何樂平 張蕾
摘要 作為細(xì)胞第二信使,Ca2+協(xié)調(diào)著植物對各種生理反應(yīng)的感知。鈣離子傳感器向下游傳遞鈣信號并引發(fā)級聯(lián)反應(yīng),調(diào)控植物生長發(fā)育以及對環(huán)境的響應(yīng)等過程。鈣依賴性蛋白激酶在Ca2+介導(dǎo)的信號轉(zhuǎn)導(dǎo)中起重要作用。綜述了近年來植物CDPKs/CRKs相關(guān)研究進(jìn)展,包括分子結(jié)構(gòu)和作用機(jī)制、表達(dá)模式、亞細(xì)胞定位和生物學(xué)功能,旨在為CDPKs/CRKs相關(guān)研究提供參考。
關(guān)鍵詞 鈣依賴性蛋白激酶;鈣依賴性蛋白激酶相關(guān)蛋白激酶;調(diào)控機(jī)制;生物學(xué)功能
中圖分類號 Q946 ?文獻(xiàn)標(biāo)識碼 A ?文章編號 0517-6611(2020)18-0026-05
Abstract As a second messenger in cell, Ca2+ coordinates the perception of plant for a variety of physiological reaction. The calcium ion sensor transmits calcium signal and triggers a cascade reaction to regulate plant growth and development. Calcium dependent protein kinases play important roles in Ca2+ mediated signal transduction. This paper reviewed the related research progress in plant CDPKs and CRKs, including molecular structure and mechanism, expression patterns, subcellular localizations and biological functions. Hence, the purpose of this review is to provide reference for related research on CDPKs/CRKs.
Key words Calciumdependent protein kinases;CDPKrelated kinases;Regulation mechanism;Biology function
Ca2+作為第二信使,協(xié)調(diào)植物對內(nèi)外界多種生理反應(yīng)的感知[1]。Ca2+傳感器接受鈣信號,將化學(xué)信號轉(zhuǎn)化為細(xì)胞的生理生化反應(yīng)。植物主要有4種Ca2+傳感器:鈣調(diào)素(Calmodulin,CaM)及其類似蛋白(CaMlike proteins,CMLs)、鈣依賴性蛋白激酶(Calciumdependent protein kinases,CDPKs or CPKs)及其相關(guān)的蛋白激酶(CDPKrelated kinases,CRKs)、鈣調(diào)磷酸酶B類似蛋白(Calcineurin Blike protein,CBL)、鈣和鈣調(diào)素依賴性蛋白激酶(calciumand calmodulin-dependent protein kinases,CCaMKs)[2]。目前對CDPKs的研究較為深入,研究表明CDPKs/CRKs存在復(fù)雜的調(diào)控模式,在植物發(fā)育及多種脅迫響應(yīng)中均扮演重要角色。筆者綜述了近年來植物CDPKs/CRKs相關(guān)研究進(jìn)展,旨在為CDPKs/CRKs相關(guān)研究提供參考。
1 CDPKs/CRKs的分子結(jié)構(gòu)和作用機(jī)制
CDPKs存在于植物、綠藻和單細(xì)胞原生生物中[3]。擬南芥、水稻、玉米和棉花中分別含有34、31、40和41個CDPK基因[4-8];擬南芥、水稻、白楊、番茄和辣椒中分別含有8、5、9、6和5個CRK基因[4,9-12]。對于CDPKs和CRKs分子結(jié)構(gòu)以及激酶活性調(diào)控的研究主要集中在擬南芥。
CDPKs蛋白包含4個結(jié)構(gòu)域:N端可變結(jié)構(gòu)域(variable N-terminal domain,VNTD)、Ser/Thr蛋白激酶域(Ser/Thr protein kinase domain,PKD)、自抑制連接域(junction domain,JD)和C端具有EF手型結(jié)構(gòu)的類鈣調(diào)素調(diào)控結(jié)構(gòu)域(CaM-like regulatory domain,CaMLD)[13-15]。CRKs C端的EF手型結(jié)構(gòu)已經(jīng)退化,其他結(jié)構(gòu)與CDPKs相似[16]。CDPKs/CRKs的蛋白結(jié)構(gòu)見圖 1a。
CDPKs的N端具有較高比例的脯氨酸、谷氨酰胺、絲氨酸和蘇氨酸(PEST)序列,這些序列可以進(jìn)行快速的蛋白降解[14]。VNTD區(qū)氨基酸序列多樣,長度各異,保守性低。擬南芥CDPKs的VNTD區(qū)序列長度最短只有25個氨基酸,最長達(dá)180個氨基酸[17]。VNTD區(qū)參與底物特異性識別過程。NtCDPK1與RSG互作,而AtCPK9不與RSG互作,但含有來源于NtCDPK1的VNTD區(qū)的重組AtCPK9可與RSG互作,這表明NtCDPK1的VNTD區(qū)在特異性識別底物RSG的過程中發(fā)揮了重要作用[18]。研究發(fā)現(xiàn)多數(shù)CDPKs N端具有參與蛋白膜結(jié)合的豆蔻?;蜃貦磅;稽c(diǎn),暗示VNTD區(qū)參與CDPKs膜結(jié)合過程[19]。
