程雨菲 朱曉巖 馬愛軍 潘旭東
[摘要] 目的 探討褐藻糖膠對(duì)高脂喂養(yǎng)的ApoE-/-小鼠頸動(dòng)脈粥樣硬化易損斑塊模型的作用及Nod樣受體蛋白3(NLRP3)炎癥通路蛋白表達(dá)的影響。方法 雄性ApoE-/-小鼠36只,隨機(jī)分為對(duì)照組(普通飲食)、模型組(頸動(dòng)脈套管+高脂飲食+生理鹽水)和褐藻糖膠組(頸動(dòng)脈套管+高脂飲食+褐藻糖膠),每組12只。8周后檢測(cè)各組小鼠血脂水平,采用蘇木精-伊紅(HE)染色方法觀察小鼠右側(cè)頸總動(dòng)脈病理改變,ELISA法測(cè)定炎性因子白細(xì)胞介素-1β(IL-1β)、白細(xì)胞介素-6(IL-6)和腫瘤壞死因子α(TNF-α)表達(dá)水平,Western Blot方法檢測(cè)頸動(dòng)脈粥樣硬化斑塊中NLRP3、半胱氨酸天冬氨酸酶-1(Caspase-1)、IL-1β蛋白表達(dá)水平。結(jié)果 與模型組比較,褐藻糖膠組小鼠血脂水平明顯降低,頸動(dòng)脈粥樣硬化易損斑塊明顯減少,IL-1β、IL-6、TNF-α表達(dá)降低,差異均有顯著性(F=8.31~190.73,P<0.05)。模型組頸動(dòng)脈粥樣硬化斑塊中NLRP3、Caspase-1、IL-1β蛋白表達(dá)較對(duì)照組顯著升高,而褐藻糖膠組各蛋白表達(dá)較模型組下降(F=50.22~120.59,P<0.05)。結(jié)論 褐藻糖膠能夠通過下調(diào)NLRP3炎性小體通路抑制炎癥而發(fā)揮抗頸動(dòng)脈粥樣硬化作用。
[關(guān)鍵詞] 褐藻糖膠;斑塊,動(dòng)脈粥樣硬化;NLR家族,熱蛋白結(jié)構(gòu)域包含蛋白3
[中圖分類號(hào)] R543.5 ?[文獻(xiàn)標(biāo)志碼] A ?[文章編號(hào)] 2096-5532(2020)05-0536-04
doi:10.11712/jms.2096-5532.2020.56.131 [開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID)]
[ABSTRACT] Objective To investigate the effect of fucoidan on carotid atherosclerotic vulnerable plaques and expression of Nod-like receptor family, pyrin domain-containing protein 3 (NLRP3)-related inflammatory pathway proteins in ApoE-/- mice fed with high-fat diet. ?Methods A total of 36 male ApoE-/- mice were randomly divided into control group (normal diet), model group (carotid collar+high-fat diet+normal saline), and fucoidan group (carotid collar+high-fat diet+fucoidan), with 12 mice in each group. After 8 weeks, blood lipid levels were measured; hematoxylin-eosin staining was used to observe the pathological changes of the right common carotid artery; ELISA was used to measure the levels of the inflammatory factors interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α); Western Blot was used to measure the protein expression of NLRP3, Caspase-1, and IL-1β in atherosclerotic plaques. Results Compared with the model group, the fucoidan group had significant reductions in blood lipid levels, carotid atherosclerotic vulnerable plaques, and expression of IL-1β, IL-6, and TNF-α (F=8.31-190.73,P<0.05). Compared with the control group, the model group had significant increases in the protein expression of NLRP3, Caspase-1, and IL-1β in carotid atherosclerotic plaques, and compared with the model group, the fucoidan group had significant reductions in the expression of these proteins (F=50.22-120.59,P<0.05). ?Conclusion Fucoidan can effectively atte-nuate carotid atherosclerosis by downregulating the NLRP3 inflammasome pathway.
