支撐刀轉(zhuǎn)速存在差異,但轉(zhuǎn)向相同,使得撿拾粉碎刀和滑切支撐刀可對(duì)玉米秸稈施加方向相反的砍切力,有利于玉米秸稈撕裂,從而提高玉米秸稈粉碎質(zhì)量和秸稈在機(jī)殼內(nèi)的流動(dòng)性。

2)動(dòng)態(tài)雙支撐,增強(qiáng)秸稈抗彎能力,更利于秸稈切斷與粉碎。每把撿拾粉碎刀兩側(cè)均在滑切刀軸上對(duì)應(yīng)安裝一把滑切支撐刀,使得在粉碎玉米秸稈時(shí),撿拾粉碎刀和滑切支撐刀互為支撐;撿拾粉碎刀和滑切支撐刀高速旋轉(zhuǎn),從撿拾粉碎刀和滑切支撐刀接觸玉米秸稈表皮到切斷玉米秸稈,使得撿拾粉碎刀和滑切支撐刀對(duì)玉米秸稈均處于動(dòng)態(tài)雙支撐狀態(tài),從而有利于玉米秸稈切斷與粉碎。

3)對(duì)稱雙螺旋排布,有利于降低能耗。Y型粉碎刀和滑切支撐刀在粉碎刀軸上均采用正向雙螺旋排布,且直刀在撿拾粉碎刀兩側(cè)對(duì)稱安裝,從而保證撿拾粉碎刀和滑切支撐刀在粉碎作業(yè)時(shí)一直處于動(dòng)態(tài)雙支撐狀態(tài),有助于降低能耗。

1.3 傳動(dòng)系統(tǒng)

異速對(duì)輥式玉米秸稈粉碎還田裝置通過懸掛裝置掛接在拖拉機(jī)后方,通過十字萬向節(jié)將拖拉機(jī)動(dòng)力傳輸?shù)椒鬯檠b置;隨后通過變速箱、主帶輪、增速皮帶和撿拾粉碎刀左帶輪按固定傳動(dòng)比將撿拾粉碎刀軸進(jìn)行增速,使得撿拾粉碎刀軸達(dá)到額定轉(zhuǎn)速,以滿足撿拾粉碎刀撿拾和粉碎玉米秸稈的要求;之后通過滑切支撐刀帶輪、降速皮帶和撿拾粉碎刀右?guī)л啺垂潭▊鲃?dòng)比將滑切支撐刀軸進(jìn)行降速,使得滑切支撐刀和撿拾粉碎刀同向轉(zhuǎn)動(dòng),以及形成對(duì)玉米秸稈動(dòng)態(tài)雙支撐,其動(dòng)力傳遞示意圖如圖2所示。

1.變速箱 2.主帶輪 3.增速皮帶 4.撿拾粉碎刀左帶輪 5.對(duì)輥滑切支撐單元 6.滑切支撐刀帶輪 7.降速皮帶 8.撿拾粉碎刀右?guī)л?9.撿拾粉碎單元

1.Gearbox 2.Major belt wheel 3.Belt of velocity increase 4.Left belt wheel of chopping and collecting blade 5.Double rollers chopping unit installed slide-cutting supporting blade 6.Belt wheel of slide-cutting supporting blade 7.Belt of velocity decrease 8. Right belt wheel of chopping and collecting blade 9.Chopping and collecting unit

注:PTO為拖拉機(jī)后輸出軸。

Note: PTO is the rear output shaft of tractor.

圖2 動(dòng)力傳遞示意圖

Fig.2 Diagram of power transfer

2 關(guān)鍵部件設(shè)計(jì)與參數(shù)確定

2.1 異速動(dòng)態(tài)雙支撐下秸稈動(dòng)力學(xué)分析

分布在地表的玉米秸稈被撿拾粉碎刀撿拾,同時(shí)玉米秸稈隨撿拾粉碎刀進(jìn)行轉(zhuǎn)動(dòng)。當(dāng)撿拾粉碎刀、玉米秸稈和滑切支撐刀發(fā)生接觸時(shí),撿拾粉碎刀和滑切支撐刀同時(shí)對(duì)玉米秸稈進(jìn)行砍切,而且從撿拾粉碎刀和滑切支撐刀與玉米秸稈表皮接觸到玉米秸稈被切斷,撿拾粉碎刀和滑切支撐刀對(duì)玉米秸稈均處于動(dòng)態(tài)雙支撐狀態(tài)。在撿拾粉碎刀和滑切支撐刀的作用下,玉米秸稈首先受到局部塑形變形,隨著撿拾粉碎刀和滑切支撐刀的轉(zhuǎn)動(dòng),玉米秸稈受到彎曲和剪切變形,直至秸稈斷裂。在秸稈受力過程中,由于秸稈直徑相對(duì)于撿拾粉碎刀和滑切支撐刀的回轉(zhuǎn)半徑較小,因此在接觸玉米秸稈表皮時(shí)撿拾粉碎刀和滑切支撐刀可視為處于平行位置。

秸稈受力示意圖如圖3所示,其中包括秸稈自身重力()、滑切支撐刀對(duì)玉米秸稈的支持力(F1)、滑切支撐刀與秸稈之間的摩擦力(1)、撿拾粉碎刀對(duì)秸稈的支持力(F2)、撿拾粉碎刀與秸稈之間的摩擦力(2)、離心力(F)。撿拾粉碎刀上的秸稈與滑切支撐刀接觸后瞬間被切斷,切斷時(shí)間持續(xù)極短,此時(shí)秸稈依然留在撿拾粉碎刀上,并保持原有的運(yùn)動(dòng)狀態(tài)。因此,在切斷時(shí)秸稈依然保持受力平衡。以垂直于離心力F方向?yàn)檩S,以離心力F方反方向?yàn)檩S,以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖3所示的直角坐標(biāo)系。

對(duì)式(1)求解可得

玉米秸稈的受力情況直接影響玉米秸稈的粉碎質(zhì)量。當(dāng)撿拾粉碎刀和滑切支撐刀材料確定后,則滑切支撐刀與秸稈之間的摩擦因數(shù)和撿拾粉碎刀與秸稈之間的摩擦因數(shù)為定值。因此,由式(2)可知,當(dāng)滑切支撐刀滑切角在[0°,90°]區(qū)間內(nèi)逐漸增大時(shí),滑切支撐刀對(duì)玉米秸稈的支持力和撿拾粉碎刀對(duì)秸稈的支持力均隨之增大;當(dāng)撿拾粉碎刀的角速度逐漸增大時(shí),滑切支撐刀對(duì)玉米秸稈的支持力和撿拾粉碎刀對(duì)秸稈的支持力均隨之增大。相對(duì)于滑切支撐刀滑切角,撿拾粉碎刀角速度對(duì)撿拾粉碎刀和滑切支撐刀在玉米秸稈上的支持力影響更大?;兄蔚秾?duì)玉米秸稈的支持力和撿拾粉碎刀對(duì)秸稈的支持力越大,越有利玉米秸稈粉碎,從而促進(jìn)提升秸稈粉碎質(zhì)量。