CDPKs蛋白的PKD區(qū)保守性高,含有Ser/Thr磷酸化位點(diǎn),關(guān)鍵氨基酸突變往往會使激酶失活[4]。PKD區(qū)分為2個球形結(jié)構(gòu),分別是N-lobe和C-lobe,前者對Ca2+的親和性低于后者[13]。CRKs除含有Ser/Thr激酶活性,還具有極高的酪氨酸自磷酸化活性且可以磷酸化底物的酪氨酸位點(diǎn)[20]。
CDPKs上的JD區(qū)保守性高,主要作為假底物結(jié)合在CDPKs的激酶區(qū)[14]。
正常情況下,JD區(qū)與C-lobe的催化位點(diǎn)結(jié)合,作為假底物維持CDPKs處于低基礎(chǔ)激酶活性狀態(tài)。當(dāng)植物受到光照、低溫或高溫、高鹽、干旱、激素甚至病原體等刺激時,細(xì)胞內(nèi)形成特異性Ca2+信號,Ca2+與EF手型結(jié)構(gòu)直接結(jié)合,改變了CDPKs的構(gòu)象,暴露出激酶活性位點(diǎn),激活激酶活性(圖1b);此外,PKD區(qū)結(jié)合ATP或GTP并轉(zhuǎn)移γ-磷酸基團(tuán)到受體羥基殘基,激活底物,從而引發(fā)植物多種生理反應(yīng)[15,21-22]。近年研究顯示在部分CDPKs上具有CaM結(jié)合位點(diǎn)并在體外試驗(yàn)中證明了二者的相互作用,體外激酶試驗(yàn)顯示CaM可抑制這一類CDPKs Ca2+依賴性的激酶活性[23]。
大部分CRKs C端的EF手型結(jié)構(gòu)退化,因此不受Ca2+直接調(diào)控,但由于部分CRKs具有CaM結(jié)合區(qū),所以CRKs的激酶活性會受到Ca2+和CaM的協(xié)調(diào)控制[24-25]。
磷酸化作用是影響CDPKs/CRKs激酶活性的另一個重要因素。AtCPK28第228和318 位的絲氨酸位點(diǎn)突變使其不能發(fā)生自磷酸化作用,降低了激酶活性。除典型的Ser/Thr磷酸化位點(diǎn),CRKs和第Ⅳ類CDPKs還具有Tyr磷酸化位點(diǎn)[23,26]。
CDPKs/CRKs可以被泛素化修飾。Teng等[27]、樊莉娟等[28]、鄧亞男等[29]研究結(jié)果顯示,擬南芥中CRK5的蛋白水平通過DWD蛋白介導(dǎo)被泛素化降解;AtTR1可以對AtCPK28和AtCPK32進(jìn)行體外多泛素化修飾;過表達(dá)E3泛素連接酶ABRv1通過單泛素化AtCPK3,可以提高擬南芥耐旱性[27-29]。
2 CDPKs/CRKs的表達(dá)模式和亞細(xì)胞定位
轉(zhuǎn)錄組分析結(jié)果顯示CDPKs具有不同的表達(dá)模式,表明CDPKs在植物細(xì)胞中功能的多樣性[6]。一些CDPKs呈現(xiàn)泛表達(dá)模式,而另一些CDPKs則特異性表達(dá)在植物的某些器官或組織中。如NtCDPK1在煙草根、莖、花中表達(dá),葉中不表達(dá)[30];AtCPK12在擬南芥大部分組織包括根、莖、葉等均有表達(dá),但在種子中無法檢測到[31];AtCPK17/20/34僅在花粉中表達(dá),調(diào)控花粉管生長[32-33];AtCPK3/6則在保衛(wèi)細(xì)胞中大量表達(dá),調(diào)節(jié)氣孔運(yùn)動[34];BnCDPK1主要在油菜葉片中表達(dá),油菜花中表達(dá)量很低,種子等其他組織表達(dá)量適中[35]。CRKs的表達(dá)模式也因其種類而異。番茄LeCRK1在葉、莖 、花中均有表達(dá),但在成熟果實(shí)中表達(dá)量最高[36]。qRT-PCR結(jié)果表明AtCRK5在花中表達(dá)量最高,莖中表達(dá)量最低[37]。
CDPKs/CRKs在細(xì)胞中的定位與其功能密切相關(guān)。CDPKs的亞細(xì)胞定位模式多樣,包括細(xì)胞質(zhì)、細(xì)胞核、細(xì)胞膜、內(nèi)質(zhì)網(wǎng)、過氧化物酶體、脂質(zhì)體等,暗示其功能的多樣性[6,38]。多數(shù)CDPKs在細(xì)胞膜處均有分布,與其N端的?;揎椨嘘P(guān),其中棕櫚?;稽c(diǎn)與細(xì)胞膜形成可逆的穩(wěn)定結(jié)合,豆蔻酰化位點(diǎn)形成的則是不可逆的松散結(jié)合[39]。豆蔻酰化或棕櫚?;稽c(diǎn)的突變會改變CDPKs的膜定位。AtCPK16定位于細(xì)胞膜,當(dāng)發(fā)生G2A突變后,阻斷了該蛋白發(fā)生豆蔻?;揎?,AtCPK16則定位于葉綠體;當(dāng)該蛋白發(fā)生C4S突變阻斷其發(fā)生棕櫚?;揎椇?,則表現(xiàn)為核定位[40];AtCPK3定位于細(xì)胞膜,G2A位點(diǎn)突變阻斷其發(fā)生豆蔻?;揎?,在細(xì)胞質(zhì)中也可以檢測到點(diǎn)突變的AtCPK3[41]。部分CRKs是細(xì)胞核或細(xì)胞質(zhì)定位,其他均為膜定位。目前研究表明所有AtCRKs均具有N端酰基化位點(diǎn)[6],除AtCRK6的亞細(xì)胞定位尚不清楚,其他7個AtCRKs在細(xì)胞膜處均有分布[42-43]。
3 14-3-3蛋白對CDPKs/CRKs的調(diào)控
CDPKs可以與脂質(zhì)或14-3-3蛋白相互作用來調(diào)節(jié)激酶活性。脂質(zhì)可以增加CDPKs對底物的親和性[44],而CDPKs與14-3-3蛋白的作用關(guān)系更為復(fù)雜。一方面,14-3-3蛋白可以直接調(diào)節(jié)CDPKs激酶活性,調(diào)控其穩(wěn)定性。研究表明14-3-3蛋白可以在體外促進(jìn)AtCPK1/21/23的激酶活性但不影響其鈣敏感性,同時抑制AtCPK3在細(xì)胞內(nèi)的降解[45-47]。另一方面,14-3-3蛋白也可以作為CDPKs的底物發(fā)揮作用[48-49]。
4 CDPKs的生物學(xué)功能
4.1 CDPKs調(diào)控植物生長發(fā)育
