李天義 徐琳
摘 ?要:身體活動是提高人體生理適應(yīng)的有效方法。但何種類型的運(yùn)動,以及多大訓(xùn)練量能夠產(chǎn)生最佳化的身體適應(yīng)仍存在爭議。當(dāng)前,盡管大強(qiáng)度間歇訓(xùn)練存在較高的損傷風(fēng)險(xiǎn),但鑒于大強(qiáng)度的間歇訓(xùn)練的獨(dú)特性,能夠獲得更多的健康上的益處,也已受到廣泛的關(guān)注。研究表明,大強(qiáng)度間歇練習(xí)可能更為有效地提高心血管和肌肉骨骼系統(tǒng),以及腦部功能。充分認(rèn)識大強(qiáng)度間歇運(yùn)動與腦部功能之間的關(guān)系和適應(yīng)機(jī)制,可為最佳化健身計(jì)劃的制定,提供有用的信息。
關(guān)鍵詞:大強(qiáng)度間歇訓(xùn)練 ?腦部功能 ?海馬 ?最佳化適應(yīng)
中圖分類號:G804 ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識碼:A ? ? ? ? ? ? ? ? ?文章編號:2095-2813(2020)09(a)-0017-05
Abstract: Physical activity is an effective way to improve the physiological adaptation of the human body. What type of exercise, and how much of it, can produce optimal physical fitness, is still a matter of debate. At present, despite the high-intensity interval training has a high risk of injury, but in view of the uniqueness of the high-intensity interval training, more health benefits can be obtained, which has received widespread attention. Studies have shown that high-intensity interval exercises may be more effective in improving cardiovascular and musculoskeletal systems, as well as brain function. A full understanding of the relationship between high-intensity interval exercise and brain function and its adaptive mechanism can provide useful information for the formulation of optimal fitness plan.
Key Words: High-intensity interval training; Brain functions; Hippocampus; Optimized adaptation
身體活動和運(yùn)動訓(xùn)練是提高人體生理適應(yīng)的有效方法,包括心血管、肌肉骨骼系統(tǒng)及腦部功能。前期研究表明運(yùn)動可以改善心血管和骨骼肌適應(yīng)的各種標(biāo)志物[1-3],產(chǎn)生特定生物學(xué)適應(yīng)[4]。另外,還可能會調(diào)節(jié)中樞神經(jīng)系統(tǒng)方面的適應(yīng)[5],例如促進(jìn)成人海馬神經(jīng)再生,這一適應(yīng)與海馬相關(guān)的空間學(xué)習(xí)和記憶功能有關(guān)。運(yùn)動可增強(qiáng)突觸的傳遞和可塑性[5]。盡管前期的研究已經(jīng)證明運(yùn)動與中樞和外周的變化有關(guān),但何種類型的運(yùn)動,以及多大訓(xùn)練量能夠產(chǎn)生最佳化的身體適應(yīng)仍存在爭議。當(dāng)前,盡管大強(qiáng)度間歇訓(xùn)練(high-intensity interval training,HIIT)存在較高的損傷風(fēng)險(xiǎn),但鑒于大強(qiáng)度的間歇訓(xùn)練的獨(dú)特性[6,7],能夠獲得更多的健康上的益處,也已受到廣泛的關(guān)注。
1 ?大強(qiáng)度間歇訓(xùn)練的特點(diǎn)和生理適應(yīng)
HIIT訓(xùn)練設(shè)計(jì)涉及到最大努力的運(yùn)動,通常為大約20~90s,然后嵌入短暫的休息或低強(qiáng)度恢復(fù)。鍛煉通常不到30min,但有些持續(xù)時間更長。其目標(biāo)是充分恢復(fù),以至于受訓(xùn)者在下一個訓(xùn)練間隔中,能夠再次盡最大的努力[6,7]。因此,HIIT練習(xí)可以根據(jù)低強(qiáng)度恢復(fù)的時間而變化,而不是高強(qiáng)度的時間。
