崔志強,王文龍,郭明明,康宏亮,李建明,白 蕓,郭文召
不同植被措施下排土場邊坡細溝發(fā)育時空特征*
崔志強1,2,王文龍1,3?,郭明明3,康宏亮3,李建明2,白 蕓4,郭文召3
(1. 中國科學院水利部水土保持研究所,陜西楊凌 712100;2. 中國科學院大學,北京 100049;3. 西北農(nóng)林科技大學水土保持研究所,黃土高原土壤侵蝕與旱地農(nóng)業(yè)國家重點實驗室,陜西楊凌 712100;4. 榆林學院生命科學學院,陜西榆林 719000)
為明確不同恢復年限植被措施對煤礦排土場邊坡水土流失的防治效應,采用樣方調(diào)查法,以內(nèi)蒙古準格爾旗永利煤礦礦區(qū)排土場邊坡為研究對象,以裸露邊坡(CK)為對照,研究不同恢復年限(1 a、3 a、5 a)的沙柳方格+沙棘+沙打旺(SHA)和沙柳方格+沙打旺(SA)2種措施對細溝發(fā)育的影響。結果表明:(1)1a時CK、 SHA與SA措施細溝寬度均集中分布在4~8 cm,細溝深度均集中分布在2~4 cm;3 a時CK、 SHA與SA措施細溝寬度則集中分布在4~8 cm、8~12 cm、4~8 cm,細溝深度均集中分布在4~6 cm;5 a時CK與SHA措施細溝寬度均集中分布在8~12 cm,而細溝深度則集中分布在4~6 cm和8~14 cm;(2)CK(1~5 a)、SHA措施(1~5 a)和SA措施(1~3 a)的細溝平均寬分別為7.57~11.35 cm、7.58~13.31 cm和5.57~6.14 cm,細溝平均深分別為3.38~6.23 cm、4.19~10.34 cm、2.59~4.24 cm,三者的細溝平均寬深比分別為2.39、2.12和2.05,平均細溝密度分別為1.52~5.25 m·m–2、1.42~1.68 m·m–2和1.88~2.25 m·m–2;(3)1 a時CK、SHA和SA措施的細溝寬深比隨坡長變化幅度較大,隨著恢復年限增加,寬深比則呈下降趨勢,CK、SHA措施和SA措施的細溝密度和細溝侵蝕量均隨坡長增加呈增大趨勢;(4)與CK相比,1 a時SHA和SA措施邊坡細溝侵蝕模數(shù)分別減小25.0%和25.86%,兩種措施減蝕效果差別不大,而3 a時則分別減小了61.73%和35.31%,SHA措施減蝕效果顯著增強。研究結果可以為礦區(qū)排土場邊坡的植被合理布設提供科學依據(jù)與理論指導。
排土場邊坡;細溝侵蝕;植被措施;細溝形態(tài);恢復年限
內(nèi)蒙古永利煤礦的開采在給當?shù)貏?chuàng)造經(jīng)濟效益的同時,也對項目區(qū)及周邊生態(tài)環(huán)境產(chǎn)生了巨大的破壞[1-2]。其中,礦區(qū)排土場作為人工堆墊地貌,具有結構松散,穩(wěn)定性差的特點,其坡面可蝕性為自然坡面的10倍~100倍,侵蝕速率為撂荒地的43.6倍~239.2倍[3]。排土場邊坡的水土流失規(guī)律有別于一般意義上的坡耕地和原始地貌[4],具有水土流失強烈、侵蝕類型多樣、侵蝕過程復雜多變等特點[5-6]。
礦區(qū)生態(tài)環(huán)境問題已經(jīng)引起了學者們的高度重視,對于礦區(qū)生態(tài)修復問題,張志權等[7]指出植被恢復是礦區(qū)生態(tài)修復的必要前提,礦區(qū)植被恢復研究對促進礦區(qū)生態(tài)經(jīng)濟協(xié)調(diào)發(fā)展意義重大[8]。自然狀態(tài)下植被恢復,存在演替歷時長、過程復雜的特點[9],單純依靠土壤與植被的自然生長不能適應礦區(qū)排土場邊坡生態(tài)恢復的實際需要。郭建英等[10]指出通過采用合理的人工植被措施布設,能夠有效降低排土場邊坡的土壤侵蝕,實現(xiàn)更好的水土流失防治。同時在植被措施布設恢復初期,不合理的植被措施會對邊坡造成強擾動,導致對應措施的排土場邊坡侵蝕量大于裸露地[11]。因此,在受損礦區(qū)生態(tài)恢復階段,對于植被措施類型的選取,以及對不同植被措施所對應細溝發(fā)育狀況的研究就顯得十分必要。Vogel[12]通過對美國東部礦區(qū)邊坡復墾進行研究得出了羊茅、鴨茅、小糠草等草本植物是礦區(qū)邊坡復墾的優(yōu)良植被。楊漢宏等[13]通過研究黑岱溝煤礦雨季內(nèi)38次降雨邊坡侵蝕情況,則進一步指出了灌草結合的綜合植被配置能夠有效控制排土場坡面侵蝕;楊波等[14]通過人為模擬放水沖刷實驗也指出恢復年限4a的排土場邊坡直、須根系混合搭配時的減水減沙效益高于單一根系;不同植被措施與根系結構在減蝕效果方面有顯著差別[15-16]。