研究表明CDPKs參與調(diào)控植物根、莖、葉的發(fā)育。MtCDPK1對于苜蓿根毛的正常生長必不可少,抑制 MtCDPK1基因表達(dá)會導(dǎo)致根長和根毛長度變短[50];OsCDPK5和OsCDPK13在根皮層細(xì)胞大量表達(dá),誘導(dǎo)OsRBOHH介導(dǎo)的ROS生成,保證水稻在淹水條件下根系通氣組織正常形成[51]。同時沉默NaCDPK4和NaCDPK5導(dǎo)致轉(zhuǎn)基因植株莖發(fā)育異常,生長受阻[52];AtCPK28在維管和分生組織大量表達(dá),參與調(diào)控莖基部節(jié)間次生生長和木質(zhì)部發(fā)育,cpk28突變體嚴(yán)重矮化[26]。敲除煙草NtCDPK1基因?qū)е滦律~片細(xì)胞形態(tài)異常和過早死亡[53];AtCPK3磷酸化的RhoGDI1通過調(diào)節(jié)ROP信號通路來調(diào)控?cái)M南芥幼苗形態(tài)和葉表皮細(xì)胞發(fā)育[54]。
CDPKs參與調(diào)控植物開花、花粉萌發(fā)及花粉管生長、種子發(fā)育等過程。AtCPK33與bZIP轉(zhuǎn)錄因子FD相互作用并磷酸化FD是成花素復(fù)合體形成的關(guān)鍵,AtCPK33功能缺陷導(dǎo)致開花延遲[55]。AtCPK2/4/6/11/14/16/17/20/24/26/32/34在花粉中表達(dá)[15,56-57],其中 AtCPK11/24通過抑制SPIK介導(dǎo)的K+內(nèi)流抑制花粉管生長[58];AtCPK2/6/20通過激活SLAH3、ALMT12/13/14介導(dǎo)的NO3-和蘋果酸鹽外流促進(jìn)花粉管生長[33,59];Atcpk17/Atcpk34雙突變體花粉管頂端極化生長存在缺陷[32,60];過表達(dá)AtCPK32引起花粉管尖端Ca2+濃度增加并伴隨花粉管尖端膨脹[61]。OsCPK21-RNAi轉(zhuǎn)基因植株在花藥發(fā)育第10期時花粉發(fā)育嚴(yán)重缺陷,花粉細(xì)胞死亡[62]。OsCPK31過表達(dá)轉(zhuǎn)基因植株種子灌漿期提前,成熟期縮短,表明OsCPK31對水稻種子的灌漿和成熟有重要作用[63];OsCDPK1在種子發(fā)育中期大量表達(dá),負(fù)調(diào)控直鏈淀粉含量、胚乳透明度和種子大小[64]。
4.2 CDPKs參與調(diào)控植物激素信號通路
CDPKs參與調(diào)控赤霉素(Gibberellin,GA)生物合成或信號通路。CDPKs參與GA合成主要是通過影響GA20-氧化酶(GA20ox)和GA3-羥基化酶(GA3ox)來調(diào)控活性GA的合成[65]。AtCPK28促進(jìn)GA3ox1合成,增加活性GA水平,正調(diào)控GA穩(wěn)態(tài)[26]。NtCDPK1使bZIP轉(zhuǎn)錄因子RSG失活,下調(diào)GA20ox1,負(fù)調(diào)控GA穩(wěn)態(tài)[66-67]。OsCDPK1負(fù)調(diào)控GA20ox1和GA3ox2的表達(dá),抑制GA合成[68]。NtCDPK1與14-3-3蛋白的非磷酸化基序結(jié)合,調(diào)節(jié)葉鞘生長[18]。此外,外源GA處理后,OsCDPK13、NtCPK4、IiCDPK2表達(dá)均上調(diào)[69-71]。
CDPKs參與生長素轉(zhuǎn)運(yùn)過程。AtCPK3/4磷酸化馬鈴薯糖蛋白相關(guān)磷脂酶AtPLA IVA和IVB調(diào)控生長素信號通路[72]。體外試驗(yàn)表明StCDPK1可以磷酸化生長素運(yùn)輸載體StPIN4從而調(diào)控生長素水平[73]。
CDPKs響應(yīng)乙烯信號并影響乙烯生物合成。StCDPK5可以被乙烯誘導(dǎo)表達(dá),在番茄花梗脫落過程中發(fā)揮重要作用[74]。AtCDPK16通過磷酸化ACC合成酶AtACS7,參與調(diào)控?cái)M南芥根的向重力性[75]。
CDPKs響應(yīng)茉莉酸(Jasmonic Acid,JA)信號并參與調(diào)控JA生物合成。NtCDPK4和NtCDPK5響應(yīng)JA信號,影響JA早期生物合成 [76]。Atcpk28突變體生長緩慢,JA相關(guān)基因表達(dá)量升高,JA代謝物增加[77]。
CDPKs參與ABA誘導(dǎo)的氣孔運(yùn)動和響應(yīng)ABA信號。AtCPK13主要在保衛(wèi)細(xì)胞表達(dá),響應(yīng)ABA信號,通過磷酸化并抑制2個K+內(nèi)流通道:AtKAT1和AtKAT2,使氣孔開放[78]。AtCPK6通過磷酸化ABA響應(yīng)元件結(jié)合因子,正調(diào)控ABA信號和耐旱性[79]。AtCPK9通過調(diào)控離子通道活性,負(fù)調(diào)控ABA介導(dǎo)的氣孔運(yùn)動[80]。OsCPK9/12/21已被證實(shí)可以響應(yīng)ABA信號[81-83]。
4.3 CDPKs參與植物生物脅迫反應(yīng)
植物進(jìn)化出了有效的免疫系統(tǒng)來抵御各種病原微生物的攻擊。在第一層防御中,病原微生物信號(microbe-associated molecular patterns,MAMPs)被植物細(xì)胞膜上的模式識別受體(pattern recognition receptors,PRRs)感知,引起機(jī)體免疫反應(yīng)(pattern-triggered immunity,PTI):ROS的增加或誘導(dǎo)致病相關(guān)基因表達(dá)等[84-85]。在PTI信號通路中,PRRs感知MAMPs會引發(fā)激酶介導(dǎo)的復(fù)雜信號反應(yīng),包括MAPK級聯(lián)反應(yīng)和CDPKs介導(dǎo)的信號轉(zhuǎn)導(dǎo)[86-87]。
過表達(dá)AtCPK1可誘導(dǎo)水楊酸積累和水楊酸調(diào)控的防御抗病基因的組成型表達(dá),從而對病原體感染具有廣譜保護(hù)作用[88]。當(dāng)病原體感染擬南芥時,AtCPK5被快速激活并磷酸化NADPH氧化酶AtrbohD,激活植物防御機(jī)制;AtCPK5在exo70B1介導(dǎo)的自身免疫中也發(fā)揮重要作用[89-90]。OsCPK18-OsMPK5通路抑制防御相關(guān)基因表達(dá),負(fù)調(diào)控水稻對稻瘟病的抗性,過表達(dá)OsCPK4可以提高水稻抗病性[91-92]。
