陶中韜 楊紹清
摘要:編隊(duì)作為一種任務(wù)執(zhí)行的基本單位,組成編隊(duì)的成員的路徑規(guī)劃和任務(wù)分配問題是編隊(duì)形成研究的重要內(nèi)容,該文提出了編隊(duì)形成效果的重要影響因素,給出了編隊(duì)的正式描述以及將成員分配給編隊(duì)的方式,考慮了影響分配質(zhì)量的主要參數(shù),確定了分配質(zhì)量的標(biāo)準(zhǔn),并給出了能夠?qū)⒉煌δ芊蛛x的近似方法。通過實(shí)現(xiàn)次優(yōu)分配的相應(yīng)算法,給出了分配問題的近似解的一般方法。最終給出仿真結(jié)果,證明了方法的可行性。
關(guān)鍵詞:編隊(duì);分配問題;次優(yōu)理論;隊(duì)形建立;搜索深度
中圖分類號:TP301.6 ? ? ?文獻(xiàn)標(biāo)識碼:A
文章編號:1009-3044(2020)25-0009-04
Abstract: Formation is the basic unit of task execution. The path planning and task allocation of the members who form the formation is an important part of formation research. This paper presents the important influencing factors of formation, and gives a formal description of the formation and assigns members to The way of formation, and considering the main parameters that affect the quality of allocation, determine the standard of allocation quality, and give an approximate method that can separate different functions. By implementing the corresponding algorithm of sub-optimal allocation, a general method for the approximate solution of the allocation problem is given. Finally, simulation results are given to prove the feasibility of the method.
Key words: formation; assignment problem; suboptimal theory; formation establishment; search depth
1 背景
編隊(duì)是指能夠協(xié)作活動的一組自主移動對象,通過構(gòu)建這種形式,其成員能夠在任務(wù)執(zhí)行上解決更多的問題,并有助于最終任務(wù)的成功完成[1-3]。編隊(duì)成員的數(shù)量,編隊(duì)成員相互的位置關(guān)系,編隊(duì)的戰(zhàn)術(shù)目的,在編隊(duì)中的優(yōu)先級關(guān)系等問題是在進(jìn)行編隊(duì)的組成時(shí)需要考慮的問題。大量邊際條件的存在會引起多約束條件的優(yōu)化問題。針對這種問題,通常通過可定量表達(dá)的特征來形成最佳的決定標(biāo)準(zhǔn)。此外,不同標(biāo)準(zhǔn)常具有不同的度量,因此有多標(biāo)準(zhǔn)約束條件的問題開始變得復(fù)雜[4-6]。
編隊(duì)的合理規(guī)劃對于有效地進(jìn)行監(jiān)視和巡邏,避免碰撞以及編隊(duì)成員的安全地全自動行動具有重要意義。本研究旨在得到創(chuàng)建編隊(duì)時(shí)快速解決大量編隊(duì)成員分配問題的方法。編隊(duì)成員通常具有不同的目的和特性,在多種情況下,尋找不是最優(yōu)而是接近最優(yōu)的分配方案是可行的。首先,在很多情況下對于大量目標(biāo)對象尋找最優(yōu)解,因?yàn)槠浔旧淼膰?yán)格性和時(shí)效性,往往不具有實(shí)際應(yīng)用價(jià)值。其次,由于解決分配問題的參數(shù)有些是完全主觀的,尋找最優(yōu)解也并不合理。在這種情況下尋找次優(yōu)解決方案往往要容易得多[7-10]。在本文中,次優(yōu)與最優(yōu)在約束上的差異在于分配的集合改為整體的子集和將非線性最優(yōu)準(zhǔn)則用簡單的可分離加性函數(shù)進(jìn)行替換這兩點(diǎn)。
2 編隊(duì)功能形成的具化要求
編隊(duì)的一個(gè)重要特征是其中每個(gè)位置的功能價(jià)值。由于編隊(duì)成員所面臨的問題復(fù)雜多變且涉及不同的種類,通常編隊(duì)中的每個(gè)位置都有其明確的功能。還必須考慮到編隊(duì)中的位置具有不同的重要性。有些地方必須由某編隊(duì)成員占據(jù),并且這些編隊(duì)成員在功能上必須最大限度地與該地方相對應(yīng)。因此,編隊(duì)中的位置通常具有不同的優(yōu)先級。因此有必要開發(fā)一種利用分布在空間中的零散成員來填充編隊(duì)中位置的方法,并通過編隊(duì)成員與占用位置的最佳功能對應(yīng),編隊(duì)中位置的優(yōu)先級,編隊(duì)成員的初始位置和方向,編隊(duì)成員到達(dá)該位置所需能源這4個(gè)約束來考慮問題[11]。