[KEY WORDS] fucoidan; plaque, atherosclerotic; NLR family, pyrin domain-containing 3 protein
缺血性腦卒中是威脅人類生命的主要疾病之一[1],其主要危險(xiǎn)因素是頸動(dòng)脈粥樣硬化[2]。有研究表明,頸動(dòng)脈粥樣硬化是一種緩慢發(fā)展的免疫炎癥反應(yīng)過程[3],從粥樣硬化斑塊形成、發(fā)展至斑塊破裂,多種炎癥細(xì)胞和炎癥因子參與其中[4]。因此,探討抑制炎癥反應(yīng)的干預(yù)措施以控制動(dòng)脈粥樣硬化發(fā)生發(fā)展,對(duì)治療缺血性腦卒中具有重要意義。褐藻糖膠是海洋類褐藻植物中一種特有的多糖,有研究表明褐藻糖膠能夠調(diào)節(jié)脂多糖(LPS)誘導(dǎo)的巨噬細(xì)胞炎癥因子釋放,抑制核轉(zhuǎn)錄因子κB(NF-κB)活化而反應(yīng)性抑制促炎基因表達(dá)[5],但其對(duì)頸動(dòng)脈易損斑塊的作用及具體機(jī)制尚未有研究。Nod樣受體蛋白3(NLRP3)在動(dòng)脈粥樣硬化發(fā)生發(fā)展過程中具有重要作用[6-8],NLRP3基因敲除小鼠動(dòng)脈粥樣硬化斑塊及炎癥因子白細(xì)胞介素-1β(IL-1β)分泌明顯降低[9]。本實(shí)驗(yàn)通過構(gòu)建高脂喂養(yǎng)的ApoE-/-小鼠頸動(dòng)脈粥樣硬化易損斑塊模型,觀察褐藻糖膠對(duì)頸動(dòng)脈斑塊NLRP3炎性小體相關(guān)蛋白表達(dá)影響,探討褐藻糖膠對(duì)頸動(dòng)脈粥樣硬化的作用及其機(jī)制。
1 材料和方法
1.1 實(shí)驗(yàn)材料
褐藻糖膠(Sigma-Aldrich公司),用0.22 mm孔徑過濾器進(jìn)行過濾,并在-20 ℃條件下保存為褐藻糖膠提取物(10 g/L),直至使用。6周齡大小C57BL/6背景ApoE-/-基因敲除雄性小鼠(北京Vital River公司)36只,體質(zhì)量為18~22 g,標(biāo)準(zhǔn)條件下飼養(yǎng)于青島大學(xué)醫(yī)學(xué)部實(shí)驗(yàn)動(dòng)物中心,自由進(jìn)食、飲水,每籠3只,適應(yīng)性喂養(yǎng)2周后用于實(shí)驗(yàn)。NLRP3、半胱氨酸天冬氨酸酶-1(Caspase-1)、IL-1β(CST公司),ELISA檢測(cè)試劑盒(eBioscience公司),ECL顯影液(Millipore公司)。
1.2 動(dòng)物分組及處理
將36只小鼠隨機(jī)分成對(duì)照組、模型組、褐藻糖膠組(實(shí)驗(yàn)組),每組12只。模型組、褐藻糖膠組小鼠于右側(cè)頸總動(dòng)脈插入頸動(dòng)脈套管,并給予高脂飼料(每100.00 g飼料含膽固醇0.25 g、脂肪15.00 g)喂養(yǎng)制備小鼠頸動(dòng)脈粥樣硬化斑塊模型[10]。對(duì)照組不手術(shù),給予普通飼料喂養(yǎng)。模型制備后第4周褐藻糖膠組小鼠給予褐藻糖膠30 mg/(kg·d)腹腔注射,對(duì)照組及模型組腹腔注射等量生理鹽水,共注射4周。所有動(dòng)物研究經(jīng)青島大學(xué)附屬醫(yī)院實(shí)驗(yàn)動(dòng)物管理委員會(huì)批準(zhǔn),并遵循美國(guó)國(guó)立衛(wèi)生研究院修訂的《實(shí)驗(yàn)動(dòng)物管理和使用指南》[11]。
1.3 檢測(cè)指標(biāo)及方法
1.3.1 標(biāo)本采集 小鼠禁食12 h(正常飲水),腹腔注射100 g/L水合氯醛(3 mL/kg)麻醉,內(nèi)眥動(dòng)脈取血;處死小鼠后固定于鼠板,沿頸部正中線剪開皮膚,暴露右側(cè)頸總動(dòng)脈,然后剪下套管兩端長(zhǎng)度約0.5 cm血管。