1.滑切支撐刀 2.撿拾粉碎刀 3.玉米秸稈

1.Slide-cutting supporting blade 2.Chopping and collecting blade 3.Maize stalk

注:為秸稈質(zhì)量,kg;為重力加速度,9.8 m·s-2;F1為滑切支撐刀對(duì)玉米秸稈的支持力,N;1為滑切支撐刀與秸稈之間的摩擦力;F2為撿拾粉碎刀對(duì)秸稈的支持力,N;2為撿拾粉碎刀與秸稈之間的摩擦力,N;F為離心力,N;為滑切支撐刀滑切角,(°) );為在砍切玉米秸稈時(shí)撿拾粉碎刀與滑切支撐刀之間的夾角,(°) );ωω為角速度,rad·s-1。

Note:is mass of maize stalk, kg;is gravitational acceleration, 9.8 m·s-2;F1is the supporting force form slide-cutting supporting blade to maize stalk, N;1is the the fraction between slide-cutting supporting blade and maize stalk, N;F2is the supporting force form chopping and collecting blade to maize stalk, N;2is the fraction between chopping and collecting blade and maize stalk, N;Fis the centrifugal force, N;is the slide-cutting angle of slide-cutting supporting blade, (°) ;is the angle between chopping and collecting blade and slide-cutting supporting blade when maize stalk is chopped, (°),ωandωare angular velocity, rad·s-1.

圖3 秸稈粉碎過程中受力分析

Fig.3 Stress diagram of maize stalk in chopping process

2.2 撿拾粉碎單元結(jié)構(gòu)設(shè)計(jì)

撿拾粉碎單元主要包括撿拾粉碎刀、撿拾粉碎刀座和撿拾粉碎刀軸,撿拾粉碎刀座按照雙螺旋排布焊接在撿拾粉碎刀軸上,撿拾粉碎刀通過銷子鉸接在撿拾粉碎刀座上。高速旋轉(zhuǎn)的撿拾粉碎刀對(duì)地表玉米秸稈進(jìn)行撿拾和粉碎,因此其結(jié)構(gòu)參數(shù)直接影響著玉米秸稈的撿拾和粉碎質(zhì)量。

2.2.1 撿拾粉碎刀結(jié)構(gòu)參數(shù)設(shè)計(jì)

撿拾粉碎刀主要由2把L型甩刀和一把直刀組成(如圖4所示)。L型甩刀和直刀厚度均為5 mm,寬度均為55 mm。L型甩刀和直刀兩端均開有刃口,材料均采用65 Mn,刃口進(jìn)行淬火處理,以提高刀具使用壽命。研究表明[17-18],粉碎刀刃角顯著影響粉碎刀切割性能,在粉碎過程中,刃角越小,粉碎刀越鋒利,切割性能就越好,但是刀身越薄,在作業(yè)中越容易出現(xiàn)卷刃和缺口??紤]到田間環(huán)境復(fù)雜,取刃角為20°,且刃口寬度設(shè)定為3 mm。L型甩刀折彎角()和L型甩刀刃口長(zhǎng)度()作為撿拾粉碎刀的重要結(jié)構(gòu)參數(shù),由下文運(yùn)動(dòng)分析和田間試驗(yàn)進(jìn)行確定。

2.2.2 撿拾粉碎刀對(duì)秸稈漏撿面積影響分析

撿拾粉碎刀旋轉(zhuǎn)對(duì)地表秸稈進(jìn)行撿拾,低的秸稈漏撿率是保證秸稈粉碎質(zhì)量的關(guān)鍵。作業(yè)中,撿拾粉碎刀一面旋轉(zhuǎn),一面隨粉碎裝置前進(jìn),所以其運(yùn)動(dòng)軌跡為擺線。理想狀態(tài)下,撿拾粉碎刀端點(diǎn)的軌跡曲線與地表相切,如圖5所示,以裝置前進(jìn)方向?yàn)檩S,以豎直方向?yàn)檩S,以撿拾粉碎刀軸旋轉(zhuǎn)中心為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,陰影部分為秸稈漏撿區(qū)域。

1.L型甩刀 2.直刀

1.L-type blade 2.Straight blade

注:是L型甩刀刀柄長(zhǎng)度,mm;是L型甩刀刃口長(zhǎng)度,mm;是L型甩刀折彎角,(°)。

Note:is the blade handle length of L-type blade, mm;is the cutting edge length of L-type blade, mm;is the cutting edge bend angle of L-type blade, (°).

圖4 撿拾粉碎刀結(jié)構(gòu)示意圖

Fig.4 Structure diagram of chopping and collecting blade

注:O’點(diǎn)為撿拾粉碎刀運(yùn)動(dòng)起始位置;RY是撿拾粉碎刀回轉(zhuǎn)半徑,mm;V是裝置前進(jìn)速度,m·s-1;h為秸稈漏撿高度,m;d為秸稈漏撿距離,m,虛線為地表位置;陰影區(qū)域GEQ為秸稈漏撿區(qū)域。

如圖5所示,秸稈漏撿區(qū)域面積的大小直接影響著秸稈撿拾效率,從而影響秸稈粉碎質(zhì)量。通過分析幾何關(guān)系得出漏撿高度()、漏撿距離()與撿拾粉碎刀角速度、撿拾粉碎刀數(shù)量的關(guān)系。

式中z為一個(gè)圓周內(nèi)的撿拾粉碎刀數(shù)量;n為撿拾粉碎刀轉(zhuǎn)速,r/min。

如圖5所示,秸稈漏撿區(qū)域可近似為三角形,因此,

式中為秸稈漏撿面積,mm2;1為撿拾粉碎刀座回轉(zhuǎn)半徑,m。

由式(4)可知,當(dāng)撿拾粉碎刀座回轉(zhuǎn)半徑(r)、一個(gè)圓周內(nèi)的撿拾粉碎刀數(shù)量(z)和裝置前進(jìn)速度()一定時(shí),秸稈漏撿面積隨撿拾粉碎刀轉(zhuǎn)速的增大而減小;隨L型甩刀刃口長(zhǎng)度()的增大而減小;隨L型甩刀折彎角()增大而增大。秸稈漏撿面積越小,越有利于提升秸稈粉碎合格率;反之則將不利于提高秸稈粉碎合格率,但撿拾粉碎刀轉(zhuǎn)速對(duì)秸稈漏撿面積的影響要大于L型甩刀刃口長(zhǎng)度和L型甩刀折彎角對(duì)秸稈漏撿面積的影響。根據(jù)實(shí)際撿拾粉碎刀結(jié)構(gòu)排布和設(shè)計(jì),L型甩刀刀刃口長(zhǎng)度:30 mm≤≤60 mm;L型甩刀折彎角:20°≤≤60°。

2.3 對(duì)輥滑切支撐單元參數(shù)設(shè)計(jì)