目前針對植被恢復對煤礦排土場邊坡侵蝕防治的研究主要集中在特定時間的某一空間尺度上減水減沙效益的研究,在時間尺度上一般是在一個降雨季節(jié)內(nèi)進行連續(xù)觀測[10]或者如蘇濤等[17]揭示植被對砒砂巖邊坡的減蝕效應,主要是利用模擬沖刷實驗來說明。對于現(xiàn)實中野外植被恢復邊坡細溝發(fā)育的空間分布特征,以及在較長時間尺度上不同恢復時期內(nèi)植被發(fā)揮減蝕效益的變化過程研究還十分薄弱。因此,本文以內(nèi)蒙古準格爾旗永利露天煤礦周邊排土場邊坡為研究對象,對不同恢復年限(1 a、3 a、5 a)的3種典型排土場邊坡(裸坡、沙柳方格+沙打旺措施、沙柳方格+沙打旺+沙棘措施)細溝發(fā)育的空間特征進行了研究,以期為排土場邊坡合理布設水土保持措施提供重要的科學依據(jù)。
試驗地點位于內(nèi)蒙古自治區(qū)鄂爾多斯市準格爾旗永利煤礦排土場(39°41′52″N,110°17′2″E),排土場形成時間為2009—2013年。當?shù)貧夂驗闇貛Т箨懶詺夂?,年均氣溫?.2~7.2℃,年平均降雨量在379~420 mm 之間,雨季集中在 7—9 月份,且以暴雨居多,占年降雨總量的80%以上,年蒸發(fā)量為2 100~2 700 mm,氣候條件惡劣。地形為典型的丘陵溝壑地貌,當?shù)睾0胃叨仍? 375~1 400 m之間。當?shù)赝寥罏槔踱}土,孔隙度較大,透水性好,屬于輕砂壤土,成土母質(zhì)為砒砂巖,砒砂巖結構性差,易發(fā)生風蝕和重力侵蝕。自然植被主要為灌木與半灌木,夾雜少量喬木。該區(qū)域主要植被分布群系為百里香()、本氏針茅(Linn)、達烏里胡枝子()等。區(qū)域內(nèi)植被覆蓋度低,在人為擾動影響下,春季以風蝕為主,夏季風蝕水蝕交替發(fā)生,水土流失嚴重。
通過采用實地調(diào)查法,調(diào)查了該礦區(qū)排土場的形成時間,坡長、坡度等一系列坡面參數(shù)以及邊坡植被恢復措施?;谡{(diào)查結果的統(tǒng)計和分析,最終選取了1 a、3 a、5 a恢復年限的裸坡(坡面無天然恢復植被)(圖1a)和沙柳方格(Vegetation slope with)+沙棘()+沙打旺()措施邊坡(圖1b),以及恢復1 a、3 a的沙柳方格+沙打旺措施邊坡(圖1c)。這兩種邊坡措施植被主要施工技術指標如下:
(1)沙柳方格+沙棘+沙打旺措施(SHA措施):在沙柳方格措施與播撒沙打旺草種措施一次完工后(規(guī)格同上),采用人工縫植的方式種植1 a生沙棘苗,株行距為1.0 m×2.5 m。調(diào)查期間無引起邊坡侵蝕的降雨過程發(fā)生。
(2)沙柳方格+沙打旺措施(SA措施):在坡面上呈菱形(長對角線長5 m,短對角線長3 m)排列,將長度為35 cm 左右的沙柳條垂直插入坡面20 cm左右。在此基礎上,人工撒播沙打旺草種15 kg·hm–2。
選好樣地后,在每個樣地內(nèi)隨機選擇3個斜坡長度為16 m、寬度為3 m的樣方。從坡頂至坡腳,每隔2 m將樣方劃分為若干段,并按順序依次分別標記為1,2,…,L(=8),并將每個測量坡段的中間位置作為測量斷面,用測尺法按照從左到右的順序依次測定第條細溝的溝長(l),頂寬(w),底寬(w),溝深(d);未通過坡段中線的細溝忽略不計(圖2)。在每個坡段內(nèi)隨機選取3點,采集約1 kg表層土壤,土樣自然風干后采用四分法將土樣進一步磨碎,之后對土粒進行分散和去有機質(zhì)處理,最后利用 MS 2000 型激光粒度儀測定土壤各粒級的體積百分比(國際制),各樣地機械組成如表1所示。
注:CK、SHA、SA分別表示裸坡、沙柳方格+沙棘+沙打旺邊坡、沙柳方格+沙打旺邊坡 Note:CK,SHA and SA represent Bare slope,Vegetation slope with Salix cheilophila,Hippophaerhamnoides Linn. and Astragalus adsurgens Pall slope andVegetation slope with Salix heilophila and Astragalus adsurgens Pall slope respectively.