1.3.2 血脂測(cè)定 取小鼠內(nèi)眥動(dòng)脈血約3 mL,3 000 r/min離心取上清,測(cè)定總膽固醇(TC)、三酰甘油(TG)、低密度脂蛋白膽固醇(LDL)水平。
1.3.3 病理觀察 將離體的右側(cè)頸總動(dòng)脈用40 g/L多聚甲醛固定,乙醇脫水、浸蠟包埋、切片,蘇木精-伊紅(HE)染色,光鏡下觀察血管動(dòng)脈粥樣硬化形成情況。1.3.4 血清IL-1β、白細(xì)胞介素-6(IL-6)、腫瘤壞死因子α(TNF-α)水平檢測(cè) 采用ELISA方法分別檢測(cè)血清中IL-1β、IL-6、TNF-α水平,按試劑盒說明書操作。
1.3.5 頸動(dòng)脈粥樣硬化斑塊組織NLRP3、Caspase-1、IL-1β水平測(cè)定 應(yīng)用Western Blot方法。用RIPA裂解液裂解頸動(dòng)脈組織,BCA法測(cè)定蛋白質(zhì)含量,SDS-PAGE電泳分離蛋白,然后轉(zhuǎn)到PVDF膜上。室溫封閉后2 h后與一抗(1∶1 000)4 ℃孵育過夜。用TBST洗滌后,加二抗在室溫下孵育1 h,ECL顯影。應(yīng)用圖像分析軟件對(duì)圖像進(jìn)行分析,以目的條帶與GAPDH的灰度值比值表示蛋白相對(duì)表達(dá)量。
1.4 統(tǒng)計(jì)學(xué)處理
采用SPSS 19.0軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,計(jì)量資料結(jié)果以±s表示,多組間比較采用單因素方差分析(one-way ANOVA),組內(nèi)兩兩比較采用LSD法。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié) ?果
2.1 各組小鼠血清脂質(zhì)水平比較
模型組血清TC、TG、LDL水平與對(duì)照組比較明顯升高,而褐藻糖膠組血清TC、TG、LDL水平較模型組明顯降低,差異有統(tǒng)計(jì)學(xué)意義(F=8.31~126.25,P<0.05)。見表1。
2.2 各組小鼠頸動(dòng)脈粥樣硬化易損斑塊形成比較
光鏡下可見,對(duì)照組小鼠血管未見明顯粥樣斑塊,管壁3層結(jié)構(gòu)明顯,內(nèi)膜完整;模型組小鼠頸動(dòng)脈內(nèi)見明顯粥樣硬化斑塊形成,斑塊內(nèi)見泡沫細(xì)胞浸潤(rùn),部分破裂,血栓形成;而褐藻糖膠組小鼠頸動(dòng)脈內(nèi)粥樣斑塊明顯減輕,泡沫細(xì)胞減少。見圖1。
2.3 各組小鼠血清炎癥因子水平比較
模型組小鼠血清炎癥因子IL-1β、IL-6、TNF-α表達(dá)較對(duì)照組升高,褐藻糖膠組各血清炎癥因子水平較模型組下降,差異有統(tǒng)計(jì)學(xué)意義(F=60.21~190.73,P<0.05)。見表2。
2.4 各組NLRP3炎性小體通路相關(guān)蛋白表達(dá)比較
與對(duì)照組比較,模型組小鼠頸動(dòng)脈粥樣硬化易損斑塊中NLRP3、Caspase-1、IL-1β的表達(dá)明顯增高;與模型組比較,褐藻糖膠組NLRP3、Caspase-1、IL-1β表達(dá)降低,差異有顯著性(F=50.22~120.59,P<0.05)。見圖2、表3。
3 討 ?論
炎癥在動(dòng)脈粥樣硬化發(fā)生和發(fā)展以及血栓形成中起著重要的作用[3]。褐藻糖膠是以L-褐藻糖為基礎(chǔ)的多糖,具有多種生物學(xué)功能,包括抗炎、抗血管生成、抗凝血、抗腫瘤等,是天然海洋藥物研究的熱點(diǎn)[12-14]。然而,褐藻糖膠在動(dòng)脈粥樣硬化中的作用及其機(jī)制尚不清楚。本文利用頸動(dòng)脈套管合并高脂飼料飼養(yǎng)構(gòu)建ApoE-/-小鼠頸動(dòng)脈粥樣硬化易損斑塊模型,探討褐藻糖膠對(duì)ApoE-/-小鼠頸動(dòng)脈粥樣硬化的作用及其機(jī)制。