4.4 CDPKs參與植物非生物脅迫反應(yīng)
研究表明,干旱、高溫、低溫、鹽脅迫均可引起CDPKs特異性表達(dá)[93]。通過對寒冷、干旱和鹽脅迫條件下的水稻進(jìn)行微陣列分析,發(fā)現(xiàn)6個OsCDPK基因(OsCPK4/10/12/13/15/21)表達(dá)上調(diào),1個(OsCPK1)表達(dá)下調(diào)[5,94]。
干旱引發(fā)的植物細(xì)胞反應(yīng)包括通過調(diào)節(jié)保衛(wèi)細(xì)胞來誘導(dǎo)ABA介導(dǎo)的氣孔運(yùn)動、通過積累滲透物質(zhì)調(diào)節(jié)滲透壓、通過ROS穩(wěn)態(tài)調(diào)節(jié)氧化損傷[95-96]。干旱條件下,OsCPK9過表達(dá)轉(zhuǎn)基因植株,通過調(diào)節(jié)滲透壓誘導(dǎo)氣孔關(guān)閉,提高花粉活性和小穗育性[82];OsCPK10通過調(diào)節(jié)過氧化氫(H2O2)酶的積累和脂質(zhì)過氧化水平,保護(hù)了細(xì)胞膜的完整性,提高了水稻對H2O2的解毒能力,增強(qiáng)了水稻的耐旱性[97]。
鹽脅迫通過積累Na+和Cl+導(dǎo)致胞內(nèi)離子不平衡,使植物發(fā)生氧化應(yīng)激反應(yīng),同時還會增加植物體內(nèi)ROS的產(chǎn)生[98]。AtCPK27和AtCPK12通過調(diào)節(jié)離子穩(wěn)態(tài)和ROS穩(wěn)態(tài)提高植株耐鹽性[99-100]。OsCPK21與OsGF14e相互作用并在Tyr-138位點(diǎn)磷酸化OsGF14e,通過對OsGF14e的轉(zhuǎn)錄后調(diào)控來響應(yīng)ABA信號和鹽脅迫[101]。ZmCPK11通過調(diào)節(jié)Na+和K+的體內(nèi)平衡以及穩(wěn)定光系統(tǒng)Ⅱ來提高轉(zhuǎn)基因擬南芥植株的耐鹽性[102]。
CDPKs參與植物響應(yīng)冷脅迫和熱激反應(yīng)。水稻OsCPK17以蔗糖合酶和質(zhì)膜固有蛋白為底物,是冷應(yīng)激反應(yīng)所必需的[103];OsCPK24通過Ca2+信號通路,抑制谷氨酰胺多辛(OsGrx10),使其維持較高的谷胱甘肽水平和磷酸化狀態(tài),正調(diào)控水稻對冷脅迫的響應(yīng)[104]。香蕉MaCDPK7是熱激誘導(dǎo)的果實(shí)成熟和冷脅迫的正調(diào)控因子[105]。
5 CRKs的生物學(xué)功能
CRKs在調(diào)控植物生長發(fā)育、響應(yīng)生物和非生物脅迫中發(fā)揮重要作用。
擬南芥crk5突變體根長和側(cè)根數(shù)目減少,根的向重力性改變。研究表明AtCRK5通過磷酸化PIN2參與根的向重力性生長[37]。此外,研究發(fā)現(xiàn)連續(xù)光照使擬南芥crk1突變體出現(xiàn)嚴(yán)重的表型缺陷(侏儒癥和萎黃病),暗示擬南芥CRK1可能參與了光調(diào)控的植物生長發(fā)育[42]。SlCRK6正調(diào)控番茄對Pst DC3000和核盤菌(Sclerotinia sclerotiorum)的調(diào)控[106]。
6 結(jié)語
截至目前,CDPKs的作用機(jī)制以及生物學(xué)功能等研究已相對成熟,但其底物的多樣性還有待進(jìn)一步發(fā)現(xiàn)。研究發(fā)現(xiàn)CDPKs與14-3-3蛋白間的調(diào)控關(guān)系十分復(fù)雜,但二者的交叉磷酸化調(diào)節(jié)機(jī)制以及這種調(diào)節(jié)作用對下游靶基因的影響還需要進(jìn)一步探究;同時,關(guān)于二者是如何保持信號的特異性并引起特異性應(yīng)答反應(yīng),目前也知之甚少,有望成為今后科學(xué)工作者致力研究的方向。
與CDPKs相比,CRKs生物學(xué)功能的信息非常有限。鑒于CRKs和CDPKs高度同源,希望該研究對CDPKs研究進(jìn)展的總結(jié),能夠?yàn)橄嚓P(guān)科研工作者研究CRKs的功能提供思路和方向。
參考文獻(xiàn)
[1] DODD A N,KUDLA J,SANDERS D.The language of calcium signaling[J].Annual review of plant biology,2010,61:593-620.
[2] XU W W,HUANG W C.Calciumdependent protein kinases in phytohormone signaling pathways[J].International journal molecular sciences,2017,18(11):2346-2361.
[3] HAMEL L P,SHEEN J,SEGUIN A.Ancient signals:Comparative genomics of green plant CDPKs[J].Trends in plant science,2014,19:79-89.
[4] HRABAK E M,CHAN C W,GRIBSKOV M,et al.The Arabidopsis CDPKSnRK superfamily of protein kinases[J].Plant physiology,2003,132(2):666-680.
[5] RAY S,AGARWAL P,ARORA R,et al.Expression analysis of calciumdependent protein kinase gene family during reproductive development and abiotic stress conditions in rice(Oryza sativa L.ssp.indica)[J].Molecular genetics and genomics,2007,278(5):493-505.
