李卓凡 于勝堯 侯可軍
摘 ? 要:榴輝巖研究對(duì)深入認(rèn)識(shí)超高壓變質(zhì)帶構(gòu)造演化過程具重要意義。綠梁山地區(qū)榴輝巖以透鏡體形式出露于花崗片麻巖中,巖相學(xué)和溫壓計(jì)算結(jié)果顯示,綠梁山榴輝巖經(jīng)歷了一個(gè)順時(shí)針的P-T演化軌跡:①峰期榴輝巖相階段。以石榴子石+綠輝石+金紅石為特征,溫壓條件為P>25.5 kPa、T>840℃;②高壓麻粒巖相階段。以綠輝石退變?yōu)橥篙x石和斜長(zhǎng)石為特征,形成的溫壓條件P=17.1~18.7 kPa、T=814℃~896℃;③角閃巖相階段。以透輝石退變?yōu)榻情W石和斜長(zhǎng)石、金紅石退變?yōu)殁佽F礦為特征,形成的P-T條件為P=4.5~6.5 kPa、T=581℃~665℃。結(jié)合前人研究成果,提出一個(gè)多階段構(gòu)造演化模型:綠梁山榴輝巖的原巖在新元古代時(shí)期位于大陸地殼中,由于大洋地殼俯沖牽引作用,伴隨大陸地殼一起被拖拽至俯沖通道內(nèi),于深度至少75 km處發(fā)生變質(zhì)作用;隨后進(jìn)行了一個(gè)相對(duì)較慢的折返過程之后出露于地表。
關(guān)鍵詞:柴北緣;綠梁山;榴輝巖;P-T軌跡;構(gòu)造演化
柴北緣超高壓變質(zhì)帶位于青藏高原北部,NW向延伸近400 km,屬早古生代構(gòu)造單元,為蘇魯-大別超高壓變質(zhì)帶之后,我國(guó)發(fā)現(xiàn)的又一條超高壓變質(zhì)帶[1]。其南部為柴達(dá)木盆地,為以前寒武紀(jì)基底和古生代造山帶為主的新生代盆地[2];北部為祁連地塊,主要由前寒武紀(jì)基底和古生代沉積蓋層組成[3]。因變質(zhì)巖巖石礦物組合等差異,柴北緣超高壓變質(zhì)帶自西向東被劃分為4個(gè)次級(jí)構(gòu)造單元[4]:①魚卡榴輝巖-片麻巖單元;②綠梁山石榴橄欖巖-片麻巖單元;③錫鐵山榴輝巖-片麻巖單元;④都蘭榴輝巖-片麻巖單元(圖1)。因基質(zhì)中未發(fā)現(xiàn)綠輝石,綠梁山榴輝巖最初被認(rèn)定為麻粒巖或退變榴輝巖[5-7]。目前隨基質(zhì)中綠輝石的發(fā)現(xiàn),綠梁山榴輝巖逐漸被確認(rèn)、報(bào)道[8-9]。柴北緣榴輝巖主要分為大洋型榴輝巖和大陸型榴輝巖兩類,前者與大洋地殼俯沖有關(guān),后者主要與大陸地殼俯沖有關(guān),兩種類型榴輝巖間的演變過程目前還存在一定爭(zhēng)議。目前對(duì)綠梁山榴輝巖變質(zhì)期次劃分也存在一定爭(zhēng)議,陳鑫等將綠梁山榴輝巖分為3個(gè)期次[8]:①峰期榴輝巖相;②高壓麻粒巖相;③角閃巖相。周桂生等則將綠梁山榴輝巖分為4個(gè)變質(zhì)階段[9]:①峰期榴輝巖相;②高壓麻粒巖相;③中壓麻粒巖相;④角閃巖相。本文以綠梁山榴輝巖為研究對(duì)象,通過巖相學(xué)及礦物學(xué)研究,探討綠梁山榴輝巖的變質(zhì)期次,推斷其構(gòu)造演化過程。
1 ?綠梁山榴輝巖研究現(xiàn)狀