有研究結(jié)果顯示,褐藻糖膠可以調(diào)節(jié)高脂喂養(yǎng)ApoEshl小鼠血脂水平及動(dòng)脈粥樣硬化進(jìn)展[15]。本文結(jié)果與其一致。本文結(jié)果顯示,褐藻糖膠干預(yù)后小鼠血清TC、TG和LDL水平較模型組明顯降低;病理觀察顯示,與對(duì)照組相比,模型組頸動(dòng)脈血管內(nèi)壁有大量脂質(zhì)及泡沫細(xì)胞堆積,血管腔嚴(yán)重堵塞,而褐藻糖膠組頸動(dòng)脈血管內(nèi)壁斑塊面積及脂滴明顯減少,提示褐藻糖膠能夠緩解小鼠頸動(dòng)脈粥樣硬化易損斑塊的發(fā)生和進(jìn)展。TNF-α介導(dǎo)全身炎癥和免疫反應(yīng),在慢性炎癥性疾病的發(fā)生發(fā)展過程中均發(fā)揮作用[16-17]。IL-6及IL-1β都是促炎性細(xì)胞因子,可刺激炎癥的產(chǎn)生,促進(jìn)免疫性疾病的發(fā)生,在動(dòng)脈粥樣硬化過程中起到重要作用[18-20]。有研究顯示,褐藻糖膠能夠調(diào)節(jié)LPS誘導(dǎo)的巨噬細(xì)胞釋放TNF-α、IL-1β、IL-6等炎癥因子[21]。本文ELISA檢測(cè)顯示,褐藻糖膠能夠明顯降低ApoE-/-小鼠炎癥因子IL-1β、IL-6、TNF-α分泌。表明褐藻糖膠能夠通過抑制炎癥反應(yīng)而發(fā)揮抗動(dòng)脈粥樣硬化作用。
研究表明,褐藻糖膠能夠影響炎癥因子IL-1β表達(dá),而在眾多調(diào)節(jié)炎性因子IL-1β成熟和分泌的通路中,NLRP3炎性小體依賴性的經(jīng)典通路尤為重要[7,20]。NLRP3炎癥小體是NLRs家族中的一員,是由感受蛋白NLRP3、銜接蛋白凋亡相關(guān)斑點(diǎn)樣蛋白ASC和效應(yīng)蛋白激酶Caspase-1等組成的復(fù)合物[22-23]。已有研究顯示,膽固醇結(jié)晶、氧化低密度脂蛋白、血流動(dòng)力異常都會(huì)激活單核巨噬細(xì)胞NLRP3炎癥小體,進(jìn)而誘導(dǎo)Caspase-1介導(dǎo)的炎性細(xì)胞因子IL-1β的成熟分泌,導(dǎo)致心腦血管疾病和事件的發(fā)生[24]。因此,抑制NLRP3炎性小體能夠控制動(dòng)脈粥樣硬化的發(fā)展,穩(wěn)定動(dòng)脈粥樣硬化斑塊,降低因不穩(wěn)定斑塊造成的缺血性腦卒中的風(fēng)險(xiǎn)。本文采用Western Blot方法檢測(cè)小鼠頸動(dòng)脈粥樣硬化斑塊組織NLRP3炎性小體及IL-1β水平,結(jié)果顯示,與模型組相比較,褐藻糖膠組NLRP3蛋白的表達(dá)降低,Caspase-1蛋白及下游炎性細(xì)胞因子IL-1β表達(dá)減少,一定程度上表明褐藻糖膠能夠通過下調(diào)NLRP3炎性小體相關(guān)蛋白表達(dá)而發(fā)揮抗炎作用。
綜上所述,褐藻糖膠能夠通過下調(diào)NLRP3炎性小體通路抑制炎癥而發(fā)揮抗頸動(dòng)脈粥樣硬化作用。本文結(jié)果可為抗動(dòng)脈粥樣硬化輔助治療提供候選藥物。
[參考文獻(xiàn)]
[1] LOPEZ A. Measuring the global burden of disease[J]. The New England Journal of Medicine, 2013,369(5):448-457.
[2] GBD 2016 Stroke Collaborators. Global, regional, and national burden of neurological disorders,1990—2016: a systematic ana-lysis for the Global Burden of Disease Study 2016[J]. The Lancet Neurology, 2019,18(5):459-480.
[3] HANSSON G K, HERMANSSON A. The immune system in atherosclerosis[J]. Nat Immunol, 2011,12(3):204-212.