[6] BOUDSOCQ M,SHEEN J.CDPKs in immune and stress signaling[J].Trends in plant science,2013,18(1):30-40.
[7] MA P D,LIU J Y,YANG X D,et al.Genomewide identification of the maize calciumdependent protein kinase gene family[J].Applied biochemistry and biotechnology,2013,169(7):2111-2125.
[8] LI L B,YU D W,ZHAO F L,et al.Genomewide analysis of the calciumdependent protein kinase gene family in Gossypium raimondii[J].Journal of integrative agriculture,2015,14(1):29-41.
[9] ASANO T,TANAKA N,YANG G,et al.Genomewide identification of the rice calciumdependent protein kinase and its closely related kinase gene families:Comprehensive analysis of the CDPKs gene family in rice[J].Plant and cell physiology,2005,46(2):356-366.
[10] ZUO R,HU R B,CHAI G H,et al.Genomewide identification,classification,and expression analysis of CDPK and its closely related gene families in poplar(Populus trichocarpa)[J].Molecular biology reports,2013,40(3):2645-2662.
[11] WANG J P,XU Y P,MUNYAMPUNDU J P,et al.Calciumdependent protein kinase(CDPK)and CDPKrelated kinase(CRK)gene families in tomato:Genomewide identification and functional analyses in disease resistance[J].Molecular genetics and genomics,2016,291(2):661-676.
[12] CAI H Y,CHENG J B,YAN Y,et al.Genomewide identification and expression analysis of calciumdependent protein kinase and its closely related kinase genes in Capsicum annuum[J].Frontiers in plant science,2015,6:737.
[13] CHRISTODOULOU J,MALMENDAL A,HARPER J F,et al.Evidence for differing roles for each lobe of the calmodulinlike domain in a calciumdependent protein kinase[J].Journal of biological chemistry,2004,279(28):29092-29100.
[14] KLIMECKA M,MUSZYNSKA G.Structure and functions of plant calciumdependent protein kinases[J].Acta biochimica polonica,2007,54:219-233.
[15] DELORMEL T Y,BOUDSOCQ M.Properties and functions of calciumdependent protein kinases and their relatives in Arabidopsis thaliana[J].New phytologist,2019,224:585-604.
[16] HARPER J F,BRETON G,HARMON A.Decoding Ca2+ signals through plant protein kinases[J].Annual review of plant biology,2004,55(1):263-288.
[17] TAKAHASHI Y,ITO T.Structure and function of CDPK:A sensor responder of calcium[M]∥LUAN S.Coding and decoding of calcium signals in plants.Berlin:Springer,2011:129-146.
[18] ITO T,NAKATA M,F(xiàn)UKAZAWA J,et al.Phosphorylationindependent binding of 1433 to NtCDPK1 by a new mode[J].Plant signaling and behavior,2014,9(12):1-3.
[19] RUTSCHMANN F,STALDER U,PIOTROWSKI M,et al.LeCPKl,a calciumdependent protein kinase from tomato,Plasma membrane targeting and biochemical characterization[J].Plant physiology,2002,129(1):156-168.
