張 飛,郭迎輝,2,蒲明博,2,李 雄,2,馬曉亮,2,3,羅先剛,2*
基于非對稱光子自旋—軌道相互作用的超構(gòu)表面
張 飛1,郭迎輝1,2,蒲明博1,2,李 雄1,2,馬曉亮1,2,3,羅先剛1,2*
1中國科學(xué)院光電技術(shù)研究所微細加工光學(xué)技術(shù)國家重點實驗室,四川 成都 610209;2中國科學(xué)院大學(xué)光電學(xué)院,北京 100049;3中國人民解放軍軍事科學(xué)院國防科技創(chuàng)新研究院,北京 100071
光子自旋—軌道相互作用是經(jīng)典光學(xué)所忽略的重要現(xiàn)象,近年來研究發(fā)現(xiàn)該現(xiàn)象可通過人工亞波長結(jié)構(gòu)顯著增強并進行按需調(diào)控。傳統(tǒng)超構(gòu)表面僅支持對稱光子自旋—軌道相互作用,存在共軛對稱性限制,難以將不同自旋態(tài)用于多功能集成、復(fù)雜光場調(diào)控、信息加密及存儲等領(lǐng)域。非對稱光子自旋—軌道相互作用能夠使左右旋圓偏振光解耦,為突破上述理論和應(yīng)用限制帶來新契機。本文首先介紹了非對稱光子自旋—軌道相互作用的原理及實現(xiàn)方法,其次介紹非對稱光子自旋—軌道相互作用的代表性應(yīng)用以及特點,最后對非對稱光子自旋—軌道相互作用研究面臨的挑戰(zhàn)和未來的研究方向進行展望。
超構(gòu)表面;光子自旋—軌道相互作用;軌道角動量;光學(xué)懸鏈線
眾所周知,光子不僅攜帶與偏振態(tài)相關(guān)的自旋角動量(spin angular momentum,SAM),還攜帶了與空間相位分布相關(guān)的軌道角動量(orbit angular momentum,OAM)。物質(zhì)在吸收光子的同時伴隨著光子SAM和OAM向物質(zhì)的動量轉(zhuǎn)移。對于各向同性的均勻性介質(zhì),SAM和OAM的轉(zhuǎn)移過程是相互獨立的。2006年,Marrucci等人在實驗上證明了在各向異性的空間非均勻介質(zhì)中會發(fā)生SAM到OAM的轉(zhuǎn)換并保證動量守恒[1]。在進行了深入的研究后,發(fā)現(xiàn)光子的SAM與OAM的相互耦合(photonic spin-orbit interaction, PSOI)依賴于各向異性非均勻材料相互作用所產(chǎn)生的Pancharatnam-Berry(PB)相位。這一相位又被稱為幾何相位[2],最早于1956年被Pancharatnam發(fā)現(xiàn)[3],隨后被Berry推廣到絕熱量子系統(tǒng)中[4]。由于幾何相位與工作波長無關(guān),因此其常被用于寬帶渦旋光束產(chǎn)生[5]和光束偏折[6]。但早期幾何相位方面的研究主要基于q-plate[1]和具有人工雙折射的光柵結(jié)構(gòu)[6]。
近年來,隨著微細加工技術(shù)的進步和亞波長電磁學(xué)理論的發(fā)展,傳統(tǒng)q-plate和光柵結(jié)構(gòu)逐漸被具有強各向異性的亞波長散射體所替代?;赑SOI的幾何相位調(diào)制所形成的幾何相位超構(gòu)表面已實現(xiàn)了諸如寬帶自旋霍爾效應(yīng)、超震蕩透鏡、彩色全息、平面透鏡、渦旋光束產(chǎn)生器等一系列異常光學(xué)現(xiàn)象及平面光學(xué)器件[7–12]。然而,傳統(tǒng)幾何相位型超構(gòu)表面由離散型亞波長結(jié)構(gòu)構(gòu)成,其工作效率和帶寬會因波前采樣不足受到原理性限制。2015年,本團隊將懸鏈線結(jié)構(gòu)從力學(xué)引入微納光學(xué)中,用于生成完美渦旋光束,懸鏈線光學(xué)的概念也被正式提出[13]。