HIIT是可變的,這種形式的訓(xùn)練引起的特定生理適應(yīng)性由多種因素決定,包括強(qiáng)度、持續(xù)時間和練習(xí)次數(shù),以及間隔恢復(fù)期間的持續(xù)時間、運(yùn)動模式。研究認(rèn)為HIIT如同耐力練習(xí)一樣,可有效地提高有氧能力、線粒體脂肪酸氧化和心血管系統(tǒng)的能力[8-11]。研究發(fā)現(xiàn),當(dāng)能量消耗相當(dāng)時,HIIT可替代傳統(tǒng)耐力訓(xùn)練方案,與傳統(tǒng)耐力練習(xí)一樣,在健康個體和患病人群中可誘導(dǎo)一系列相似甚至更優(yōu)的生理適應(yīng)、運(yùn)動表現(xiàn)和健康相關(guān)標(biāo)志物[12]。
此外,研究認(rèn)為盡管時間和總運(yùn)動量減少,但HIIT可誘導(dǎo)與中等強(qiáng)度連續(xù)訓(xùn)練類似的生理重塑[13]。低訓(xùn)練量HIIT研究,通常使用的最常見運(yùn)動模型是Wingate測試,涉及到30s“全力以赴”以及外部負(fù)荷。受試者通常完成4~6次,恢復(fù)間隔約4min,在持續(xù)約20min的訓(xùn)練期間,總共有2~3min的劇烈運(yùn)動。這種類型的HIIT訓(xùn)練只需6次,2周總共大約15min的全面運(yùn)動,可增加了骨骼肌氧化能力,主要反映在線粒體酶的最大活性和/或蛋白質(zhì)含量上,相當(dāng)于傳統(tǒng)的耐力訓(xùn)練[14]。
2 ?大強(qiáng)度間歇訓(xùn)練潛在的分子機(jī)制
運(yùn)動方式與運(yùn)動潛在分子適應(yīng)機(jī)制有關(guān)[15-17]。HIIT誘導(dǎo)骨骼肌代謝分子適應(yīng)機(jī)制業(yè)已受到關(guān)注??紤]到HIIT可增加線粒體能力的潛力。另外,促進(jìn)線粒體生物發(fā)生重要分子是過氧化物酶體增殖物激活受體γ共激活因子(PGC-1α)。它是一種可誘導(dǎo)的共激活因子,其調(diào)節(jié)核和線粒體基因組中編碼的線粒體蛋白的協(xié)調(diào)表達(dá)[18]。因此,研究主要集中在PGC-1α信號途徑[19]。
[7] 馬繼政,張仁祥,谷波,等.大強(qiáng)度間歇訓(xùn)練研究與進(jìn)展[J].南京體育學(xué)院學(xué)報(bào):自然科學(xué)版,2013,12(4):8-14.
[8] MacInnis MJ,Gibala MJ.Physiological adaptations to interval training and the role of exercise intensity[J].J Physiol,2017,595(9):2915-2930.
[9] 馬繼政,牛潔.大強(qiáng)度間歇訓(xùn)練心肌細(xì)胞分子適應(yīng)機(jī)制[J].體育科技文獻(xiàn)通報(bào),2010,18(3):33-34.
[10]馬繼政,張仁祥.大強(qiáng)度間歇運(yùn)動骨骼肌分子適應(yīng)機(jī)制[J].體育科技文獻(xiàn)通報(bào),2010,18(2):39-41.
[11]胡斐,徐盛嘉,沈銘彬,等.大強(qiáng)度的無氧間歇練習(xí)、有氧耐力練習(xí)及其組合練習(xí)的次序?qū)謴?fù)期心臟自主神經(jīng)功能的影響[J].體育科研,2017,38(6):87-92.
[12]Wisl?ff U,St?ylen A,Loennechen JP,et al.Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients:a randomized study[J].Circulation,2007,115(24):3086-3094.
[13]Gibala MJ,McGee SL.Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain[J].Exerc Sport Sci Rev,2008,36(2):58-63.
[14]Burgomaster KA,Howarth KR,Phillips SM,et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans[J].J Physiol,2008,586(1):151-160.
[15]馬繼政.運(yùn)動方式與運(yùn)動性磷酸化蛋白[J].山西師大體育學(xué)院學(xué)報(bào),2009,24(4):133-136.
[16]馬繼政,孫飆.運(yùn)動中骨骼肌蛋白周轉(zhuǎn)率的變化和調(diào)節(jié)機(jī)制[J].體育科技,2010,31(2):82-86.
[17]馬繼政.運(yùn)動、轉(zhuǎn)錄因子和線粒體的生物合成[J].四川體育科學(xué),2010(1):17-20.
[18]Lin J,Handschin C,Spiegelman BM.Metabolic control through the PGC-1 family of transcription coactivators[J].Cell Metab,2005,1(6):361-370.
[19]馬繼政.PGC-1α與運(yùn)動能力[J].南京體育學(xué)院學(xué)報(bào):自然科學(xué)版,2008(1):1-3.