[20] NEMOTO K,TAKEMORI N,SEKI M,et al.Members of the plant CRK superfamily are capable of transand autophosphorylation of tyrosine residues[J].The Journal of biological chemistry,2015,290(27):16665-16677.
[21] KUDLA J,BATISTIC O,HASHIMOTO K.Calcium signals:The lead currency of plant information processing[J].The plant cell,2010,22:541-563.
[22] LIESE A,ROMEIS T.Biochemical regulation of in vivo function of plant calciumdependent protein kinases(CDPK)[J].Biochimica et biophysica acta(BBA)molecular cell research,2013,1833(7):1582-1589.
[23] BENDER K W,BLACKBURN R K,MONAGHAN J,et al.Autophosphorylationbased calcium(Ca2+)sensitivity priming and Ca2+/calmodulin inhibition of Arabidopsis thaliana Ca2+dependent protein kinase 28(CPK28)[J].Journal of biological chemistry,2017,292(10):3988-4002.
[24] POPESCU S C,POPESCU G V,BACHAN S,et al.Differential binding of calmodulinrelated proteins to their targets revealed through highdensity Arabidopsis protein microarrays[J].Proceedings of the national academy of sciences,2007,104(11):4730-4735.
[25] WANG Y,LIANG S,XIE Q G,et al.Characterization of a calmodulinregulated Ca2+dependentproteinkinaserelated protein kinase,AtCRK1,from Arabidopsis[J].Biochemical journal,2004,383:73-81.
[26] MATSCHI S,WERNER S,SCHULZE W X,et al.Function of calciumdependent protein kinase CPK28 of Arabidopsis thalianain plant stem elongation and vascular development[J].The plant journal,2013,73(6):383-396.
[27] TENG H J,GUO Y,WANG J Q,et al.WDRP,a DWD protein component of CUL4based E3 ligases,acts as a receptor of CDPKrelated protein kinase 5 to mediate kinase degradation in Arabidopsis[J].Journal of plant biology,2016,59:627-638.
[28] 樊莉娟,陳彩麗,朱旭輝,等.擬南芥AtTR1對AtCPK 28和AtCPK 32的體外泛素化修飾研究[J].四川大學(xué)學(xué)報(自然科學(xué)版),2017,54(3):617-622.
[29] 鄧亞男,劉志斌,王健美,等.過表達(dá)E3泛素連接酶ABRvl通過泛素化CPK3提高擬南芥干旱耐受[J].四川大學(xué)學(xué)報(自然科學(xué)版),2018,55(3):613-618.
[30] YOON G M,CHO H S,HA H J,et al.Characterization of NtCDPK1,a calciumdependent protein kinase gene in Nicotiana tabacum,and the activity of its encoded protein[J].Plant molecular biology,1999,39(5):991-1001.
[31] ZHAO R,SUN H L,MEI C,et al.The Arabidopsis Ca2+dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and postgermination growth[J].New phytologist,2011,192(1):61-73.
[32] MYERS C,ROMANOWSKY S M,BARRON Y D,et al.Calciumdependent protein kinases regulate polarized tip growth in pollen tubes[J].The plant journal,2009,59(4):528-539.
[33] GUTERMUTH T,LASSIG R,PORTES M T,et al.Pollen tube growth regulation by free anions depends on the interaction between the anion channel SLAH3 and calciumdependent protein kinases CPK2 and CPK20[J].The plant cell,2013,25(11):4525-4543.
[34] MORI I C,MURATA Y,YANG Y Z,et al.CDPKs CPK6 and CPK3 function in ABA regulation of guard cell Stype anionand Ca2+permeable channels and stomatal closure[J].PLoS Biology,2006,4(10):1749-1762.
[35] ZHANG Q P,WEN L,WANG F,et al.Cloning and expression analysis of calciumdependent protein kinase BnCDPKl in Brassica[J].Journal of plant genetic resources,2014,15(6):1320-1326.
[36] LECLERCQ J,RANTY B,SANCHEZBALLESTA M T,et al.Molecular and biochemical characterization of LeCRK1,a ripeningassociated tomato CDPKrelated kinase[J].Journal of experimental botany,2004,56(409):25-35.
[37] RIG G,AYAYDIN F,TIETZ O,et al.Inactivation of plasma membranelocalized CDPK related kinase 5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis[J].The plant cell,2013,25(5):1592-1608.
[38] SIMEUNOVIC A,MAIR A,WURZINGER B,et al.Know where your clients are:Subcellular localization and targets of calciumdependent protein kinases[J].Journal of experimental botany,2016,67(13):3855-3872.
[39] RESH M D.Trafficking and signaling by fattyacylated and prenylated proteins[J].Nature chemical biology,2006,2(11):584-590.
[40] STAEL S,BAYER R G,MEHLMER N,et al.Protein Nacylation overrides differing targeting signals[J].FEBS Letters,2011,585:517-522.
[41] MEHLMER N,WURZINGER B,STAEL S,et al.The Ca2+dependent protein kinase CPK3 is required for MAPKindependent saltstress acclimation in Arabidopsis[J].The plant journal,2010,63(3):484-498.
[42] BABA A I,RIG G,AYAYDIN F,et al.Functional analysis of the Arabidopsis thaliana CDPKrelated kinase family:AtCRK1 regulates responses to continuous light[J].International journal of molecular sciences,2018,19(5):1282.
[43] MAJERAN W,LE CAER J P,PONNALA L,et al.Targeted profiling of A.thaliana subproteomes illuminates new co and posttranslationally Nterminal myristoylated proteins[J].The plant cell,2018,30(3):543-562.