對(duì)輥滑切支撐單元主要包括滑切支撐刀、支撐刀座和滑切刀軸組成。支撐刀座按照雙螺旋排布焊接滑切刀軸上,滑切支撐刀通過2個(gè)螺栓固定在支撐刀座上。

在玉米秸稈粉碎過程中,滑切支撐刀與撿拾粉碎刀形成動(dòng)態(tài)雙支撐,增強(qiáng)秸稈抗彎能力,從而更利于秸稈切斷與粉碎,因此滑切支撐刀的結(jié)構(gòu)參數(shù)直接影響著秸稈粉碎質(zhì)量。由于直線刃刀片在切割秸稈過程中,其靜態(tài)滑切角變化幅度較大,切割阻力矩變化較為迅速,功耗大[19-23]。等滑切角式粉碎刀在切割玉米秸稈方面節(jié)能效果顯著[24]。根據(jù)滑切原理,滑切角應(yīng)該大于摩擦角,如果滑切角越大,滑切作用越明顯,但滑切角過大,則不便于加工,而且無法起到防纏效果;如果滑切角過小,滑切減阻和秸稈切斷效果不明顯[10]。本文選取對(duì)數(shù)螺線方程作為滑切支撐刀刃口曲線,這樣可以保證滑切角大于摩擦角,便于控制滑切支撐刀刃口曲線形狀,且便于加工。設(shè)滑切支撐刀刃口曲線極坐標(biāo)方程為

式中為常數(shù),為極角,(°);為極徑,mm。

對(duì)式(10)變形進(jìn)行積分可以得到

式中為常數(shù)。

當(dāng)=0時(shí),230 mm

滑切支撐刀旋轉(zhuǎn)前進(jìn)作業(yè)時(shí),其滑切角由靜態(tài)滑切角變換為動(dòng)態(tài)滑切角,為使得滑切支撐刀不發(fā)生纏草等現(xiàn)象,滑切支撐刀片側(cè)刃的動(dòng)態(tài)滑切角應(yīng)滿足[25]

式中1為秸稈滑切支撐刀片作業(yè)時(shí),刀片任意一點(diǎn)的動(dòng)態(tài)滑切角,(°);為玉米秸稈和滑切支撐刀的摩擦角,(°)。

注:δ是初始角度,(°);dδ是滑切支撐刀轉(zhuǎn)動(dòng)角度,(°);r是矢徑,mm;r’ 是轉(zhuǎn)動(dòng)dδ后的矢徑,mm;τ為滑切支撐刀的滑切角,(°);AB為滑切支撐刀刃口曲線;D為初始切割點(diǎn);M為轉(zhuǎn)動(dòng)dθ后的切割點(diǎn);N為dr在r’上的交點(diǎn);O為坐標(biāo)原點(diǎn)。

經(jīng)測(cè)量玉米秸稈與鋼板的摩擦角為22°~32°,本文取=30°。由式(8)知,秸稈滑切支撐刀片任意一點(diǎn)的靜態(tài)滑切角應(yīng)小于等于60°。根據(jù)滑切原理,滑切角應(yīng)該大于摩擦角,因此30°<≤60°。

玉米秸稈是一種由維管束、纖維組織、表皮等組成的復(fù)合材料,微觀結(jié)構(gòu)成篩狀、多孔、不均勻狀態(tài)[26]。秸稈表皮具有較強(qiáng)的抵抗外載荷的能力,其韌性較好,不易切斷[27],因此,在滑切支撐刀的刀刃上設(shè)計(jì)成鋸齒形,如圖7所示。

圖7 帶鋸齒的滑切支撐刀結(jié)構(gòu)示意圖

2.4 撿拾粉碎單元與對(duì)輥滑切支撐單元匹配設(shè)計(jì)

撿拾粉碎單元和對(duì)輥滑切支撐單元是完成秸稈粉碎的主要部件,因此需要對(duì)粉碎裝置轉(zhuǎn)速以及撿拾粉碎刀和滑切支撐刀排布進(jìn)行設(shè)計(jì),以滿足作業(yè)時(shí)撿拾粉碎刀和滑切支撐刀對(duì)玉米秸稈的動(dòng)態(tài)雙支撐。

2.4.1 粉碎裝置轉(zhuǎn)速確定

通過理論分析可知,隨著撿拾粉碎刀和滑切支撐刀轉(zhuǎn)速增大,玉米秸稈受到的支持力增大,秸稈漏撿面積而下降,從而有利于提高玉米秸稈粉碎合格率,但撿拾粉碎刀和滑切支撐刀轉(zhuǎn)速增大導(dǎo)致還田裝置功耗增大,從而增加作業(yè)成本,因此需要合理選擇撿拾粉碎刀和滑切支撐刀的轉(zhuǎn)速。

如圖5所示,以點(diǎn)為撿拾粉碎刀運(yùn)動(dòng)起始位置,建立撿拾粉碎刀端點(diǎn)的軌跡運(yùn)動(dòng)方程。

式中和分別為撿拾粉碎刀端點(diǎn)位置橫坐標(biāo)與縱坐標(biāo)。

對(duì)式(9)求導(dǎo)可得撿拾粉碎刀端點(diǎn)的速度。

式中VV分別為撿拾粉碎刀在軸方向和在軸方向的速度分量,m/s。

則撿拾粉碎刀端點(diǎn)的絕對(duì)速度為

式中V為撿拾粉碎刀端點(diǎn)絕對(duì)速度,m/s。

2.4.2 撿拾粉碎刀與滑切支撐刀排布

本文采用對(duì)稱雙螺線排布的方式排布撿拾粉碎刀和滑切支撐刀,能使粉碎刀軸受力均勻,有助于降低粉碎裝置振動(dòng),提高裝置作業(yè)壽命[28-29]?;兄蔚对诨兄蔚遁S上相對(duì)于撿拾粉碎刀兩側(cè)對(duì)稱安裝,從而保證撿拾粉碎刀和滑切支撐刀在粉碎作業(yè)時(shí)一直處于動(dòng)態(tài)雙支撐狀態(tài)(如圖8所示)。根據(jù)《農(nóng)業(yè)機(jī)械設(shè)計(jì)手冊(cè)》中粉碎刀排列密度要求[22]和異速對(duì)輥式玉米秸稈粉碎還田裝置作業(yè)幅寬(1 008 mm),本文設(shè)計(jì)的撿拾粉碎刀和滑切支撐直刀數(shù)量各為10組。在徑向上有2把撿拾粉碎刀和4把滑切支撐刀,因此撿拾粉碎刀數(shù)量和滑切支撐刀數(shù)量分別為20把和40把。撿拾粉碎刀和滑切支撐刀螺旋線排列展開如圖8所示。