綠梁山位于大柴旦鎮(zhèn)南約20 km處(圖1),出露巖石主要有石榴橄欖巖、藍(lán)晶石-矽線石副片麻巖、正片麻巖、鎂鐵質(zhì)麻粒巖、退變榴輝巖等。綠梁山西部侵入有年齡為403~430 Ma的花崗巖深層巖體[10-12],該花崗巖體被認(rèn)為是高壓-超高壓巖石快速折返至中、下地殼時(shí)部分熔融的產(chǎn)物[10]。綠梁山石榴橄欖巖主要出露于片麻巖中,峰期變質(zhì)條件為T=960℃、P=5.0~6.5 GPa[13]。石榴橄欖巖石榴子石中發(fā)現(xiàn)有金紅石、斜方輝石、單斜輝石的出溶結(jié)構(gòu);橄欖石中發(fā)現(xiàn)有鈦鐵礦、Al-鉻鐵礦的出溶結(jié)構(gòu),表明綠梁山石榴橄欖巖經(jīng)歷的俯沖深度超過200 km[13-14]。張建新等對(duì)綠梁山麻粒巖研究表明[5-6],麻粒巖經(jīng)歷了多期次變質(zhì)作用,高壓麻粒巖相變質(zhì)年齡為445~450 Ma,中壓麻粒巖相變質(zhì)年齡為420~425 Ma?;谑褡邮邪l(fā)現(xiàn)有綠輝石包體,推測(cè)早期可能存在榴輝巖相[5,7]。最近,新鮮榴輝巖露頭相繼于綠梁山被發(fā)現(xiàn)、識(shí)別[8-9],但針對(duì)該榴輝巖具體變質(zhì)演化過程研究尚缺乏。
2 ?榴輝巖礦物組合特征與樣品采集
榴輝巖位于綠梁山地體南部,靠近公路約2 km處,以包體形式出露于花崗片麻巖中(圖2),長(zhǎng)軸寬數(shù)米至數(shù)十米。中部榴輝巖保存較新鮮,靠近長(zhǎng)英質(zhì)脈體邊部,可觀察到較明顯的退變質(zhì)現(xiàn)象。采集新鮮榴輝巖和退變榴輝巖共5塊,切塊制片后進(jìn)行鏡下觀察和探針實(shí)驗(yàn),實(shí)驗(yàn)方法與步驟見[15]。
榴輝巖樣品主要由石榴子石(30%~35%)、單斜輝石(30%~35%)、角閃石(20%~30%)、斜長(zhǎng)石(5%~10%)、石英(2%~5%)等組成(圖3),次要礦物有金紅石、鈦鐵礦、榍石、磷灰石,金紅石主要分布于鈦鐵礦核部,表明鈦鐵礦由金紅石退變而來(lái)。礦物名稱縮寫見[16]。
石榴子石 ?石榴子石為半自形-自形粒狀,發(fā)育有明顯裂隙,內(nèi)部發(fā)育有綠輝石、鈦鐵礦、金紅石等礦物包體,邊部可見較明顯的“白眼圈”結(jié)構(gòu)。石榴子石探針數(shù)據(jù)見表1。選取顆粒較大的石榴子石做一條成分剖面線,可看出從核部到邊部,鐵鋁榴石含量逐漸上升,鎂鋁榴石和鈣鋁榴石含量逐漸降低,表現(xiàn)為明顯的擴(kuò)散環(huán)帶(圖4)。
輝石 ?榴輝巖中輝石存在形式分為兩種,一種以包體形式存在于石榴子石中,此類輝石含有最高的Na2O含量(4.09%),相應(yīng)的硬玉分子含量為29%(表2)。成分三角投圖中,樣品落入綠輝石區(qū)域(圖5-a);另一種輝石呈自行-半自形狀分布于基質(zhì)中,此類輝石Na2O含量3.50%~0.49%,相應(yīng)硬玉分子含量25%~4%,在成分三角投圖中落在綠輝石和透輝石區(qū)域。其中靠近角閃石或與斜長(zhǎng)石形成后成合晶的輝石,硬玉分子含量較低,這種典型成分結(jié)構(gòu)關(guān)系表明,從綠輝石退變?yōu)橥篙x石,再退變?yōu)榻情W石的整個(gè)過程。
角閃石 ?角閃石主要以大顆粒形式存在于基質(zhì)中,少量與斜長(zhǎng)石形成后成合晶。從電子探針測(cè)試分析結(jié)果看,角閃石主要為韭閃石和鎂鈣閃石,特征值分別為CaB≥1.5,NaB<0.5,(Na+K)A<0.5,Si=6.4~6.8,Mg/(Mg+Fe2+)=0.53~0.63及CaB≥1.5,NaB<0.5,(Na+K)A≥0.5,Si=6.2~6.6,Mg/(Mg+Fe2+)=0.65~0.70(表2,圖5-b)。
長(zhǎng)石 ?綠梁山榴輝巖中長(zhǎng)石可分為兩種,一種存在于基質(zhì)中或與單斜輝石形成后成合晶,這類斜長(zhǎng)石端元組分為28.01~43.64 mol%An、56.23~71.73 mol%Ab、0.09~0.31 mol%Or;另一種斜長(zhǎng)石主要與角閃石形成后成合晶,構(gòu)成圍繞石榴子石的冠狀體,這類斜長(zhǎng)石端元組分為42.1~48.03 mol%An、51.61~57.63 mol%Ab、0.1~0.41 mol%Or(表2)。