圖2 細溝測量方法簡圖
表1 樣地概況
(1)細溝密度():單位面積上所有細溝的長度之和。計算式為:
式中,為細溝密度,m·m–2;為研究區(qū)域坡面面積,m2;為測量坡段數(shù);為每個斷面的細溝總條數(shù);l為第個斷面第條細溝長度,m。
(2)細溝侵蝕量()與細溝侵蝕模數(shù)()計算式為:
式中,S為第個測量坡段的細溝侵蝕量,kg;w、w、l、d為對應測量坡段第條細溝的頂寬、底寬、長、深,m;γ為土壤密度,kg·m–3;為測量坡面的細溝侵蝕模數(shù),kg·m–2·a–1;為恢復年限,a。
用SPSS 9.0進行數(shù)據(jù)處理與統(tǒng)計分析,Origin 2017進行數(shù)據(jù)繪圖。
不同植被措施(CK、SHA、SA)下細溝邊坡細溝寬分布如圖3。恢復年限1 a時,CK、SA的溝寬分布趨勢接近,均集中分布在4~12 cm,其分布頻率分別為87.49%和95.83%,而SHA的溝寬則主要分布在4~8 cm,其分布頻率為87.50%。3 a時,CK的溝寬在4~8 cm、8~12 cm、16~25 cm處的分布頻率分別為37.50%、25.0%、25.0%,SHA的溝寬集中分布在8~12 cm,其分布頻率分別為62.50%,而SA的溝寬則集中分布在4~8 cm,其分布頻率為87.50%;5 a時,CK的溝寬均大于8 cm,其中8~12 cm寬度的細溝分布頻率達50.0%,而SHA措施8~12 cm寬度細溝分布頻率則為62.50%。
對同一措施而言,CK在1 a和3 a時,溝寬以4~8 cm為主,5a時溝寬則集中分布在8~12 cm;SHA措施在1 a時溝寬集中分布在4~8 cm,恢復至3 a和5 a時溝寬則以8~12 cm為主;SA措施在1 a和3 a時,溝寬均集中分布在4~8 cm。1 a時,CK、SHA、SA細溝寬度均小于16 cm;3 a時,CK、SHA、SA措施16~25 cm寬度的細溝分布頻率分別為25.0%、8.33%、0;5 a時CK與SHA在16~25 cm處的分布頻率分別為25.0%和12.50%。
圖3 不同植被措施邊坡細溝溝寬的分布
圖4表示不同措施邊坡(CK、SHA、SA)溝深分布情況,恢復1 a時,CK與SA措施的溝深均集中分布在2~4 cm,其頻率分別為62.50%和79.17%;SHA的溝深在2~4 cm、4~6 cm、6~8 cm處分布較平均,其分布頻率分別為37.50%、33.33%、20.83%?;謴? a時,CK的溝深在8~14 cm處分布頻率為37.50%;SHA和SA的溝深均集中在4~6 cm處,其頻率分別為50.0%和54.17%?;謴湍晗逓? a時,CK的溝深集中分布在8~14 cm處,其頻率可達87.50%,SHA措施則有62.50%的細溝深度分布在4~6 cm。
對于同一措施而言,CK在1 a時溝深集中分布在2~4 cm,3 a時則在各深度處分布均較均勻,5 a時集中分布在8~14 cm。1 a時SHA措施細溝深在2~4 cm、4~6 cm、6~8 cm處分布較平均,3 a和5 a時均集中分布在4~6 cm。1 a時SA措施的溝深集中分布在2~4 cm,3 a時集中分布在4~6 cm。CK和SHA措施在1 a、3 a、5 a時溝深為8~14 cm的分布頻率分別為0、37.50%、87.50%和8.33%、4.17%、12.50%;SA措施僅在恢復3 a時細溝深發(fā)育至8~14 cm,且其分布頻率僅達到4.17%,這表明SA措施能更好減緩細溝下切程度。
圖4 不同植被措施邊坡細溝溝深的分布
不同植被措施邊坡平均細溝寬度和深度見表2?;謴? a時,CK、SHA、SA三種措施的平均溝寬分別為7.57、7.58、6.14 cm,SHA措施較CK增加了0.39%,SA措施較CK下降了18.89%。恢復3 a時,CK、SHA、SA三種措施的平均溝寬分別為10.91、9.26、5.57 cm,SHA與SA措施較CK分別下降了15.12%和48.95%?;謴? a時,CK、SHA兩種措施下的平均溝寬分別為11.35、13.31cm。SHA措施較CK增大了17.27%。CK與SHA措施下的細溝平均溝寬均隨恢復年限增大而增大,而恢復3 a的 SA措施細溝平均溝寬則較1 a時減小9.28%。
對于溝深而言,恢復1 a時,CK、SHA、SA三種措施下的平均溝深分別為3.38、5.13、2.59 cm,SHA措施的平均溝深較CK增加了51.77%,而SA措施的平均溝深較CK減少了23.37%。恢復3 a時,CK、SHA、SA三種措施下的平均溝深分別為6.23、4.19、4.24 cm,SHA和SA措施的平均溝深較CK分別下降了32.74%和31.94%。5 a時SHA措施的平均溝深較CK增大了1.11倍。
表2 不同植被措施邊坡細溝形態(tài)基本特征
圖5表示細溝寬深比隨坡長的變化情況?;謴? a時,CK、SHA措施和SA措施的細溝寬深比變化分別為1.38~4.18、1.07~2.57和1.72~4.66;恢復3 a時,CK與SHA、SA措施下,細溝寬深比隨坡長變化整體呈下降趨勢,三者的變化分別為1.17~2.74、1.55~4.15、1.11~2.31;恢復5 a時,CK的細溝寬深比變化范圍在0.98~1.96之間,SHA措施下細溝寬深比隨坡長呈先驟降后緩慢波動的趨勢,變化范圍在1.36~5.28之間。1 a時CK與SHA、SA措施的細溝寬深比隨坡長變化幅度較大,隨恢復年限增加,整體上,三者的細溝寬深比均隨坡長的增加呈下降趨勢。由表2可知,恢復1 a時,CK與SHA、SA措施的平均細溝寬深比分別為2.48、1.69、2.68,SHA措施的平均細溝寬深比較CK減小31.85%,SA措施平均細溝寬深比則較CK增大8.06%;3a時,SHA措施的平均細溝寬深比較CK增大30.73%,SA措施平均細溝寬深比則較CK減小25.52%;5a時,SHA措施細溝寬深比較CK減小22.66%。