異速對(duì)輥式玉米秸稈粉碎還田裝置作業(yè)幅寬為1 008 mm,軸向上撿拾粉碎刀數(shù)量為10組,因此2把撿拾粉碎刀軸向間距為100 mm。為了滑切支撐刀和撿拾粉碎刀在作業(yè)時(shí)不發(fā)生干涉,2把相鄰的滑切支撐刀軸向間距分別為85 mm和15 mm,滑切支撐刀與撿拾粉碎刀在軸向最小間距為10 mm。如果滑切支撐刀與撿拾粉碎刀上下重合距離過大,則會(huì)降低滑切刀和滑切支撐刀接觸玉米秸稈的線速度,從而影響玉米秸稈粉碎質(zhì)量;如果滑切支撐刀與撿拾粉碎刀上下重合距離過小,則如果滑切支撐刀與撿拾粉碎刀無法對(duì)玉米秸稈形成動(dòng)態(tài)支撐,從而影響粉碎質(zhì)量,考慮玉米秸稈平均直徑為(16.14±4.05)mm[30],滑切支撐刀與撿拾粉碎刀上下重合距離設(shè)定為為20 mm(圖9)。為防止撿拾粉碎刀在高速旋轉(zhuǎn)因入土而對(duì)撿拾粉碎刀軸產(chǎn)生沖擊,設(shè)定撿拾粉碎刀離地間隙為30 mm。

注:圓點(diǎn)為撿拾粉碎刀安裝位置,方框?yàn)榛兄蔚栋惭b位置。

圖9 粉碎裝置配合示意圖

3 田間試驗(yàn)

3.1 試驗(yàn)條件

2019年11月在中國(guó)農(nóng)業(yè)大學(xué)涿州科技園區(qū)保護(hù)性耕作試驗(yàn)田進(jìn)行田間試驗(yàn)(如圖10所示)。玉米品種為五谷631,玉米秸稈量為1.31 kg/m2,秸稈直徑分布在11.2~24.8 mm之間,秸稈平均高度為2 210 mm,秸稈平均含水率為32.6%。主要儀器設(shè)備有:鐵牛754拖拉機(jī),異速對(duì)輥式秸稈粉碎裝置、威衡帶鉤電子秤(精度:5 g)、1 m2方框等。

3.2 試驗(yàn)方法及結(jié)果

經(jīng)過上文理論分析以及實(shí)際作業(yè)工況,選取L型甩刀刃口長(zhǎng)度、L型甩刀折彎角、滑切支撐刀滑切角和撿拾粉碎刀轉(zhuǎn)速為試驗(yàn)因素。選取以玉米秸稈粉碎合格率(1)為試驗(yàn)指標(biāo),采用Box-Behnken試驗(yàn)設(shè)計(jì)方法,進(jìn)行田間試驗(yàn),研究L型甩刀刃口長(zhǎng)度、L型甩刀折彎角、滑切支撐刀滑切角和撿拾粉碎刀轉(zhuǎn)速對(duì)玉米秸稈粉碎率的影響規(guī)律。其中,為保證秸稈能夠充分被撿拾,L型甩刀刃口長(zhǎng)度的試驗(yàn)因素水平選取為30、45和60 mm,L型甩刀折彎角的試驗(yàn)因素水平選取為20°、40°和60°;為保證滑切支撐刀的防纏效果和滑切作用,滑切支撐刀滑切角的試驗(yàn)因素水平選取為30°、45°和60°;為保證秸稈能充分粉碎,同時(shí)降低作業(yè)能耗,撿拾粉碎刀轉(zhuǎn)速的試驗(yàn)因素水平選取為1 200、1 600和2 000 r/min。

圖10 田間試驗(yàn)

根據(jù)GB/T24675.6—2009《保護(hù)性耕作機(jī)械秸稈粉碎還田機(jī)》進(jìn)行田間試驗(yàn)。拖拉機(jī)前進(jìn)速度保持在1 m/s,每次測(cè)試行程為20 m。在每個(gè)試驗(yàn)行程中,隨機(jī)選取3個(gè)測(cè)試點(diǎn)(1 m×1 m)進(jìn)行測(cè)試,收集測(cè)試點(diǎn)中的所有秸稈,剔除粉碎長(zhǎng)度不合格的玉米秸稈(長(zhǎng)度大于100 mm),并稱質(zhì)量、計(jì)算每個(gè)點(diǎn)秸稈粉碎合格率,對(duì)3個(gè)測(cè)試點(diǎn)的秸稈粉碎合格率求平均值。

式中為秸稈粉碎合格率,%;m為測(cè)試點(diǎn)內(nèi)長(zhǎng)度大于100 mm玉米秸稈的質(zhì)量,kg;m為測(cè)試點(diǎn)內(nèi)玉米秸稈的總質(zhì)量,kg。

通過田間試驗(yàn)對(duì)影響試驗(yàn)指標(biāo)的因素進(jìn)行顯著性分析,根據(jù)實(shí)際需求及前文中的參考范圍,對(duì)各參數(shù)組合進(jìn)行優(yōu)化,最終獲得較優(yōu)的參數(shù)組合。試驗(yàn)因素編碼表如表1所示,試驗(yàn)方案及試驗(yàn)結(jié)果如表2所示。

表1 試驗(yàn)因素編碼表

3.3 結(jié)果分析與回歸模型建立

利用Design Expert 8.0.6軟件對(duì)試驗(yàn)結(jié)果進(jìn)行二次回歸分析,并進(jìn)行多元回歸擬合,得到了以秸稈粉碎合格率1為試驗(yàn)指標(biāo)的回歸方程,并檢驗(yàn)其顯著性。

表2 試驗(yàn)方案與結(jié)果

通過對(duì)試驗(yàn)數(shù)據(jù)的分析和擬合,秸稈粉碎合格率1方差分析如表3所示。影響試驗(yàn)指標(biāo)秸稈粉碎合格率1的主次因素依次是撿拾粉碎刀轉(zhuǎn)速、L型甩刀折彎角、L型甩刀刃口長(zhǎng)度、滑切支撐刀滑切角。撿拾粉碎刀轉(zhuǎn)速在[1 200,2 000] r/min之間,秸稈粉碎合格率呈上升趨勢(shì),但秸稈粉碎合格率在[1 200, 1 600] r/min的增長(zhǎng)率要大于秸稈粉碎合格率[1 600, 2 000] r/min的增長(zhǎng)率;L型甩刀折彎角在[20°,45°]時(shí),秸稈粉碎率呈增長(zhǎng)趨勢(shì),在[45°,60°]時(shí),秸稈粉碎率呈下降趨勢(shì);L型甩刀刃口長(zhǎng)度在[30°,45°]時(shí),秸稈粉碎合格率呈上升趨勢(shì),在[45°,60°]時(shí),秸稈粉碎率呈下降趨勢(shì);滑切支撐刀滑切角在[30°,60°]時(shí),秸稈粉碎合格率呈上升趨勢(shì),但滑切支撐刀滑切角在[30°,50°]時(shí)的秸稈粉碎合格率增長(zhǎng)率要大于滑切支撐刀滑切角在[50°,60°] 時(shí)的秸稈粉碎合格率增長(zhǎng)率。滑切支撐刀滑切角、撿拾粉碎刀轉(zhuǎn)速、L型甩刀刃口長(zhǎng)度、L型甩刀折彎角、L型甩刀刃口長(zhǎng)度與L型甩刀折彎角的交互項(xiàng)、滑切支撐刀滑切角的二次項(xiàng)2、撿拾粉碎刀轉(zhuǎn)速的二次項(xiàng)2、L型甩刀刃口長(zhǎng)度的二次項(xiàng)2、L型甩刀折彎角的二次項(xiàng)2對(duì)秸稈粉碎合格率1存在極其顯著的影響(<0.01),撿拾粉碎刀轉(zhuǎn)速和L型甩刀刃口長(zhǎng)度的交互項(xiàng)、撿拾粉碎刀轉(zhuǎn)速和L型甩刀折彎角的交互項(xiàng)對(duì)秸稈粉碎合格率1存在顯著影響(0.01<<0.05),其余因素對(duì)秸稈粉碎合格率1影響不顯著。將不顯著的交互作用項(xiàng)的回歸平方及其自由度并入殘差項(xiàng),再次進(jìn)行方差分析,結(jié)果如表3所示。得到各因素對(duì)秸稈粉碎合格率1影響的回歸方程。