3 ?榴輝巖變質(zhì)期次與變質(zhì)溫度-壓力條件
據(jù)巖相學(xué)研究特征和礦物探針結(jié)果,綠梁山榴輝巖經(jīng)歷3個(gè)變質(zhì)期次:①峰期榴輝巖變質(zhì)階段。特征礦物為石榴子石+綠輝石+金紅石+石英;②高壓麻粒巖相階段。以石榴子石+透輝石+金紅石+斜長(zhǎng)石+石英礦物組合為特征,由榴輝巖相到高壓麻粒巖相主要經(jīng)歷了石榴子石+綠輝石→透輝石+斜長(zhǎng)石階段;③角閃巖相階段。以石榴子石+透輝石+角閃石+斜長(zhǎng)石+鈦鐵礦±石英礦物組合為特征,從高壓麻粒巖相到角閃巖相,主要退變質(zhì)反應(yīng)為石榴子石+透輝石→角閃石+斜長(zhǎng)石±石英、金紅石+Fe2+→鈦鐵礦。
綠梁山榴輝巖相峰期條件是利用石榴子石+綠輝石礦物組合估算的,利用Perplex_X軟件,據(jù)石榴子石中保留的綠輝石包體所含硬玉分子量,計(jì)算出榴輝巖相壓力下限約為25.5 kPa[15],再據(jù)Grt-Cpx地質(zhì)溫度計(jì)[17],選擇石榴子石核部和石榴子石內(nèi)部硬玉分子含量高的綠輝石包體進(jìn)行計(jì)算,得到溫度約為840℃。由于計(jì)算時(shí)考慮的是榴輝巖相的下限壓力,且結(jié)合鏡下礦物,綠輝石具一定程度退變,所以實(shí)際峰期時(shí)的硬玉分子含量應(yīng)高于測(cè)量值,榴輝巖相的P-T條件為P>25.5 kPa、T>840℃。高壓麻粒巖相階段變質(zhì)條件通過Grt-Cpx-Pl-Q溫壓計(jì)獲得[18-19]。選取石榴子石邊部、基質(zhì)中或后成合晶中透輝石、基質(zhì)中斜長(zhǎng)石或與透輝石形成合晶的斜長(zhǎng)石,得到高壓麻粒巖相變質(zhì)條件為P=17.1~18.7 kPa、T=814~896℃。角閃巖相溫壓條件據(jù)角閃石單礦物溫度計(jì)獲得[19],其中角閃石陽(yáng)離子計(jì)算據(jù)Holland and Blundy獲得[20]。角閃巖相變質(zhì)條件為P=4.5~6.5 kPa、T=581℃~665℃。
4 ?討論
綠梁山榴輝巖可識(shí)別出3個(gè)變質(zhì)階段,溫壓計(jì)算結(jié)果顯示,樣品榴輝巖相峰期變質(zhì)條件為P>25.5 kPa、T>840℃。隨后在榴輝巖相向高壓麻粒巖相過渡過程中,綠輝石分解為透輝石和斜長(zhǎng)石(Grt+Omp→Cpx+Pl1),高壓麻粒巖相溫壓條件為P=17.1~18.7 kPa、T=814℃~896℃,壓力顯著下降但溫度略有上升。從高壓麻粒巖相退變到角閃巖相過程中,透輝石退變質(zhì)為角閃石和斜長(zhǎng)石(Grt+Cpx→Amp+Pl2±Q),金紅石退變?yōu)殁佽F礦(Ru+Fe2→Ilm),變質(zhì)條件為P=4.5~6.5 kPa、T=581℃~665℃。基于巖相學(xué)和前人年代學(xué)研究,綠梁山榴輝巖P-T-t軌跡被確定。榴輝巖形成于430~450 Ma[7,8,22,24-26],溫壓條件為P>25.5 kPa、T>840℃,表明其俯沖深度至少為75 km。在(424±5)Ma左右[15],榴輝巖折返至50 km處,被高壓麻粒巖相變質(zhì)作用疊加,所處溫壓條件P=17.1~18.7 kPa、T=814℃~896℃。