[4] TOUSOULIS D, OIKONOMOU E, ECONOMOU E K, et al. Inflammatory cytokines in atherosclerosis:current therapeutic approaches[J]. Eur Heart J, 2016,37(22):1723-1732.
[5] ASANKA SANJEEWA K K, JAYAWARDENA T U, KIM H S, et al. Fucoidan isolated from Padina commersonii inhibit LPS-induced inflammation in macrophages blocking TLR/NF-κB signal pathway[J]. Carbohydr Polym, 2019,224:115195.
[6] DUEWELL P, KONO H, RAYNER K J, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals[J]. Nature, 2010,464(7293):1357-1361.
[7] HOSEINI Z, SEPAHVAND F, RASHIDI B, et al. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis[J]. J Cell Physiol, 2018,233(3):2116-2132.
[8] MANGAN M S J, OLHAVA E J, ROUSH W R, et al. Targeting the NLRP3 inflammasome in inflammatory diseases[J]. Nat Rev Drug Discov, 2018,17(9):688-695.
[9] ZHENG F, XING S S, GONG Z S, et al. Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice[J]. Mediat Inflamm, 2014(4):507-518.
[10] SUDIRMAN S, ONG A D, CHANG H W, et al. Effect of fucoidan on anterior cruciate ligament transection and medial meniscectomy induced osteoarthritis in high-fat diet-induced obese rats[J]. Nutrients, 2018,10(6):686.
[11] LIBBY P, LICHTMAN A H, HANSSON G K. Immune effector mechanisms implicated in atherosclerosis:from mice to humans[J]. Immunity, 2013,38(6):1092-1104.
[12] YANG X, WANG S, TRANGLE S S, et al. Investigation of different molecular weight fucoidan fractions derived from new zealand Undaria pinnatifida in combination with GroA therapy in prostate cancer cell lines[J]. Marine Drugs, 2018,16(11):454.
[13] LI X J, YE Q F. Fucoidan reduces inflammatory response in a rat model of hepatic ischemia-reperfusion injury[J]. Can J Physiol Pharmacol, 2015,93(11):999-1005.
[14] PARK J, CHA J D, CHOI K M, et al. Fucoidan inhibits LPS-induced inflammation in vitro and during the acute response in vivo[J]. International Immunopharmacology, 2017,43:91-98.
[15] YOKOTA T, NOMURA K, NAGASHIMA M, et al. Fucoidan alleviates high-fat diet-induced dyslipidemia and atherosclerosis in ApoE(shl) mice deficient in apolipoprotein E expression[J]. J Nutr Biochem, 2016,32(3):46-54.
[16] TAY C, LIU Y H, HOSSEINI H, et al. B-cell-specific depletion of tumour necrosis factor alpha inhibits atherosclerosis development and plaque vulnerability to rupture by reducing cell death and inflammation[J]. Cardiovascular Research, 2016,111(4):385-397.
[17] OBEROI R, VLACIL A K, SCHUETT J, et al. Anti-tumor necrosis factor-α therapy increases plaque burden in a mouse model of experimental atherosclerosis[J]. Atherosclerosis, 2018,27(7):80-89.
[18] LARSSON P T, HALLERSTAM S, ROSFORS S, et al. Circulating markers of inflammation are related to carotid artery atherosclerosis[J]. Int Angiol: a J Int Union Angiol, 2005,24(1):43-51.
[19] SONG L, SCHINDLER C. IL-6 and the acute phase response in murine atherosclerosis[J]. Atherosclerosis, 2004,177(1):43-51.
[20] GREBE A, HOSS F, LATZ E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis[J]. Circ Res, 2018,122(12):1722-1740.
[21] YU H H, CHENGCHUAN KO E, CHANG C L, et al. Fucoidan inhibits radiation-induced pneumonitis and lung fibrosis by reducing inflammatory cytokine expression in lung tissues[J]. Marine Drugs, 2018,16(10):392.
[22] DAVIS B K, WEN H T, TING J P Y. The inflammasome NLRS in immunity, inflammation, and associated diseases[J]. Annu Rev Immunol, 2011,29:707-735.
[23] SWANSON K V, DENG M, TING J P Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019,19(8):477-489.
[24] ABDERRAZAK A, COUCHIE D, MAHMOOD D F, et al. Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet [J]. Circulation, 2015,131(12):1061-1070.
(本文編輯 黃建鄉(xiāng))