將假設(shè)n是編隊(duì)成員數(shù)量,m是編隊(duì)中的位置數(shù)量,每個(gè)位置都有其自身的功能。 認(rèn)為每個(gè)編隊(duì)成員都是功能性的,且具有足夠的多功能性,可以執(zhí)行不同位置所需完成的任務(wù)。為了刻畫編隊(duì)成員與編隊(duì)位置的對應(yīng)關(guān)系, 將每個(gè)編隊(duì)成員按順序排列:
其中[aij]確定第[i]個(gè)編隊(duì)成員執(zhí)行與編隊(duì)中第[j]位相對應(yīng)功能的順應(yīng)程度。假設(shè)對于任何[i]和[j],[0≤aij≤1]。 這樣向量可以根據(jù)編隊(duì)成員的戰(zhàn)術(shù)和技術(shù)數(shù)據(jù)或?qū)<夜烙?jì)來形成。同時(shí)編隊(duì)位置也具有優(yōu)先次序。假設(shè)編隊(duì)中的位置必須具有不同的優(yōu)先級,即在該位置擁有編隊(duì)成員的重要性。同時(shí)編隊(duì)中的位置按優(yōu)先級從高到低編號。如果某些位置具有相同的優(yōu)先級,即將相鄰的數(shù)字隨機(jī)分配給它們。 因此,如果[j1 編隊(duì)成員的收到指令時(shí)的狀態(tài)應(yīng)滿足編隊(duì)的需求。所以,一方面需要預(yù)先知道由一組編隊(duì)成員組成編隊(duì)并執(zhí)行任務(wù)的資源成本,另一方面要知道每個(gè)編隊(duì)成員的所具備的資源。因此,可將編隊(duì)的創(chuàng)建簡化為將編隊(duì)成員分配到具有多個(gè)限制和多個(gè)優(yōu)化特征的位置的問題。 3 確定影響分配質(zhì)量的參數(shù) 3.1 位置分配質(zhì)量標(biāo)準(zhǔn)的確立 5 結(jié)束語 本文提出了一種基于次優(yōu)理論的編隊(duì)成員自主組成隊(duì)形方法,該方法可確保在可接受范圍內(nèi)接近最佳解決方案。方法與最優(yōu)性的偏差是由于通過可分離的加法功能逼近最大功能且將任務(wù)簡化為單個(gè)標(biāo)準(zhǔn),以及尋找非整體而是其子集的可接受的分配。 該方法顯示出足夠高的效率,這使其可以在大量編隊(duì)成員的條件下實(shí)時(shí)使用。尤其是在已經(jīng)形成的編隊(duì)中重新組織或補(bǔ)充編隊(duì)時(shí)。同時(shí)該方法也可以向更多成員的群體進(jìn)行推廣,在理論上同樣成立。 參考文獻(xiàn): [1] 冉華明,熊蓉玲.空戰(zhàn)中機(jī)群編隊(duì)分層優(yōu)化算法[J].航空學(xué)報(bào),2020:1-9. [2] 孟光磊,周銘哲,樸海音,等.基于協(xié)同戰(zhàn)術(shù)識別的雙機(jī)編隊(duì)威脅評估方法[J].系統(tǒng)工程與電子技術(shù),2020:1-12. [3] 韓維,吳立堯,張勇.艦載戰(zhàn)斗機(jī)/無人機(jī)編隊(duì)飛行控制研究現(xiàn)狀與展望[J].科學(xué)技術(shù)與工程,2019,19(36):73-80. [4] 王鵬宇.飛行器編隊(duì)網(wǎng)絡(luò)測距技術(shù)研究[J].遙測遙控,2019,40(2):22-30. [5] 劉流.多機(jī)器人協(xié)調(diào)編隊(duì)控制的設(shè)計(jì)與實(shí)現(xiàn)[D].南京:南京理工大學(xué),2019. [6] 王厚鵬,曹素芝,閆蕾,等.多目標(biāo)跟蹤的飛行器集群協(xié)同實(shí)時(shí)任務(wù)分配策略[J].導(dǎo)彈與航天運(yùn)載技術(shù),2020(3):32-37. [7] Rakowski J.The theory of the second best and the competitive equilibrium model[J].Journal of Economic Issues,1980,14(1):197-207. [8] 毛藝帆,張多林.改進(jìn)的人工蜂群算法求解武器目標(biāo)分配問題[J].軍事運(yùn)籌與系統(tǒng)工程,2015,29(1):30-33,80. [9] 李斌,王強(qiáng),柴毅,等.三維編隊(duì)飛行模型建立及自適應(yīng)魯棒控制[J].重慶大學(xué)學(xué)報(bào),2012,35(2):35-40,54. [10] 鄧亮.無人機(jī)編隊(duì)飛行模型的建立與短時(shí)記憶控制[D].重慶:重慶大學(xué),2011. [11] 李紅鋒.時(shí)間壓力和屬性權(quán)重對決策中信息加工的影響[J].長沙大學(xué)學(xué)報(bào),2014,28(2):112-115. [12] 夏勇強(qiáng).基于數(shù)學(xué)建模類三篇論文的翻譯實(shí)踐報(bào)告[D].綿陽:西南科技大學(xué),2016. [13] 宋曉曉.基于鄰域粗糙模型的次優(yōu)決策表約簡算法[D].青島:青島大學(xué),2017. 【通聯(lián)編輯:謝媛媛】