在(409±2)Ma時(shí)榴輝巖折返至19~21 km處[15],退變到角閃巖相,溫壓條件變?yōu)镻=4.5~6.5 kpa、T=581℃~665℃。綠梁山榴輝巖的P-T-t模式記錄了一個(gè)順時(shí)針的演化過程(圖6)。榴輝巖在退變質(zhì)過程中經(jīng)歷了一個(gè)高溫疊加階段,與錫鐵山榴輝巖演化相似,明顯區(qū)別于魚卡榴輝巖[21,23,27,28-31],高溫疊加作用導(dǎo)致榴輝巖在退變質(zhì)過程中遭受了強(qiáng)烈的退變質(zhì)作用的疊加,導(dǎo)致峰期榴輝巖相的記錄被破壞。一般認(rèn)為,快速折返過程會(huì)保留完整的峰期記錄,而緩慢的折返過程可能導(dǎo)致高溫變質(zhì)作用疊加破壞峰期變質(zhì)記錄[32-33]。所以,結(jié)合前人研究來(lái)看,與魚卡地區(qū)相比綠梁山榴輝巖可能經(jīng)歷了一個(gè)更“慢”的折返過程。
結(jié)合前人和本文研究,總結(jié)出一個(gè)關(guān)于柴北緣超高壓變質(zhì)帶的多階段演化過程(圖7):①450 Ma之前,柴達(dá)木地塊大陸地殼受南祁連洋洋殼俯沖的牽引作用,向祁連地塊方向運(yùn)動(dòng);②由于南祁連洋洋殼的俯沖和消亡,柴達(dá)木地塊和祁連地塊發(fā)生碰撞,在洋殼拖拽作用下,柴達(dá)木地塊大陸地殼繼續(xù)向祁連地塊之下俯沖,在450~430 Ma,附著在大陸地殼和大洋地殼上的榴輝巖原巖經(jīng)高壓-超高壓變質(zhì)作用,形成榴輝巖;③隨著俯沖深度的加深,由于大陸地殼密度小于地幔,受到浮力作用影響,密度較小的大陸地殼與大洋地殼發(fā)生斷裂,大陸地殼和其中的大陸型榴輝巖及小部分洋殼和大洋型榴輝巖,在隧道流或板片回撤力作用下開始折返。④在小于410 Ma時(shí),榴輝巖折返至地殼淺部,造山帶進(jìn)入拉張垮塌階段。
5 ?結(jié)論
(1)綠梁山榴輝巖經(jīng)歷3個(gè)變質(zhì)階段:①榴輝巖相。特征礦物組合為石榴子石+綠輝石+金紅石+石英,溫壓條件為P>25.5 kPa、T>840℃;②高壓麻粒巖相。礦物組合為石榴子石+透輝石+金紅石+斜長(zhǎng)石+石英,溫壓條件為P=17.1~18.7 kPa、T=814℃~896℃;③角閃巖相。礦物組合為石榴子石+透輝石+角閃石+斜長(zhǎng)石+鈦鐵礦,溫壓條件為P=4.5~6.5 kPa、T=581℃~665℃。
(2)綠梁山榴輝巖經(jīng)歷了一個(gè)相對(duì)較慢的折返過程,退變質(zhì)過程中經(jīng)后期高溫疊加作用,使得峰期榴輝巖相記錄被破壞。
參考文獻(xiàn)
[1] ? ?楊經(jīng)綏,許志琴,李海兵,等.我國(guó)西部柴北緣地區(qū)發(fā)現(xiàn)榴輝巖[J].科學(xué)通報(bào), 1998(14):1544-1549.
[2] ? ?Wang,Q. M.,Coward,M. P.The Chaidam basin (NW China):formation and hydrocarbon potential[J].Journal of Petroleum Geology.1990,13(1), 93-112.
[3] ? Wan,Y.S.,Xu,Z.Q.,Yang,J.S.,Zhang,J.X.Ages and compositions of the Precambrian high-grade basement of the Qilian Terrane and its adjacent areas[J].Acta Geologica Sinica-English Edition,2001, 75(4),375-384.