對(duì)上述回歸方程進(jìn)行失擬性檢驗(yàn)(如表3所示),=0.280 4>0.1,不顯著,證明不存在其他影響指標(biāo)的主要因素存在,試驗(yàn)指標(biāo)與試驗(yàn)因素存在顯著的二次型關(guān)系,方差分析結(jié)果準(zhǔn)確。

表3 秸稈粉碎合格率方差分析

注:“/”后數(shù)值為剔除不顯著因素秸稈粉碎合格率1方差分析結(jié)果;***表示極顯著(<0.01);**表示顯著(<0.05)。

Note: The number after “/” is the variance analysis results of stalk chopping pass rate after removing the insignificant factors; *** is the very significant (<0.01); ** is the significant (<0.05).

3.4 秸稈粉碎合格率雙因素交互作用分析

通過Design-Expert 8.0.6軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行處理,分析撿拾粉碎刀轉(zhuǎn)速和L型甩刀刃口長(zhǎng)度的交互作用、撿拾粉碎刀轉(zhuǎn)速和L型甩刀折彎角的交互作用、L型甩刀刃口長(zhǎng)度和L型甩刀折彎角的交互作用對(duì)秸稈粉碎合格率1影響,如圖11所示。

圖11 秸稈粉碎合格率雙因素交互作用分析

當(dāng)滑切支撐刀滑切角為45°,L型甩刀折彎角為40°時(shí),撿拾粉碎刀轉(zhuǎn)速和L型甩刀刃口長(zhǎng)度對(duì)秸稈粉碎合格率的影響如圖10a所示。當(dāng)撿拾粉碎刀轉(zhuǎn)速一定時(shí),秸稈粉碎合格率與L型甩刀刃口長(zhǎng)度呈正相關(guān),這是因?yàn)楫?dāng)L型甩刀刃口長(zhǎng)度變大時(shí),撿拾粉碎刀端點(diǎn)的線速度隨之增大,秸稈漏撿面積隨之降低,從而有利于提高秸稈粉碎合格率,其較優(yōu)的刃口長(zhǎng)度為35~55 mm。當(dāng)L型甩刀刃口長(zhǎng)度一定時(shí),秸稈粉碎合格率與撿拾粉碎刀轉(zhuǎn)速呈正相關(guān),這是因?yàn)殡S著撿拾粉碎刀轉(zhuǎn)速增大,撿拾粉碎刀和滑切支撐刀施加在玉米秸稈上的能量越大,秸稈漏撿面積越小,從而越有利于提高秸稈粉碎合格率,其較優(yōu)撿拾粉碎刀轉(zhuǎn)速為1 300~1 900 r/min。相對(duì)于L型甩刀刃口長(zhǎng)度,撿拾粉碎刀轉(zhuǎn)速是對(duì)秸稈粉碎合格率影響最為關(guān)鍵的因素。

當(dāng)滑切支撐刀滑切角為45°,L型甩刀折彎角為40°時(shí),撿拾粉碎刀轉(zhuǎn)速和L型甩刀折彎角對(duì)秸稈粉碎合格率的影響如圖10b所示。當(dāng)L型甩刀折彎角一定時(shí),秸稈粉碎合格率與撿拾粉碎刀轉(zhuǎn)速呈正相關(guān),這是因?yàn)閾焓胺鬯榈掇D(zhuǎn)速增大,撿拾粉碎刀刀端線速度增大,秸稈漏撿面積下降,從而提高了玉米秸稈粉碎合格率,其較優(yōu)撿拾粉碎刀轉(zhuǎn)速為1 400~1 900 r/min。當(dāng)撿拾粉碎刀轉(zhuǎn)速一定時(shí),秸稈粉碎合格率與L型甩刀折彎角呈正相關(guān),但秸稈粉碎合格率的增長(zhǎng)速率逐漸降低,這是因?yàn)殡S著L型甩刀折彎角逐漸增大,秸稈漏撿面積增大,從而使得秸稈粉碎合格率的增長(zhǎng)速率逐漸降低其較優(yōu)的L型甩刀折彎角為25~55°。

當(dāng)滑切支撐刀滑切角為45°,撿拾粉碎刀轉(zhuǎn)速為1 600 r/min時(shí),L型甩刀刃口長(zhǎng)度和L型甩刀折彎角對(duì)秸稈粉碎合格率的影響如圖10c所示。當(dāng)L型甩刀刃口長(zhǎng)度一定時(shí),秸稈粉碎合格率與L型甩刀折彎角呈正相關(guān),但秸稈粉碎合格率的增長(zhǎng)速率逐漸降低,這是因?yàn)楫?dāng)L型甩刀刃口長(zhǎng)度一定時(shí),隨著L型甩刀折彎角增大,撿拾粉碎刀端點(diǎn)線速度降低,秸稈漏撿面積增大,不利于秸稈粉碎率的增大,從而使得秸稈粉碎合格率的增長(zhǎng)速率逐漸降低,其較優(yōu)的L型甩刀折彎角為30°~50°。當(dāng)L型甩刀折彎角一定時(shí),秸稈粉碎合格率與L型甩刀刃口長(zhǎng)度呈正相關(guān),當(dāng)L型甩刀折彎角一定時(shí),隨著L型甩刀刃口長(zhǎng)度的增大,有利于Y型組合刀撿拾范圍的增大,秸稈漏撿面積下降,撿拾粉碎刀線速度增大,從而有利于提高玉米秸稈粉碎合格率,其較優(yōu)的刃口長(zhǎng)度為40~52 mm。