懸鏈線結(jié)構(gòu)可以引入連續(xù)、無色散、精準的幾何相位,相比于離散型亞波長結(jié)構(gòu),其工作效率及帶寬具有明顯優(yōu)勢。懸鏈線光學(xué)的歷史、基本理論、功能器件以及相關(guān)應(yīng)用在近期的綜述論文中被詳細陳述[14]。經(jīng)過多年的發(fā)展,懸鏈線光學(xué)已成為亞波長光學(xué)和亞波長電磁學(xué)的新研究方向,或?qū)⒊蔀楣こ坦鈱W(xué)2.0的重要部分[15]。最近幾年,一系列高性能平面器件通過類懸鏈線結(jié)構(gòu)或準連續(xù)型結(jié)構(gòu)實現(xiàn),包括平面透鏡、貝塞爾光束生成器、艾里光束生成器、光學(xué)全息板、波束掃描、虛擬賦形、偏振轉(zhuǎn)換等[7,16–27]。2020年,本團隊提出等寬度全介質(zhì)懸鏈線超構(gòu)表面,器件工作效率及帶寬得到進一步顯著提升,在9 μm~13 μm波長范圍內(nèi)的平均衍射效率高于90%[20]。由于懸鏈線結(jié)構(gòu)的局部寬度和周期具有非均勻分布特性,并且高折射率介質(zhì)結(jié)構(gòu)的相位延遲對其寬度比較敏感,因此,為了進一步提高全介質(zhì)懸鏈線結(jié)構(gòu)的衍射效率,使其接近100%,需要對其局部寬度進行優(yōu)化,從而實現(xiàn)對傳輸相位和幾何相位的協(xié)同優(yōu)化[14,28]。
根據(jù)幾何相位原理可知,經(jīng)幾何相位型超構(gòu)表面調(diào)制后,左旋和右旋圓偏振光(left-handed and right- handed circularly polarized light, LCPL and RCPL)對應(yīng)的出射光場將呈現(xiàn)出共軛對稱關(guān)系,比如由幾何相位型超構(gòu)表面得到的渦旋光呈現(xiàn)出互補的拓撲荷[13],產(chǎn)生的全息像表現(xiàn)出中心對稱等[29]。因此,盡管超構(gòu)表面單元結(jié)構(gòu)的效率可接近100%,但PSOI的對稱性也將極大地阻礙多功能器件的性能。為了實現(xiàn)手性成像,傳統(tǒng)方法是通過交錯排布兩組亞波長結(jié)構(gòu)陣列分別調(diào)制LCPL和RCPL[30],但這會造成器件能量利用率減半、背景噪聲顯著增強等原理性問題。2016年,本團隊發(fā)現(xiàn)利用變寬度牛眼光柵可生成非對稱拓撲荷的渦旋光束,這預(yù)示著PSOI的對稱性可以被打破[8]。2017年,本團隊通過復(fù)合自旋相關(guān)的幾何相位和自旋無關(guān)的傳輸相位,打破了PSOI的對稱性,從而實現(xiàn)對LCPL和RCPL的任意獨立調(diào)控[31-32]。至此,非對稱PSOI的概念被正式提出,這意味著圓偏振復(fù)用超構(gòu)表面面臨的效率低、噪聲大等諸多原理性問題得以解決,同時也為多功能器件、復(fù)雜光場調(diào)控等打開新篇章。
本文將對自2017年以來關(guān)于非對稱PSOI的代表性研究進行歸納總結(jié)。首先介紹非對稱PSOI的原理及實現(xiàn)方法,其次介紹非對稱PSOI的代表性應(yīng)用以及特點,最后對非對稱PSOI研究面臨的挑戰(zhàn)和進一步拓展的方向進行展望。
非對稱PSOI的物理思想是同一超構(gòu)表面采用兩種具有不同自旋相關(guān)性的相位調(diào)控機理。通過兩者的復(fù)合既可打破原有的對稱性,又可保留自旋相關(guān)性。相位型超構(gòu)表面的相位調(diào)控機理主要可以分為四種,即幾何相位、傳輸相位、電路型相位以及迂回相位。前三種相位的物理機制已在之前綜述論文中進行了詳細介紹[33],其中電路型相位主要用于描述微波波段。而迂回相位攜帶在某個衍射級次中,表現(xiàn)出寬帶無色散特性,其中具有代表性的工作是暨南大學(xué)李向平教授課題組提出的基于“雙原子”超構(gòu)表面的矢量全息術(shù)[34-35]。實現(xiàn)非對稱PSOI的主要方案是復(fù)合自旋相關(guān)的幾何相位和自旋無關(guān)的傳輸相位。在此基于瓊斯矩陣理論重點介紹基于幾何相位和傳輸相位復(fù)合的非對稱PSOI的基本原理。