圖6表示不同措施邊坡細溝密度隨坡長的變化特征。整體上CK、SHA和SA措施的細溝密度隨坡長增加呈現(xiàn)出波動式的上升趨勢,恢復1 a時,CK、SHA和SA措施的細溝密度隨坡長變化分別為0.49~3.09、0.68~1.84和0.71~3.75 m·m–2,恢復3 a時,三者的細溝密度隨坡長變化分別為0.65~1.75、0.95~2.03和0.50~3.29 m·m–2,恢復5 a時,CK和SHA措施的細溝密度隨坡長變化分別為4.40~6.40 m·m–2和1.50~2.85 m·m–2。由表2可知,恢復1 a時,CK與SHA、SA措施下的平均細溝密度分別為1.88、1.42、2.25 m·m–2,SHA措施的細溝密度較CK減小22.34%,SA措施的細溝密度較CK增大19.68%;恢復3 a時SHA與SA措施的平均細溝密度較CK分別增大1.32%和21.05%;恢復5 a時,SHA的細溝密度較CK減小68.19%。與CK相比,SHA措施的平均細溝密度隨恢復年限增加,增大趨勢更為緩慢。
圖5 不同植被措施邊坡細溝寬深比隨坡長的變化特征
圖 6 不同植被措施邊坡細溝密度隨坡長的變化特征
各措施邊坡細溝侵蝕量隨坡長的變化如圖7 a、圖7b、圖7c所示。整體上,CK、SHA和SA措施的細溝侵蝕量隨坡長增加而增大,恢復1 a時,SHA與SA措施上坡段(2~9 m)細溝侵蝕量大于CK,CK在距坡頂13 m處的細溝侵蝕量達到最大值44.30 kg,SHA與SA措施最大細溝侵蝕量較CK分別下降48.71%和41.31%?;謴? a時,距坡頂8 m處,SA措施細溝侵蝕量大于CK,8 m之后SA措施侵蝕量則小于CK;SHA措施細溝侵蝕量始終小于CK;CK細溝侵蝕量隨坡長始終呈上升趨勢,最大值為176.46 kg(距坡頂15 m處),SHA與SA措施最大細溝侵蝕量較CK分別下降了72.84%和52.13%?;謴? a時,SHA措施在各個坡段細溝侵蝕量遠小于CK,且隨著坡長的增加二者細溝侵蝕量之間的差距越大。如圖7 d所示,恢復1 a時,CK與SHA、SA條件下對應細溝侵蝕模數(shù)分別為3.48、2.58、2.61 kg·m–2·a–1,SHA與SA措施細溝侵蝕模數(shù)相差僅0.03 kg·m–2·a–1?;謴? a時,CK、SHA、SA措施細溝侵蝕模數(shù)分別為4.05、1.55、2.62 kg·m–2·a–1,SHA與SA措施較CK的侵蝕模數(shù)分別下降了61.73%和35.31%,其中SHA措施細溝侵蝕模數(shù)下降更明顯?;謴? a時,CK與SHA條件下對應細溝侵蝕模數(shù)分別為19.55 kg·m–2·a–1和1.74 kg·m–2·a–1,CK條件下細溝侵蝕模數(shù)為SHA條件下的11.24倍。CK細溝侵蝕模數(shù)隨恢復年限增加而增大,而恢復3 a的 SHA措施細溝侵蝕模數(shù)較1 a時下降39.92%,恢復3 a的SA措施細溝侵蝕模數(shù)較1 a下降0.38%。
圖 7 不同植被措施下邊坡細溝侵蝕量和侵蝕模數(shù)
本研究各恢復年限CK與SHA措施的排土場邊坡的細溝寬度集中分布在4~12 cm,1 a、3 a時,SA措施的細溝寬度集中分布在4~8 cm,與蘇嫄等[18]、毛晶晶和汪光勝[19]指出各類常見土地類型的細溝寬度一般小于15 cm的結論基本一致。隨著恢復時間的增加,SHA措施大部分細溝溝寬由4~8 cm逐漸發(fā)育至8~12 cm;而SA措施坡面大部分細溝溝寬始終集中分布在4~8 cm,這表明隨恢復年限增加,SHA措施邊坡細溝寬度隨恢復年限增加呈增大趨勢,而SA措施的細溝寬度隨恢復年限增大變化不明顯。1 a時,CK、SHA、SA在16~25 cm處均無細溝分布;3 a時,CK、SHA、SA在16~25 cm溝寬處的分布頻率分別為25.0%、8.33%、0;5 a時CK與SHA在16~25 cm溝寬處的分布頻率分別為25.0%、12.50%。同一恢復時間,SHA與SA措施在16~25 cm溝寬處的分布頻率均小于CK,這表明植被措施能夠抑制細溝寬度向16 cm以上發(fā)育。此外,3 a時SHA和SA坡面16~25 cm溝寬處的細溝分布頻率分別為8.33%和0,這表明恢復3 a的SA措施對于溝寬發(fā)育有更好的抑制作用;結合CK、SHA、SA三種措施的平均溝寬,1 a時SHA的平均溝寬較CK增加了0.39%,而SA平均溝寬較CK下降18.89%;3 a時,SHA與SA的平均溝寬較CK分別下降15.12%和48.95%,說明SA措施對于溝寬發(fā)育有更好的抑制作用,恢復3 a后沙棘對細溝的抑制效應才逐漸凸顯。