[20]Mathai AS,Bonen A,Benton CR,et al.Rapid exercise-induced changes in PGC-1alpha mRNA and protein in human skeletal muscle[J].J Appl Physiol (1985),2008,105(4):1098-1105.
[21]Calvo JA,Daniels TG,Wang X,et al.Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake[J].J Appl Physiol (1985),2008, 104(5):1304-1312.
[22]Puigserver P,Rhee J,Lin J,et al.Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1[J].Mol Cell, 2001,8(5):971-982.
[23]馬繼政,孫飆.AMPK調(diào)節(jié)運(yùn)動中骨骼肌細(xì)胞代謝研究進(jìn)展[J].中國運(yùn)動醫(yī)學(xué)雜志,2010,29(5):611-614.
[24]Geng T,Li P,Okutsu M,et al.PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle[J].Am J Physiol Cell Physiol,2010,298(3):C572-579.
[25]Little JP,Safdar A,Bishop D,et al.An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle[J].Am J Physiol Regul Integr Comp Physiol, 2011,300(6):R1303-1310.
[26]Kirby TJ,McCarthy JJ.MicroRNAs in skeletal muscle biology and exercise adaptation[J].Free Radic Biol Med,2013,64:95-105.
[27]馬繼政,張愛軍.MicroRNAs在骨骼肌分化、發(fā)育中的作用[J].河北體育學(xué)院學(xué)報(bào),2010,24(6):70-73.
[28]馬繼政,孫飆.運(yùn)動和MicroRNAs[J].體育科研,2013,34(6):65-68.
[29]Cui SF,Li W,Niu J,et al.Acute responses of circulating microRNAs to low-volume sprint interval cycling[J].Front Physiol,2015(6):311.
[30]王曉磊,王金之,徐盛嘉,等.18.5km不同強(qiáng)度負(fù)重行軍對健康男性青年執(zhí)行功能的影響[J].軍事體育學(xué)報(bào),2017,36(3):1-4.
[31]王曉磊,徐盛嘉,王金之,等.不同形式運(yùn)動對青年男性執(zhí)行功能的影響研究[J].體育科技,2018,39(1):3-5.
[32]Lee MC,Okamoto M,Liu YF,et al.Voluntary resistance running with short distance enhances spatial memory related to hippocampal BDNF signaling[J].J Appl Physiol(1985), 2012,113(8):1260-1266.
[33]Lee M,Soya H.Effects of acute voluntary loaded wheel running on BDNF expression in the rat hippocampus[J].J Exerc Nutrition Biochem, 2017,21(4):52-57.
[34]Lee MC,Rakwal R,Shibato J,et al.DNA microarray-based analysis of voluntary resistance wheel running reveals noveltranscriptome leading robust hippocampal plasticity[J].Physiol Rep,2014,2(11):e12206.
[35]Legerlotz K,Elliott B,Guillemin B,et al.Voluntary resistance running wheel activity pattern and skeletal muscle growth in rats[J].Exp Physiol, 2008,93(6):754-762.
[36]Neeper SA,Gómez-Pinilla F,Choi J,et al. Exercise and brain neurotrophins[J].Nature,1995,373(6510):109
[37]Pencea V,Bingaman KD,Wiegand SJ,et al.Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus[J].J Neurosci,2001,21(17):6706-6717.
[38]Hebisz Paulina,Hebisz Rafa?,Murawska-Cia?owicz Eugenia,et al.Changes in exercise capacity and serum BDNF following long-term sprint interval training in well-trained cyclists[J].Appl Physiol Nutr Metab,2019,44(5):499-506.
[39]Vaynman S,Ying Z,Gomez-Pinilla F.Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition[J].Eur J Neurosci,2004 (10):2580-2590.
[40]Li Y,Luikart BW,Birnbaum S,et al.TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment[J].Neuron,2008,59(3):399-412.
[41]Luo Lu,Li Congqin,Deng Yu,et al.High-Intensity Interval Training on Neuroplasticity, Balance between Brain-Derived Neurotrophic Factor and Precursor Brain-Derived Neurotrophic Factor in Poststroke Depression Rats[J].J Stroke Cerebrovasc Dis,2019,28(3):672-682.
[42]唐浩軒.急性高強(qiáng)度間歇訓(xùn)練與中等強(qiáng)度持續(xù)訓(xùn)練對情緒體驗(yàn)與執(zhí)行功能的影響[D].武漢體育學(xué)院,2019.