假如各向異性結(jié)構(gòu)對應(yīng)-坐標系,整個超構(gòu)表面對應(yīng)為-坐標系,兩坐標系的夾角為。根據(jù)以上假設(shè),各向異性超構(gòu)表面的瓊斯矩陣可表示為
其中:t和t分別表示各向異性結(jié)構(gòu)沿其快慢軸方向的復(fù)振幅,()為旋轉(zhuǎn)矩陣:
然后將其帶入式(1),化簡后可得:
為了便于分析,在此假設(shè)各向異性結(jié)構(gòu)振幅為1,且沿其快慢軸方向引入的相位延遲為±/2,那么對應(yīng)的復(fù)振幅表示為t=exp(i–i/2)和t=exp(ii/2)。為了實現(xiàn)對LCPL和RCPL波前(分別記為1(,)和2(,))的獨立調(diào)控,超構(gòu)表面需要同時滿足J(,)|?=exp[i1(,)]|𝑅?和J(,)|?=exp[i2(,)]|?。因此,超構(gòu)表面的瓊斯矩陣需要滿足:
基于式(4)中的本征值和本征向量,不難得出各向異性亞波長結(jié)構(gòu)的主軸朝向以及沿主軸方向的傳輸相位應(yīng)該滿足:
在優(yōu)化設(shè)計過程中,單元結(jié)構(gòu)需要滿足三個條件:可獨立調(diào)控傳輸相位和幾何相位,單元結(jié)構(gòu)極化轉(zhuǎn)換效率高,傳輸相位能覆蓋需要的范圍。為了實現(xiàn)高效的非對稱PSOI,傳輸相位應(yīng)覆蓋整個[0~2π]范圍,且兩個主軸之間的相位差應(yīng)滿足=π。圖1為實現(xiàn)非對稱PSOI最常用的結(jié)構(gòu)形式之一。最后,根據(jù)式(5)和式(6),選用傳輸相位匹配的單元結(jié)構(gòu)填充到對應(yīng)的位置,并給予相應(yīng)的旋轉(zhuǎn)角度,即可實現(xiàn)非對稱PSOI,完成多功能器件的設(shè)計。
非對稱PSOI的應(yīng)用大體上可以分為三類:其一,手性切換功能器件,即在LCPL和RCPL入射時實現(xiàn)不同的功能;其二,矢量光場調(diào)控,即通過獨立調(diào)控出射場的LCPL和RCPL分量,實現(xiàn)全新的矢量光場;其三,PSOI的多態(tài)切換,即同一超構(gòu)表面在外界不同激勵下實現(xiàn)對稱、非對稱以及弱PSOI等多種狀態(tài)。
非對稱PSOI能允許LCPL和RCPL被高效任意獨立調(diào)控,這意味著額外的偏振自由度能夠?qū)⒊瑯?gòu)表面的信息容量增加為原有的兩倍。本團隊在提出非對稱PSOI概念時[31],已提出實現(xiàn)非對稱全息顯示、非對稱渦旋光生成、偏振成像等功能器件的方法,并在后續(xù)的研究中得到了廣泛應(yīng)用。
光學(xué)全息在數(shù)據(jù)存儲、彩色顯示、防偽等領(lǐng)域具有重要應(yīng)用前景。圖2(a)~2(d)展示了本團隊[31]和哈佛大學(xué)Capasso教授團隊[36]的同期工作,即非對稱PSOI在全息顯示方面的應(yīng)用。兩個工作的原理和結(jié)構(gòu)形式基本一致,其設(shè)計方法是采用Gerchberg-Saxton (GS)算法計算兩幅全息像對應(yīng)的相位分布,然后根據(jù)式(5)和式(6)得到傳輸相位和幾何相位的組合方式。從圖2(a)~2(d)可知,基于非對稱PSOI設(shè)計的全息板,可以在LCPL和RCPL入射時產(chǎn)生完全不同的全息像,因此可以將其信息容量提高至原有的兩倍。相反,基于對稱PSOI的傳統(tǒng)方法若要在LCPL和RCPL產(chǎn)生不同的全息像,則需要犧牲一半的像空間(例如只探測右側(cè)像空間),這意味其信息容量并沒有得到提升。