[17] ?Ravna K. The garnet-clinopyroxene Fe2++Mg geothermometer: an updated calibration[J]. Journal of Metamorphic Geology, 2000, 18.
[18] ?Eckert, J.O., Jr., Newton, R.C. and Kleppa, O.J. The ?H of reaction and recalibration of garnet - pyroxene - plagioclase - quartz geobarometers in the CMAS system by solution calorimetry[J]. American Mineralogist, 1991,76: 148-160
[19] ?Gerya, T.V., Perchuk, L.L., Triboulet, C., et al. Petrology of the Tumanshet Zonal Metamorphic Complex, Eastern Sayan[J].Petrology, 1997, 5 (6), 503-533.
[20] ?Holland, T., Blundy, J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry[J]. Contrib. Miner. Petrol, 1994, 116 (116), 433-447.
[21] ?Ren, Y. F., Chen, D. L., Kelsey, D. E., et al. Petrology and Geochemistry of the lawsonite (pseudomorph)-bearing eclogite in Yuka terrane, North Qaidam UHPM belt: An eclogite facies metamorphosed oceanic slice[J]. Gondwana Research, 2017, 42, 220-242.
[22] ?Yu, S.Y., Zhang, J.X., Li, H.k., et al. Geochemistry,zircon U-Pb geochronology and Lu-Hf isotopic composition of eclogites and their hostgneisses in the Dulan area, North Qaidam UHP terrane: new evidence for deepcontinental subduction[J]. Gondwana Research, 2013, 23(3), 901-919.
[23] ?陳丹玲,孫勇,張安達(dá),等.柴北緣?mèng)~卡河榴輝巖的變質(zhì)演化——石榴石成分環(huán)帶及礦物反應(yīng)結(jié)構(gòu)的證據(jù)[J]. 巖石學(xué)報(bào), 2005, 21(4).
[24] ?Chen, D. L., Liu, L., Sun, Y., et al. Geochemistry and zircon U-Pb dating and its implications of the Yukahe HP/UHP terrane, the ? ? ? ?North Qaidam, Nw china[J].Journal of Asian Earth Sciences, ? ? ? ? ?2009, 35(3-4), 259-272.