通過對(duì)秸稈粉碎合格率雙因素交互作用分析,利用Design-Expert 8.0.6軟件中的優(yōu)化模塊對(duì)秸稈粉碎合格率的回歸方程進(jìn)行求解,根據(jù)秸稈粉碎還田機(jī)的實(shí)際工作條件、作業(yè)要求以及上文的理論分析,對(duì)優(yōu)化的約束條件進(jìn)行選擇。

目標(biāo)函數(shù)

對(duì)方程(15)進(jìn)行優(yōu)化求解,可以得到多種參數(shù)優(yōu)化組合。考慮到實(shí)際作業(yè)情況,在多組優(yōu)化參數(shù)中選取較優(yōu)參數(shù)組合:滑切支撐刀滑切角為41°~57.64°、撿拾粉碎刀轉(zhuǎn)速為1 657.37~1 889.97 r/min、L型甩刀刃口長(zhǎng)度為41.7~51.71 mm、L型甩刀折彎角為36.55°~49.08°,其相應(yīng)的秸稈粉碎合格率為93.74%~94.47%。

3.5 模型驗(yàn)證

為驗(yàn)證優(yōu)化結(jié)果的可靠性,選取滑切支撐刀滑切角為45°、撿拾粉碎刀轉(zhuǎn)速為1 700 r/min,L型甩刀刃口長(zhǎng)度為45 mm,L型甩刀折彎角為40°,其秸稈粉碎合格率預(yù)測(cè)值為93.96%。田間試驗(yàn)(圖12)表明,在相同參數(shù)條件下,秸稈粉碎效率為92.58%,誤差小于5%,與優(yōu)化結(jié)果基本一致。驗(yàn)證試驗(yàn)表明相關(guān)優(yōu)化組合合理,按照優(yōu)化參數(shù)條件后的秸稈粉碎還田機(jī)的秸稈粉碎效果滿足作業(yè)標(biāo)準(zhǔn)。

圖12 作業(yè)效果

4 結(jié) 論

1)為提高秸稈粉碎裝置粉碎線速度,設(shè)計(jì)了一種異速對(duì)輥式玉米秸稈粉碎還田裝置,撿拾粉碎刀和滑切支撐刀同向轉(zhuǎn)動(dòng),實(shí)現(xiàn)了對(duì)玉米秸稈的動(dòng)態(tài)雙支撐粉碎;設(shè)計(jì)了一種帶鋸齒等滑切角的滑切支撐刀,并對(duì)撿拾粉碎刀進(jìn)行了參數(shù)優(yōu)化。

2)通過對(duì)玉米秸稈粉碎過程受力分析和撿拾粉碎刀結(jié)構(gòu)參數(shù)對(duì)秸稈漏撿面積影響分析得出:當(dāng)撿拾粉碎刀軸半徑、撿拾粉碎刀數(shù)量和裝置前進(jìn)速度一定時(shí),L型甩刀刃口長(zhǎng)度、L型甩刀折彎角、撿拾粉碎刀轉(zhuǎn)速和滑切支撐刀滑切角對(duì)秸稈粉碎合格率有影響,并確定了撿拾粉碎刀和滑切支撐刀的轉(zhuǎn)速范圍。

3)根據(jù)實(shí)際作業(yè)條件和要求對(duì)裝置結(jié)構(gòu)參數(shù)范圍進(jìn)行選取,以秸稈粉碎合格率為試驗(yàn)指標(biāo),通過對(duì)秸稈粉碎合格率雙因素交互作用分析和對(duì)目標(biāo)函數(shù)進(jìn)行優(yōu)化求解,最終確定了較優(yōu)結(jié)構(gòu)參數(shù),在地表秸稈量為4 300 kg/hm2、秸稈含水率為32.6%的條件下,滑切支撐刀滑切角為45°、撿拾粉碎刀轉(zhuǎn)速為1 700 r/min,L型甩刀刃口長(zhǎng)度為45 mm,L型甩刀折彎角為40°時(shí),作業(yè)后秸稈粉碎合格率為92.58%,與預(yù)測(cè)值誤差小于5%,指標(biāo)滿足相關(guān)標(biāo)準(zhǔn)規(guī)定。

[1] 韓魯佳,閆巧娟,劉向陽,等. 中國(guó)農(nóng)作物秸稈資源及其利用現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報(bào),2002,18(3):87-91. Han Lujia, Yan Qiaojuan, Liu Xiangyang et al. Straw resources and their utilization in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(3): 87-91. (in Chinese with English abstract)

[2] Liu P, He J, Li H, et al. Effect of straw retention on crop yield, soil properties, water use efficiency and greenhouse gas emission in China: A meta-analysis[J]. International Journal of Plant Production, 2019, 13(4): 347-367.

[3] Zhao H, Sun B, Jiang L, et al. How can straw incorporation management impact on soil carbon storage? A meta-analysis[J]. Mitigation and Adaptation Strategies for Global Change. 2015, 20(8): 1545-1568.

[4] Yeboah S, Lamptey S, Zhang R, et al. Conservation tillage practices optimizes root distribution and straw yield of spring wheat and field pea in dry areas[J]. Journal of Agricultural Science. 2017, 9(6): 37-48.

[5] 王秋菊,劉峰,遲鳳琴,等. 秸稈還田及氮肥調(diào)控對(duì)不同肥力白漿土氮素及水稻產(chǎn)量影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(14):105-111. Wang Qiuju, Liu Feng, Chi Fengqin et al. Effect of straw returning and nitrogen fertilizer regulation on nitrogen and rice yield in albic soil with different fertilities[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 105-111. (in Chinese with English abstract)

[6] 章志強(qiáng),何進(jìn),李洪文,等. 可調(diào)節(jié)式秸稈粉碎拋撒還田機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):81-92. Zhang Zhiqiang, He Jin, Li Hongwen, et al. Design and experiment on straw chopper cum spreader with adjustable spreading device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 76-87. (in Chinese with English abstract)

[7] 鄭智旗,何進(jìn),李洪文,等. 動(dòng)定刀支撐滑切式秸稈粉碎裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(S1):108-116. Zheng Zhiqi, He Jin, Li Hongwen, et al. Design and experiment of straw-chopping device with chopping and fixed knife supported slide-cutting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S1): 108-116. (in Chinese with English abstract)

[8] 鄭智旗,何進(jìn),王慶杰,等. 秸稈撿拾粉碎掩埋復(fù)式還田機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(7):87-96. Zheng Zhiqi, He Jin, Wang Qingjie, et al. Design and experiment on straw collecting-chopping and ditch-burying integrated machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 87-96. (in Chinese with English abstract)

[9] 張姬,于泳濤,楊啟勇,等. 高留茬玉米秸稈復(fù)式割臺(tái)粉碎還田裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(S1):42-49. Zhang Ji, Yu Yongtao, Yang Qiyong, et al. Design and experiment of smashed straw unit for high stubble maize double header[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 42-49. (in Chinese with English abstract)