就溝深而言,CK和SHA措施在1 a、3 a、5 a時溝深為8~14 cm的分布頻率分別為0、37.50%、87.50%和29.2%、16.7%、12.50%;SA在1 a、3 a時溝深為8~14 cm的分布頻率分別為8.30%、4.17%?;謴? a時,SHA的平均溝深較CK增加51.77%,而SA的平均溝深則較CK減少了23.37%;3 a時,SHA和SA措施的平均溝深較CK分別下降32.74%和31.94%。5 a時SHA的平均溝深較CK增大1.11倍。這表明在控制水流下切方面SA措施較SHA措施效果更好,SHA措施甚至會加劇水流下切,但是對于深度在8 cm以上的細溝的產(chǎn)生也具有一定抑制作用。這是因為沙棘屬于“復合型”直根系,其主根不發(fā)達,主要依靠側根的“不斷替代”形成較為發(fā)達的垂直根系,其72.36%的根系分布在0~40 cm表土層[20],黨曉宏等[21]還指出在砒砂巖地區(qū)沙棘根系的徑粗與埋深呈反比,并且與距離植株中心距離也呈反比,調(diào)查過程發(fā)現(xiàn)較深的細溝主要分布在沙棘植株中心位置附近,此處沙棘根系較粗,對于水流有較強匯集作用,在一定程度上加劇了水流的下切,但同時沙棘側根形成的密集層又抑制了8 cm以上較深細溝的發(fā)育。
細溝寬深比是反映細溝發(fā)育形態(tài)的重要指標,CK與SHA、SA措施的細溝寬深比隨坡長增大整體上呈減小趨勢,但具有較大波動性;這與裴冠博等[22]通過模擬放水試驗得出的邊坡細溝寬深比會隨坡長增大而減小的結果基本一致,存在波動性的原因可能是排土場邊坡存在一定的起伏溝槽,其阻隔了水流下滲,且自然狀態(tài)下的邊坡存在潛流,情況復雜,因此導致明顯的波動?;謴? a時,SHA措施細溝寬深比大于CK,SA措施下細溝寬深比則小于CK,結合SHA與SA措施的溝寬和溝深的發(fā)育特征,說明3 a時SHA措施會加速細溝下切至8 cm深度以內(nèi),SA措施對于細溝發(fā)育有更好抑制效果。
細溝密度是反映坡面破碎程度的重要指標。CK細溝密度會隨恢復年限增加而增大,這與王萬忠等[23]、陳同德等[24]研究成果基本一致?;謴? a和5 a的SHA措施細溝密度較CK分別減小了22.34%和68.19%,而SA措施(1~3 a)細溝密度則較CK分別增大19.68%和21.05%,結合細溝溝寬和溝深特征,說明SA措施能更好地控制細溝的寬深發(fā)育,但是會明顯增加細溝發(fā)育的數(shù)量,由上文可知,SHA措施由于沙棘根系的作用,會匯集水流,在一定程度上加劇細溝下切,但同時減少了新生細溝的出現(xiàn),沙棘側根形成的密集層有效阻止了水流的無規(guī)則溢散,有效控制了邊坡細溝數(shù)量。3 a時SHA措施下細溝密度與CK較為接近,其原因可能是因為沙棘作為直根系植物,在1 a生長期內(nèi)主要以主根生長為主,2~3 a生長期內(nèi)以側根生長為主,側根在一定程度上破壞了邊坡地表的形態(tài)[25],導致細溝數(shù)量無明顯的減小。整體上,恢復1 a、5 a時SHA措施細溝密度在各坡長均小于CK,3 a時在2~4 m、8~16 m坡長略大于CK,其余位置均小于CK,這也進一步證明SHA措施的沙棘側根形成的密集層對細溝數(shù)量有較好的控制作用。
就侵蝕量而言,排土場邊坡的細溝侵蝕量隨坡長增加呈增大趨勢,總體上,在坡段的11~16 m處SHA、SA措施下的細溝侵蝕量小于CK,距離坡頂越遠,減蝕效果越明顯,這可能是因為徑流在經(jīng)過植被根系與沙柳方格的阻礙作用后消耗了大量能量,導致挾沙能力下降?;謴? a時,SHA、SA的細溝侵蝕模數(shù)分別為2.58、2.61 kg·m–2·a–1,SHA措施的侵蝕模數(shù)比SA措施減小了1.15%。結合細溝寬、深與密度特征,SHA措施一定程度上加劇水流下切,但是對于細溝數(shù)量有較好控制作用,1 a時在SHA與SA措施細溝數(shù)量均較少的情況下,SHA措施的減蝕效果與SA措施基本接近?;謴? a時,SHA與SA措施較CK侵蝕模數(shù)分別下降61.73%和35.31%,SHA措施的減蝕效果更明顯,進一步證明了SHA措施能夠更好地控制細溝數(shù)量?;謴? a時,CK條件下細溝侵蝕模數(shù)是SHA條件下的11.24倍,隨著恢復年限的增長,SHA措施的減蝕作用更加明顯。SA條件下3 a相較于1 a時侵蝕模數(shù)下降了0.38%,SA措施的侵蝕模數(shù)隨恢復年限增大變化不大;SHA條件下3 a相較于1 a時侵蝕模數(shù)下降了39.92%,SHA措施的侵蝕模數(shù)隨恢復年限增大降低明顯,說明SHA措施在3 a時才開始較充分發(fā)揮減蝕作用,因此,本研究建議將SHA措施作為排土場邊坡的主要植被恢復措施。
通過對內(nèi)蒙古準格爾旗永利煤礦不同恢復年限(1 a、3 a、5 a)和不同植被措施的排土場邊坡細溝發(fā)育特征進行研究,主要結論如下:SHA與SA措施主要在3 a時發(fā)揮作用,SHA與SA措施細溝寬度集中分布范圍分別為8~12 cm和4~8 cm,溝深集中分布范圍分別為4~6 cm和2~6 cm,SA措施在抑制細溝溝寬和溝深發(fā)育方面作用更顯著;SHA和SA措施的平均細溝密度分別為1.42~1.68 m·m–2和1.88~2.25 m·m–2,SHA措施對于細溝數(shù)量的控制更加顯著;兩種植被措施在距離坡頂越遠位置減蝕效果越明顯,1 a時SHA措施的侵蝕模數(shù)較SA措施減小1.15%,隨著恢復年限增加至3 a,SHA、SA條件下對應細溝侵蝕模數(shù)分別為1.55、2.62 kg·m–2·a–1,SHA措施減蝕效果更好。本研究結果可為煤礦排土場邊坡植被的合理布設提供科學依據(jù)和理論支撐。