[25] ?Song, S. G., Su, L., Li, X. H., et al. Tracing the 850-Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt, NW China[J]. Precambrian Research, 2010, 183(4), 805-816.
[26] ?Zhang, J. X., Mattinson, C. G., Yu, S. Y., et al. U-Pb zircon geochronology of coesite-bearing eclogites from the southern Dulan area of the North Qaidam UHP terrane, northwestern China: spatially and temporally extensive UHP metamorphism during conti ? ? ? ? ? ?nental subduction[J]. Journal of Metamorphic Geology, 2010, 28 ? ?(9), 955-978.
[27] ?Zhang, J. X., Yang, J. S., Mattinson, C. G., et al. Two contrasting eclogite cooling histories, North Qaidam HP/UHP terrane, western China: petrological and isotopic constraints[J]. Lithos, 2005, 84(1-2), 51-76.
[28] ?Song, S. G., Niu, Y. L., Su, L., et al. Continental orogenesis fromseafloor subduction, continent collision/subduction, to orogencollapse, and orogen recycling: the example of the North QaidamUHPM belt, NW China[J]. Earth Science Review, 2014,129,59-84.
[29] ?張建新,孟繁聰,楊經(jīng)綏,等. 柴北緣?mèng)~卡榴輝巖的pT演化歷史[J]. 巖石礦物學(xué)雜志, 2005, 24(4):245-254.
[30] ?Zhou, G.S., Zhang, J.X., Yu, S.Y., et al. Metamorphic evolution of eclogites and associated metapelites from the Yuka terrane in the North Qaidam ultrahigh pressure metamorphic belt, NW China: Constraints from phase equilibrium modeling[J]. Journal of Asian Earth Sciences, 2019, 173, 161-175.
[31] ?Yu, S.Y., Zhang, J.X., Peng, Y.B., et al. Multistage anatexis during tectonic evolution from oceanic subduction to continental collision: A review of the North Qaidam UHP Belt, NW China[J]. Earth Science Review, 2019, 191, 190-211
[32] ?Brueckner, H. K.,van Roermund, H. L. Dunk tectonics: A multiple subduction/eduction model for the evolution of the Scandinavian Caledonides[J]. Tectonics, 2004, 23(2).
[33] ?Zhang, C., Zhang, L. F., Van Roermund, H., et al. Petrology and SHRIMP U-Pb dating of Xitieshan eclogite, North Qaidam UHP metamorphic belt, NW China[J]. Journal of Asian Earth Sciences, 2011, 42(4), 752-767.
Abstract:The study of eclogite is of great significance for the further understanding of the structural evolution process of UHP metamorphic belt. In this paper, a series of studies have been carried out on the newly discovered eclogites in the Luliangshan to explore the subduction exhumation process and the mechanism of structural evolution. The Luliangshan eclogites surrounded by granitic gneiss or paragneiss as lens. Petrology and P–T calculation shows that the eclogites have experienced a metamorphic process clockwise path. ①The peak eclogite-facies metamorphic stage, is characterized by the peak mineral assemblages of garnet + omphacite + rutile + quartz at T > 840℃ and P > 25.5 kbar. ②The HP granulite-facies, is characterized by the retrogradation of omphacite to diopside and plagioclase, with P–T condition of 814-896 °C and 17.1-18.7 kbar. ③ The subsequent amphibolite-facies stage, is characterized by amphibole + plagioclase symplectitic around the clinopyroxene and the retrogradation of rutile to ilmenite, with the metamorphic condition of 674 ℃~686 ℃ and 6.4-6.9 kbar. Meanwhile, combined with previous studies, a multi-stage tectonic evolution model is proposed that protolith of the Luliangshan eclogite was emplaced into continental crust during the Neoproterozoic, which was dragged into the subduction channel together with the continental crust due to the subduction traction of the oceanic crust, and metamorphosed at a depth of at least 75 km. Afterwards, it emerged to the surface with a relatively slow exhumation process.
Key words:North Qaidam; Luliangshan; Eclogite; P-T path; Tectonic evolution