[44] DIXIT A K,JAYABASKARAN C.Phospholipid mediated activation of calcium dependent protein kinase 1(CaCDPK1)from chickpea:A new paradigm of regulation[J].PLoS One,2012,7(12):1-8.
[45] CAMONI L,HARPER J F,PALMGREN M G.1433 proteins activate a plant calciumdependent protein kinase(CDPK)[J].FEBS Letters,1998,430:381-384.
[46] VAN KLEEFF P J M,GAO J,MOL S,et al.The Arabidopsis GORK K+channel is phosphorylated by calciumdependent protein kinase21(CPK21),which in turn is activated by 1433 proteins[J].Plant physiology and biochemistry,2018,125:219-231.
[47] LACHAUD C,PRIGENT E,THULEAU P,et al.1433regulated Ca2+dependent protein kinase CPK3 is required for sphingolipidinduced cell death in Arabidopsis[J].Cell death and differentiation,2013,20:209-217.
[48] SWATEK K N,WILSON R S,AHSAN N,et al.Multisite phosphorylation of 1433 proteins by calciumdependent protein kinases[J].Biochemical journal,2014,459:15-25.
[49] ORMANCEY M,THULEAU P,MAZARS C,et al.CDPKs and 1433 proteins:Emerging duo in signaling[J].Trends in plant science,2017,22:263-272.
[50] IVASHUTA S,LIU J Y,LIU J Q,et al.RNA interference identifies a calciumdependent protein kinase involved in Medicago truncatula root development[J].The plant cell,2005,17(11):2911-2921.
[51] YAMAUCHI T,YOSHIOKA M,F(xiàn)UKAZAWA A,et al.An NADPH oxidase RBOH functions in rice roots during lysigenous aerenchyma formation under oxygendeficient conditions[J].The plant cell,2017,29(4):775-790.
[52] YANG D H,HETTENHAUSEN C,BALDWIN I T,et al.Silencing Nicotiana attenuata calciumdependent protein kinases,CDPK4 and CDPK5,strongly upregulates woundand herbivoryinduced jasmonic acid accumulations[J].Plant physiology,2012,159(4):1591-1607.
[53] LEE S S,CHO H S,YOON G M,et al.Iteraction of NtCDPK1 calciumdependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum[J].The plant journal,2003,33(5):825-840.
[54] WU Y X,ZHAO S J,TIAN H,et al.CPK3phosphorylated RhoGDI1 is essential in the development of Arabidopsis seedlings and leaf epidermal cells[J].Journal of experimental botany,2013,64(11):3327-3338.
[68] HO S L,HUANG L F,LU C A,et al.Sugar starvationand GAinducible calciumdependent protein kinase 1 feedback regulates GA biosynthesis and activates a 1433 protein to confer drought tolerance in rice seedlings[J].Plant molecular biology,2013,81(4/5):347-361.
[69] ABBASI F,ONODERA H,TOKI S,et al.OsCDPK13,a calciumdependent protein kinase gene from rice,is induced by cold and gibberellin in rice leaf sheath[J].Plant molecular biology,2004,55(4):541-552.
[70] ZHANG M,LIANG S,LU Y T.Cloning and functional characterization of NtCPK4,a new tobacco calciumdependent protein kinase[J].Biochimica et biophysica acta(BBA)Gene structure and expression,2005,1729(3):174-185.
[71] LU B B,DING R X,ZHANG L,et al.Molecular cloning and characterization of a novel calciumdependent protein kinase gene IiCPK2 Responsive to polyploidy from tetraploid Isatis indigotica[J].Journal of biochemistry and molecular biology,2006,39(5):607-617.
[72] RIETZ S,DERMENDJIEV G,OPPERMANN E,et al.Roles of Arabidopsis patatinrelated phospholipases a in root development are related to auxin responses and phosphate deficiency[J].Molecular plant,2010,3(3):524-538.
[73] SANTIN F,BHOGALE S,F(xiàn)ANTINO E,et al.Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro,a potential downstream target in potato development[J].Physiologia plantarum,2017,159(2):244-261.
[74] ZHANG X L,QI M F,XU T,et al.Proteomics profiling of ethyleneinduced tomato flower pedicel abscission[J].Journal of proteomics,2015,121:67-87.
[75] HUANG S J,CHANG C L,WANG P H,et al.A type III ACC synthase,ACS7,is involved in root gravitropism in Arabidopsis thaliana[J].Journal of experimental botany,2013,64(14):4343-4360.
[76] HETTENHAUSEN C,YANG D H,BALDWIN I T,et al.Calciumdependent protein kinases,CDPK4 and CDPK5,affect early steps of jasmonic acid biosynthesis in Nicotiana attenuate[J].Plant signal and behavior,2013,8(1):83-85.
[77] MATSCHI S,HAKE K,HERDE M,et al.The calciumdependent protein kinase CPK28 regulates development by inducing growth phasespecific,spatially restricted alterations in jasmonic acid levels independent of defense responses in Arabidopsis[J].The plant cell,2015,27(3):591-606.
[78] RONZIER E,CORRATGEFAILLIE C,SANCHEZ F,et al.CPK13,a noncanonical Ca2+dependent protein kinase,specifically inhibits KAT2 and KAT1 shaker K+ channels and reduces stomatal opening[J].Plant physiology,2014,166(1):314-326.
[79] ZHANG H F,LIU D Y,YANG B,et al.Arabidopsis CPK6 positively regulates ABA signaling and drought tolerance through phosphorylating ABAresponsive elementbinding factors[J].Journal of experimental botany,2020,71(1):188-203.