[10] 張喜瑞,王自強(qiáng),李粵,等. 滑切防纏式香蕉秸稈還田機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(3):26-34. Zhang Xirui, Wang Ziqiang, Li Yue, et al. Design and experiment of sliding-cutting and anti-twining returning device for banana straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 26-34. (in Chinese with English abstract)

[11] 張紅霞,劉師多,師清翔,等. 玉米秸稈粉碎刀具和刀速對(duì)粉碎功耗和質(zhì)量的影響[J]. 河南科技大學(xué)學(xué)報(bào):自然科學(xué)版,2003,24(2):1-4. Zhang Hongxia, Liu Shiduo, Shi Qingxiang, et al. Influence of macerator’s blades disposal and rotatory speed on power consumption and smashing quality of cornstalk[J]. Journal of Henan University of Science and Technology (Natural Science), 2003, 24(2): 1-4. (in Chinese with English abstract)

[12] 賈洪雷,姜鑫銘,郭明卓,等. V-L型秸稈粉碎還田刀片設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):28-33. Jia Honglei, Jiang Xinming, Guo Mingzhuo, et al. Design and experiment of V-L shaped smashed straw blade[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 28-33. (in Chinese with English abstract)

[13] 郭俊,張慶怡,Muhammad Sohail Memon,等. 仿鼴鼠足趾排列的旋耕-秸稈粉碎鋸齒刀片設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):43-50. Guo Jun, Zhang Qingyi, Muhammad Sohail Memon, et al. Design and experiment of bionic mole's toe arrangement serrated blade for soil-rototilling and straw-shattering[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 43-50. (in Chinese with English abstract)

[14] Lundin G. Chop length capability and wearing qualities for two types of straw chopper knives at combine harvesting[J]. Tarim Makinalari Bilimi Dergisi, 2008, 4(1): 99-103.

[15] Persson S. Mechanics of cutting plant material[J]. St. Joseph, MI: ASAE, 1987, 7: 266-283.

[16] Zhang Zhiqiang, David M H A, Li Hongwen, et al. Global overview of research and development of crop residue management machinery[J]. Applied Engineering in Agriculture, 2017, 33(3): 329-344.

[17] 王慶杰,劉正道,何進(jìn),等. 砍切式玉米秸稈還田機(jī)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):10-17. Wang Qingjie, Liu Zhengdao, He Jin, et al. Design and experiment of chopping type maize straw returning machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 10-17. (in Chinese with English abstract)

[18] 陳昕. 四倍體刺槐飼料收獲機(jī)往復(fù)切割器切割性能研究[D].北京:北京林業(yè)大學(xué),2011. Chen Xin. The Research of Reciprocating Knife Cutting Performance Used for Tetraploid Robinia Pseudoacacia Harcester[D]. Beijing: Beijing Forestry University, 2011. (in Chinese with English abstract)

[19] 陳黎卿,王莉,張家啟,等. 適用于全喂入聯(lián)合收割機(jī)的1JHSX-34型秸稈粉碎機(jī)設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(9):28-32. Chen Liqing, Wang Li, Zhang Jiaqi, et al. Design of 1JHSX-34 straw crusher for whole-feeding combine harvesters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(9): 28-32. (in Chinese with English abstract)

[20] 孫妮娜,王曉燕,李洪文,等. 差速鋸切式水稻秸稈粉碎還田機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22):267-276. Sun Nina, Wang Xiaoyan, Li Hongwen, et al. Design and experiment of differential sawing rice straw chopper[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 267-276. (in Chinese with English abstract)

[21] 吳子岳,高煥文,張晉國(guó). 玉米秸稈切斷速度和切斷功耗的試驗(yàn)研究. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2001,32(2):38-41. Wu Ziyue, Gao Huanwen, Zhang Jinguo. Study on cutting velocity and power requirement in a maize stalk chopping process[J]. Transactions of the Chinese Society for Agricultural Machinery, 2001, 32(2): 38-41. (in Chinese with English abstract)

[22] 中國(guó)農(nóng)業(yè)機(jī)械化科學(xué)研究院. 農(nóng)業(yè)機(jī)械設(shè)計(jì)手冊(cè)[M]. 北京:中國(guó)農(nóng)業(yè)科學(xué)技術(shù)出版社,2007.

[23] 郭茜,張西良,徐云峰,等. 藤莖類秸稈專用切割刀片的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):47-53. Guo Qian, Zhang Xiliang, Xu Yunfeng, et al. Design and experiment of cutting blade for cane straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 47-53. (in Chinese with English abstract)

[24] Yagelski MY, Rodimtsev SA. Types and classification of blades of straw chopper spreaders in combine harvesters[J]. Vestnik of Voronezh State Agrarian University, 2017, 1: 114-122.

[25] 賈洪雷,趙佳樂,姜鑫銘,等. 行間免耕播種機(jī)防堵裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(18):16-25. Jia Honglei, Zhao Jiale, Jiang Xinming, et al. Design and experiment of anti-blocking mechanism for inter-row no-tillage seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 16-25. (in Chinese with English abstract)

[26] 何勛,王德福. 基于纖維形態(tài)特征分析的玉米秸稈皮拉伸特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(10):92-98. He Xun, Wang Defu. Tensile property of corn stalk rind based on analysis of fiber morphology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 92-98. (in Chinese with English abstract)

[27] 陳爭(zhēng)光,王德福,李利橋,等. 玉米秸稈皮拉伸和剪切特性試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(21):59-65. Chen Zhengguang, Wang Defu, Li Liqiao, et al. Experiment on tensile and shearing characteristics of rind of corn stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(21): 59-65. (in Chinese with English abstract)

[28] 呂金慶,王英博,兌瀚,等. 驅(qū)動(dòng)式馬鈴薯中耕機(jī)關(guān)鍵部件設(shè)計(jì)與碎土效果試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(10):49-58. Lv Jinqing, Wang Yingbo, Dui Han, et al. Design of key components of driving type potato cultivator and its soil-broken effect experiment[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 49-58. (in Chinese with English abstract)

[29] 張慧明,陳學(xué)庚,顏利民,等. 隨動(dòng)式秸稈還田與殘膜回收聯(lián)合作業(yè)機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(19):11-19. Zhang Huiming, Chen Xuegeng, Yan Limin, et al. Design and test of master-slave straw returning and residual film recycling combine machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(19): 11-19. (in Chinese with English abstract)

[30] 張李嫻. 玉米秸稈力學(xué)特性的離散元建模方法研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2017. Zhang Lixian. Research on the Discrete Element Modeling Method of Corn Stalk’s Mechanical Characteristics[D]. Yangling: Northwest A&F University, 2017. (in Chinese with English abstract)

Design and experiment of double rollers maize stalk chopping device with different rotation speeds

Liu Peng1, He Jin1※, Li Yanjie2, Li Hongwen1, Wang Qingjie1, Lu Caiyun1, Zhang Zhenguo1,3, Li Shaohua4

(1.,,100083,; 2.,,100083,; 3.,,830052,; 4..,.,024200,)