[ 1 ] Harbor J. Engineering geomorphology at the cutting edge of land disturbance:Erosion and sediment control on construction sites[J]. Geomorphology,1999,31(1/4):247—263.
[ 2 ] Liu R S. Investigation and experimental study on soil erosion of dump slope in Yongli coal mine Inner Mongolia[D]. Yangling,Shaanxi:Northwest University of Agriculture and Forestry,2014. [劉瑞順. 內(nèi)蒙古永利煤礦排土場邊坡土壤侵蝕調(diào)查與試驗研究[D]. 陜西楊凌:西北農(nóng)林科技大學,2014.]
[ 3 ] Riley S J. Aspects of the differences in the erodibility of the waste rock dump and natural surfaces,Ranger Uranium Mine,Northern Territory,Australia[J]. Applied Geography,1995,15(4):309—323.
[ 4 ] Bai Z K,Hu Z H,Wang Z G. Artificial accelerated erosion and classification of the dump in surface mine[J]. Journal of Soil Erosion and Soil and Water Conservation,1998,12(1):34—40. [白中科,胡振華,王治國. 露天礦排土場人為加速侵蝕及分類研究[J]. 土壤侵蝕與水土保持學報,1998,12(1):34—40.]
[ 5 ] Wang W L,Wang Z Y,Li Z B,et al. Study on the simulation of runoff and sediment yield on the disturbed lands during the Shenfu-Dongsheng coalfield exploitation[J]. Journal of Sediment Research,2006(2):60—64. [王文龍,王兆印,李占斌,等. 神府東勝煤田開發(fā)中擾動地面徑流泥沙模擬研究[J]. 泥沙研究,2006(2):60—64.]
[ 6 ] Bai Z K,Wang Z G,Zhao J K,et al. Characteristics of soil erosion and its control in antaibao open pit mine[J]. Journal of China Coal Society,1997,22(5):542—547. [白中科,王治國,趙景逵,等. 安太堡露天煤礦水土流失特征與控制[J]. 煤炭學報,1997,22(5):542—547.]
[ 7 ] Zhang Z Q,Shu W S,Liao W B,et al. Role of legume species in revegetation of mined wastelands[J]. Chinese Journal of Ecology,2002,21(2):47—52. [張志權,束文圣,廖文波,等. 豆科植物與礦業(yè)廢棄地植被恢復[J]. 生態(tài)學雜志,2002,21(2):47—52.]
[ 8 ] Huang Y F,Zhang S W,Zhang L P,et al. Research progress on conservation and restoration of biodiversity in land reclamation of opencast coal mine[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(8):72—82. [黃元仿,張世文,張立平,等. 露天煤礦土地復墾生物多樣性保護與恢復研究進展[J]. 農(nóng)業(yè)機械學報,2015,46(8):72—82.]
[ 9 ] Lovich J E,Bainbridge D. Anthropogenic degradation of the southern California desert ecosystem and prospects for natural recovery and restoration[J]. Environmental Management,1999,24(3):309—326.
[ 10 ] Guo J Y,He J L,Li J R,et al. Effects of soil erosion and remodeling control of coal mine dump slope in prairie of Xilin gol[J]. Journal of Soil and Water Conservation,2015,29(1):56—61. [郭建英,何京麗,李錦榮,等. 礦區(qū)人工再塑地貌對錫林郭勒草原土壤侵蝕的影響及其控制效果[J]. 水土保持學報,2015,29(1):56—61.]