[80] CHEN D H,LIU H P,LI C L.Calciumdependent protein kinase CPK9 negatively functions in stomatal abscisic acid signaling by regulating ion channel activity in Arabidopsis[J].Plant molecular biology,2019,99(1/2):113-122.
[81] ASANO T,HAYASHI N,KOBAYASHI M,et al.A rice calciumdependent protein kinase OsCPK12 oppositely modulates saltstress tolerance and blast disease resistance[J].The plant journal,2012,69(1):26-36.
[82] WEI S Y,HU W,DENG X M,et al.A rice calciumdependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility[J].BMC Plant Biology,2014,14(1):1-13.
[83] ASANO T,HAKATA M,NAKAMURA H,et al.Functional characterisation of OsCPK21,a calciumdependent protein kinase that confers salt tolerance in rice[J].Plant molecular biology,2011,75(1/2):179-191.
[84] BOLLER T,HE S Y.Innate immunity in plants:an arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J].Science,2009,324(5928):742-744.
[85] WANG J Y,WANG S Z,HU K,et al.The kinase OsCPK4 regulates a buffering mechanism that finetunes innate immunity[J].Plant physiology,2018,176(2):1835-1849.
[86] BOUDSOCQ M,WILLMANN M R,MCCORMACK M,et al.Differential innate immune signalling via Ca2+ sensor protein kinases[J].Nature,2010,464:418-422.
[87] TENA G,BOUDSOCQ M,SHEEN J.Protein kinase signaling networks in plant innate immunity[J].Current opinion in plant biology,2011,14(5):519-529.
[88] COCA M,SAN SEGUNDO B.AtCPK1 calciumdependent protein kinase mediates pathogen resistance in Arabidopsis[J].The plant journal,2010,63(3):526-540.
[89] DUBIELLA U,SEYBOLD H,DURIAN G,et al.Calciumdependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation[J].Proceedings of the national academy of sciences of the United States of America,2013,110(21):8744-8749.
[90] LIU N,HAKE K,WANG W,et al.Calciumdependent protein kinase 5 associates with the truncated NLR protein TIRNBS2 to contribute to exo70B1mediated immunity[J].The plant cell,2017,29(4):746-759.
[91] XIE K B,CHEN J P,WANG Q,et al.Direct phosphorylation and activation of a mitogenactivated protein kinase by a calciumdependent protein kinase in rice[J].The plant cell,2014,26(7):3077-3089.
[92] BUND M,COCA M.Enhancing blast disease resistance by overexpression of the calciumdependent protein kinase OsCPK4 in rice[J].Plant biotechnology journal,2016,14(6):1357-1367.
[93] SCHULZ P,HERDE M,ROMEIS T.Calciumdependent protein kinases:hubs in plant stress signaling and development[J].Plant physiology,2013,163(2):523-530.
[94] DAS R,PANDEY G.Expressional analysis and role of calcium regulated kinases in abiotic stress signaling[J].Current genomics,2010,11(1):2-13.
[95] SINGH A,SAGAR S,BISWAS D K.Calcium dependent protein kinase,a versatile player in plant stress management and development[J].Critical reviews in plant sciences,2017,36:336-352.
[96] FOYER C H,NOCTOR G.Redox homeostasis and antioxidant signaling:A metabolic interface between stress perception and physiological responses[J].The plant cell,2005,17:1866-1875.
[97] BUND M,COCA M.Calciumdependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants[J].Journal of experimental botany,2017,68(11):2963-2975.
[98] ABDELGAWAD H,ZINTA G,HEGAB M M,et al.High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs[J].Frontiers in plant science,2016,7:276.
[99] ZHAO R,SUN H L,ZHAO N,et al.The Arabidopsis Ca2+dependent protein kinase CPK27 is required for plant response to saltstress[J].Gene,2015,563:203-214.
[100] ZHANG H L,ZHANG Y N,DENG C,et al.The Arabidopsis Ca2+dependent protein kinase CPK12 is involved in plant response to salt stress[J].International journal of molecular sciences,2018,19(12):1-17.
[101] CHEN Y X,ZHOU X J,CHANG S,et al.Calciumdependent protein kinase 21 phosphorylates 1433 proteins in response to ABA signaling and salt stress in rice[J].Biochemical and biophysical research communications,2017,493(4):1450-1456.
[102] BORKIEWICZ L,POLKOWSKAKOWALCZYK L,CIES'LA J,et al.Expression of maize calciumdependent protein kinase(ZmCPK11)improves salt tolerance in transgenic Arabidopsis plants by regulating sodium and potassium homeostasis and stabilizing photosystem II[J].Physiologia plantarum,2020,168(1):38-57.
[103] ALMADANIM M C,ALEXANDRE BRUNO M,ROSA MARGARIDA T G,et al.Rice calciumdependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucrosephosphate synthase and is required for a proper cold stress response[J].Plant,cell and environment,2017,40(7):1197-1213.
[104] LIU Y,XU C J,ZHU Y F,et al.The calciumdependent kinase OsCPK24 functions in cold stress responses in rice[J].Journal of integrative plant biology,2018,60(2):173-188.
[105] WANG H B,GONG J J,SU X G,et al.MaCDPK7,a calciumdependent protein kinase gene from banana is involved in fruit ripening and temperature stress responses[J].The journal of horticultural science and biotechnology,2017,92:240-250.
[106] WANG J P,XU Y P,MUNYAMPUNDU J P,et al.Calciumdependent protein kinase(CDPK)and CDPKrelated kinase(CRK)gene families in tomato:Genomewide identification and functional analyses in disease resistance[J].Molecular genetics and genomics,2016,291(2):661-676.