A large amount of maize stalks are produced each year, due to the maize is serving as one of the main grain crop in China. Maize straw retention to the field after chopped is widely used in most disposal approaches. However, the currently used single shaft maize stalk chopping and retention machine can not meet the quality requirements of stalk chopping, such as too long maize stalk after chopping, and the low chopping pass rate of maize stalk, particularly when the amount of maize stalk was large, while the scarf skin of maize stalk was toughness. The shortcoming of maize stalk chopping directly determines the next seeding production, seed germination, and final crop yield. This paper aims to propose a novel chopping method, and thereby to design a double rollers type stalk chopping and retention device with different rotation speed and dynamic double support. The device mainly included the shell, supporting plate, suspension device, gearbox, transmission, chopping and collecting blade, shaft of chopping, collecting blade, blade shaft of slide-cutting supporting blade, and slide-cutting supporting blade. In operation, the chopping and collecting blade with anticlockwise rotation, firstly collected and chopped maize stalk in the field; then the maize stalk was chopped in dynamic support of side-cutting supporting blade with same rotation direction of chopping and collecting blade. A mechanical analysis of maize stalk was conducted under the effect of chopping and collecting blade, as well the slide-cutting supporting blade. The results showed that the rotation speed of chopping and collecting blade, and the slide-cutting angle of slide-cutting supporting blade were the main factors to affect the stalk chopping process. Furthermore, a motion analysis of chopping and collecting blade was carried out, including two L-type blades and a straight blade. The results revealed that the bend angle and length along the cutting-edge of L-type blade, and the rotation speed of chopping and collecting blade, were the main factors to affect the unpicking rate of maize stalk, and chopping pass rate, when the number of chopping and collecting blade and operation speed of device were fixed. In the slide-cutting supporting blade, the cutting-edge curvilinear equation was in the form of the logarithmic spiral equation. Moreover, the range of slide-cutting angle was 30o-60o, due to the slide-cutting angle can be more than frictional angle between maize stalk and slide-cutting supporting blade, according to slide-cutting principle. Importantly, the cutting edge of slide-cutting supporting blade with sawtooth was designed to increase the fraction of maize stalk and slide-cutting supporting blade. Prior to accurately coordinating between chopping and collecting blade, and side-cutting supporting blade, the rotating speed range of chopping and collecting blade was determined as 1 150 -2 500 r/min, to ensure the high stalk chopping pass rate. The rotation speed of slide-cutting supporting blade was one half that of chopping and collecting blade, to guarantee the speed of backward spread of chopped maize stalk. Simultaneously, the chopping and collecting blade, and side-cutting supporting blade, both were double helix arrangement to reduce machinery vibration, while increase machinery life. One device was installed 20 chopping and collecting blades, and 40 slide-cutting supporting blades. A quadratic rotation orthogonal combination test was used in the field research, to obtain the optimal structure parameters, where the chopping pass rate of maize stalk was set as test index. Some test factors were selected, including the cutting-edge bend angle of L-type blade (20o ≤≤60o), and cutting-edge length of L-type blade (30 mm ≤≤60 mm), rotation speed of chopping and collecting blade (1200 r/min≤n≤2 000 r/min), and slide-cutting angle of slide-cutting supporting blade (30°≤≤60°). The Design-Expert 8.0.6 software was applied to analyze the double factors interaction on stalk chopping pass rate, thereby to obtain the regression model between test factors and index. The primary and secondary factors that affect the maize stalk chopping pass rate were the rotation speed of chopping and collecting blade, the length of cutting-edge bend angle, the cutting-edge length of L-type blade, and the slide-cutting angle. In multiple objective optimization, the optimum ranges can be achieved, including the cutting-edge bend angle of L-type blade (41o≤≤57.64o), the cutting-edge length of L-type blade (41.7 mm≤≤51.71 mm), the rotation speed of chopping and collecting blade (1 657.37 r/min≤n≤1 889.97 r/min), and slide-cutting angle of slide-cutting supporting blade (36.55o≤≤49.08o). In the field test, the rotation speed of chopping and collecting blade, the length of cutting-edge bend angle, and cutting-edge length of L-type blade, and slide-cutting angle were set as 1700 r/min, 40o, 45mm, and 45o, respectively. The field test results demonstrated that the maize stalk chopping pass rate was 92.58% under the optimal working parameters, while the error with the predictive value (93.96%) was less than 5%, indicating the reliable optimization of parameters. The finding can offer a sound reference to improve the chopping quality of maize stalk in the chopping and retention machine.

agricultural machine; speed; stalk chopping pass rate; stalk chopping; different rotation speed; dynamic support

劉鵬,何進(jìn),李艷潔,等. 異速對(duì)輥式玉米秸稈粉碎還田裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(14):69-79.doi:10.11975/j.issn.1002-6819.2020.14.009 http://www.tcsae.org

Liu Peng, He Jin, Li Yanjie, et al. Design and experiment of double rollers maize stalk chopping device with different rotation speeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(14): 69-79. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.14.009 http://www.tcsae.org

2020-01-08

2020-03-07

國(guó)家自然基金項(xiàng)目(31971803)

劉鵬,博士生,主要從事現(xiàn)代農(nóng)業(yè)裝備與計(jì)算機(jī)測(cè)控技術(shù)研究。Email:liupeng_ctrc@cau.edu.cn

何進(jìn),教授,博士生導(dǎo)師,主要從事現(xiàn)代農(nóng)業(yè)裝備與計(jì)算機(jī)測(cè)控技術(shù)研究。Email:hejin@cau.edu.cn

10.11975/j.issn.1002-6819.2020.14.009

S244.29

A

1002-6819(2020)-14-0069-11

猜你喜歡
切角彎角刀刃
怎樣把力氣用在刀刃兒上
——分清“主”和“次”
噴火怪獸迷宮
上游切角對(duì)串列雙方柱氣動(dòng)性能影響研究
基于仿真計(jì)算下墩系梁增設(shè)切角對(duì)泵站進(jìn)水塔結(jié)構(gòu)抗震特性影響分析研究
刀刃向內(nèi)
高山上的彎角俠
拱壩加切角措施對(duì)壩肩拉應(yīng)力的影響研究
掩星探測(cè)彎角和折射率同化對(duì)數(shù)值預(yù)報(bào)的影響
游走在刀刃上的CPI指數(shù)
全瓷貼面修復(fù)前牙切緣切角缺損的治療效果
阿克陶县| 育儿| 马龙县| 射阳县| 徐州市| 西吉县| 射洪县| 抚顺县| 十堰市| 卓尼县| 盘山县| 武陟县| 南充市| 手游| 古交市| 佛学| 容城县| 余姚市| 北流市| 中山市| 东乡县| 新余市| 太仓市| 沙河市| 巩留县| 息烽县| 福安市| 新沂市| 隆昌县| 常熟市| 东乡| 宿迁市| 剑阁县| 松潘县| 吉隆县| 朔州市| 云霄县| 临桂县| 泰和县| 望江县| 吴江市|