[ 11 ] Guo J Y,He J L,Li J R,et al. Effects of different measures on water erosion control of dump slope at opencast coal mine in typical steppe[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(3):296—303. [郭建英,何京麗,李錦榮,等. 典型草原大型露天煤礦排土場邊坡水蝕控制效果[J]. 農(nóng)業(yè)工程學報,2015,31(3):296—303.]
[ 12 ] Plass W T. The establishment and maintenance of vegetation on minesoils in the eastern United States[M]//Ecology and Coal Resource Development. America:Elsevier,1979:431—437.
[ 13 ] Yang H H,Zhang Y,Zheng H F,et al. Impacts of different artificial plant collocations on soil and water loss at side slope in mine dump[J]. Bulletin of Soil and Water Conservation,2017,37(4):6—11. [楊漢宏,張勇,鄭海峰,等. 不同人工植物配置對排土場邊坡水土流失的影響[J]. 水土保持通報,2017,37(4):6—11.]
[ 14 ] Yang B,Wang W L,Guo M M,et al. Erosion-controlling effects of revegetation on slope of refuse dump in mining area relative to vegetation pattern[J]. Acta Pedologica Sinica,2019,56(6):1347—1358. [楊波,王文龍,郭明明,等. 礦區(qū)排土場邊坡不同植被配置模式的控蝕效益研究[J]. 土壤學報,2019,56(6):1347—1358.]
[ 15 ] De Baets S,Poesen J,Knapen A,et al. Impact of root architecture on the erosion-reducing potential of roots during concentrated flow[J]. Earth Surface Processes and Landforms,2007,32(9):1323—1345.
[ 16 ] de Baets S,Poesen J,Reubens B,et al. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength[J]. Plant and Soil,2008,305(1/2):207—226.
[ 17 ] Su T,Zhang X C,Wang R J,et al. Effect of vegetation coverage on slope runoff and sediment reduction in pisha sandstone region[J]. Journal of Soil and Water Conservation,2015,29(3):98—101,255. [蘇濤,張興昌,王仁君,等. 植被覆蓋對砒砂巖地區(qū)邊坡侵蝕的減流減沙效益[J]. 水土保持學報,2015,29(3):98—101,255.]
[ 18 ] Su Y,Wang Z J,Yang R,et al. Spatio temporal variation characteristics of soil erosion in southern Shaanxi region based on RUSLE[J]. Research of Soil and Water Conservation,2018,25(5):1—11. [蘇嫄,王志杰,楊瑞,等. 基于RUSLE的陜南地區(qū)土壤侵蝕時空變化特征[J]. 水土保持研究,2018,25(5):1—11.]
[ 19 ] Mao J J,Wang G S. Dynamic changes of soil erosion in Jianghuai watershed area from 2000 to 2015[J]. Journal of Heilongjiang Institute of Technology,2017,31(6):17—23. [毛晶晶,汪光勝. 2000—2015江淮分水嶺區(qū)域土壤侵蝕動態(tài)變化[J]. 黑龍江工程學院學報,2017,31(6):17—23.]
[ 20 ] Wang H,Huang C L,Yang F S,et al. Root habitat flexibility of seabuckthorn in the Pisha sandstone area[J]. Chinese Journal of Applied Ecology,2019,30(1):157—164. [王浩,黃晨璐,楊方社,等. 砒砂巖區(qū)沙棘根系的生境適應性[J]. 應用生態(tài)學報,2019,30(1):157—164.]
[ 21 ] Dang X H,Gao Y,Wang J,et al. Characteristics of root distribution ofL.and its improving effect on the forest soil on the ditch slope of soft sandstone area[J]. Science of Soil and Water Conservation,2012,10(4):45—50. [黨曉宏,高永,汪季,等. 砒砂巖溝坡沙棘根系分布特征及其對林下土壤的改良作用[J]. 中國水土保持科學,2012,10(4):45—50.]
[ 22 ] Pei G B,Gong D Q,F(xiàn)u X T. Rill morphology and its effect on runoff and sediment yield on loessal soil slope in western Shanxi Province[J]. Journal of Soil and Water Conservation,2017,31(6):79—84,182. [裴冠博,龔冬琴,付興濤. 晉西黃綿土坡面細溝形態(tài)及其對產(chǎn)流產(chǎn)沙的影響[J]. 水土保持學報,2017,31(6):79—84,182.]
[ 23 ] Wang W Z,Jiao J Y,Ma L M,et al. Variation of sediment yield in different soil erosion areas and its control standards on the loess plateau[J]. Bulletin of Soil and Water Conservation,2012,32(5):1—7,305. [王萬忠,焦菊英,馬麗梅,等. 黃土高原不同侵蝕類型區(qū)侵蝕產(chǎn)沙強度變化及其治理目標[J]. 水土保持通報,2012,32(5):1—7,305.]
[ 24 ] Chen T D,Wang W L,Dong Y K,et al. The rill erosion characteristics of dump slope managed by different models in opencast mining area[J]. Acta Agrestia Sinica,2017,25(1):61—68. [陳同德,王文龍,董玉錕,等. 露天煤礦排土場不同治理模式邊坡細溝侵蝕特征研究[J].草地學報,2017,25(1):61—68.]
[ 25 ] Gao Z Y,Zhang Y S. The observation and investigation on the feature of root system of seabuckthorn[J]. Journal of Beijing Forestry University,1989,11(4):53—59. [高志義,張玉勝. 沙棘根系特性的觀察與研究[J]. 北京林業(yè)大學學報,1989,11(4):53—59.]
Spatial and Temporal Characteristics of Rill Development on Slopes of Waste Dump of Mining as Affected by Revegetation Measures
CUI Zhiqiang1, 2, WANG Wenlong1, 3?, GUO Mingming3, KANG Hongliang3, LI Jianming2, BAI Yun4, GUO Wenzhao3
(1. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resource, Yangling, Shaanxi 712100, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; 4. Life Science College, Yulin University, Yulin, Shaanxi 719000, China)
Slopes of coal mine dump are characterized by severity of soil erosion, diversity of erosion type and complexity of erosion processes. The law of soil erosion on the slopes is different from that on slopes of original landform in mining areas. In order to explore effects of revegetation controlling soil erosion on slopes of coal mine dumps, survey of a dumping site was carried out in the Yongli Coal Mining of Zhungeer Banner, Inner Mongolia.The survey, using the quadrat survey procedure, covered a bare slope as CK, and slopes revegetated in the pattern ofAnd(SHA) orand(SA), for a different time period of 1a, 3a or 5a, in an attempt to explore spatial and temporal effects of the revegetation on rill development on the slopes.Results show: (1) on all the slopes, the rills varied in the range of 4-8 cm in width and in the range of 2-4 cm in depth in the first year, on the slopes of CK, SHA and SH did in the range of 4-8 cm, 8-12 cm and 4-8 cm in width, respectively, and all in the range of 4-6 cm in depth in the third year, and on the slopes of CK and SHA, they did in the range of 8-12 cm in width and in the range of 4-6 cm and 8-14 cm in depth respectively; (2) Over the five years, the rills on Slopes CK, SHA and SA varied in the range of 7.57-11.35 cm, 7.58-13.31 cm and 5.57-6.14 cm, respectively, in mean width, in the range of 3.38-6.23 cm, 4.19-10.34 cm, and 2.59-4.24 cm, respectively in mean depth, and in the range of 1.52-5.25 m·m–2, 1.42-1.68 m·m–2and 1.88-2.25 m·m–2, respectively, in density; (3) For the first year, the rills in all the slopes increased with length of the slope in ratio of width and depth quite sharply, but with the time going on, they showed a decreasing trend in the ratio, while they varied in an increasing trend in rill density and rill erosion amount with length of the slope; and(4)Compared with CK, SHA and SA decreased the slope rill erosion modulus by 25.0% and 25.86%, respectively, showing little erosion controlling effect in the first year, but they did by 61.73% and 35.31% respectively, showing significantly enhanced erosion controlling effect.SHA and SA come to be effective only in the third year and on. The rills on Slopes SHA and SA varied in the range of 8 -12 cm and 4-8 cm, respectively, in width and in a range of 4-6 cm and 2-6 cm, respectively, in depth, which indicates SA is more effective in controlling development of rills, in terms of width and depth of rills. And the rills on Slopes SHA and SA varied in the range of 1.42-1.68 m·m–2and 1.88-2.25 m ·m–2, respectively, in density, which suggests that SHA is more effective in terms of number of rills per unit area. Both of the effects become more significant with increasing distance from the top of the slope. Erosion modulus was 1.15% lower in SHA than in SA in in the first year, and then came up to 1.55 kg·m–2·a–1and 2.62 kg·m–2·a-1, respectively, in the two, suggesting that SHA is more effective in controlling erosion. All the findings in this survey may serve as a scientific basis and theoretical guidance for rational revegetation of mine dump slopes.
Coal mine dump slope; Rill erosion; Revegetation measures; Rill form; Revegetation age
S157.1
A
10.11766/trxb201904240128
崔志強,王文龍,郭明明,康宏亮,李建明,白蕓,郭文召. 不同植被措施下排土場邊坡細溝發(fā)育時空特征[J]. 土壤學報,2020,57(5):1155–1165.
CUI Zhiqiang,WANG Wenlong,GUO Mingming,KANG Hongliang,LI Jianming,BAI Yun,GUO Wenzhao. Spatial and Temporal Characteristics of Rill Development on Slopes of Waste Dump of Mining as Affected by Revegetation Measures[J]. Acta Pedologica Sinica,2020,57(5):1155–1165.
* 國家自然科學基金項目(40771127,41701316,41761062)和國家重點研發(fā)計劃(2016YFC0501604)資助 Supported by the National Natural Science Foundation of China(Nos. 40771127,417701316,41761062)and the National Key Research and Development Program of China(No. 2016YFC0501604)
:王文龍,男,陜西大荔人,博士生導師,研究員,主要研究方向為土壤侵蝕與水土保持。E-mail:wlwang@nwsuaf.edu.cn
崔志強(1994—),男,山西呂梁人,博士研究生,研究方向為生產(chǎn)建設項目水土保持。E-mail:cuizhiqiang17@mails.ucas.edu.cn
2019–04–24;
2019–06–22;
優(yōu)先數(shù)字出版日期(www.cnki.net):2019–07–18
(責任編輯:檀滿枝)