此外,基于非對稱PSOI設(shè)計的渦旋光束生成器可以在LCPL和RCPL入射下產(chǎn)生任意獨立拓撲荷的渦旋光束[31],這是傳統(tǒng)相位板和傳統(tǒng)超構(gòu)表面無法實現(xiàn)的。圖2(e)~2(f)為生成非對稱拓撲荷渦旋光束(-1時,l1=6;1時,1=-4)的仿真結(jié)果。通過干涉作用,渦旋光束的拓撲荷可以直接得到。干涉圖案類似于旋轉(zhuǎn)的花瓣,其中拓撲荷的模由花瓣數(shù)決定,而符號由旋轉(zhuǎn)方向決定。哈佛大學(xué)Capasso教授團隊進行了相關(guān)的實驗驗證,如圖2(g)~2(h)所示,并探索了橢圓偏振入射下的出射光場[37]。
國內(nèi)外其它單位在基于非對稱PSOI的理論和手性切換功能器件方面也開展了相關(guān)研究。例如,武漢大學(xué)的鄭國興研究團隊利用傳輸相位和幾何相位的復(fù)合實現(xiàn)了任意偏振態(tài)的相位調(diào)控[38],并進一步結(jié)合集成單元設(shè)計實現(xiàn)納米印刷灰度圖顯示和圓偏振復(fù)用全息[39];北京大學(xué)龔旗煌院士的研究團隊基于非對稱PSOI超構(gòu)表面實現(xiàn)了類似Rochon棱鏡的偏振分束器件[40];南京大學(xué)徐挺研究團隊利用具有非對稱PSOI的超構(gòu)表面結(jié)合4-F成像系統(tǒng)實現(xiàn)了手性切換的邊緣成像和普通成像[41]。此外,該團隊還先后在可見光波段[42]和紫外光波段[43]實現(xiàn)了手性切換控制的自加速光束產(chǎn)生和圓偏振獨立全息。中國科學(xué)院西安光學(xué)精密機械研究所的研究人員利用非對稱PSOI實現(xiàn)了手性切換的縱向聚焦和橫向偏折[44]。
圖2 基于非對稱PSOI的(a)~(d)全息和(e)~(h)OAM產(chǎn)生。(a),(b)和(e),(f)為本團隊工作[31];(c),(d)和(g),(h)為哈佛大學(xué)團隊同期工作[37]
類似于非對稱PSOI,通過調(diào)控具有高折射率的矩形介質(zhì)納米柱可以實現(xiàn)對正交線偏振的獨立調(diào)控。2015年,加州理工大學(xué)Andrei Faraon教授提出一種全介質(zhì)超構(gòu)表面,可實現(xiàn)對兩正交線偏振光波前的任意獨立調(diào)控[45]。在此基礎(chǔ)上,通過選擇交叉偏振中滿足特定相位的單元結(jié)構(gòu)可以實現(xiàn)-,-和-三個信道的獨立相位調(diào)控?;谏鲜鲈?,北京理工王涌天教授課題組實現(xiàn)了三個信道的獨立全息[46]和不同偏振的矢量全息[47],有望實現(xiàn)信息加密。哈爾濱工業(yè)大學(xué)張框等人基于類似的原理在微波段先后實現(xiàn)了手性可切換全息[48]、能量可控的圓偏振路由器[49],隨后又實現(xiàn)了L-L,R-R,L-R和R-L的全偏振態(tài)獨立相位調(diào)控[50]。
2017年,本團隊基于非對稱PSOI提出了一種利用單層超構(gòu)表面同時實現(xiàn)圓偏振不對稱傳輸和任意波前調(diào)控的方法[32]。其基本原理為:利用由旋向相差π/4、傳輸相位相差π/2納米柱組成超級單元(如圖3(a)所示),通過非對稱PSOI實現(xiàn)自旋選擇的干涉相消或相長,并通過納米柱的空間旋轉(zhuǎn)同時實現(xiàn)任意波前的調(diào)控。如圖3(b)所示,實驗測得的圓偏振光消光比約10:1,不對稱參數(shù)為0.69,相對帶寬達到30%。以上結(jié)果是之前公開報道單層結(jié)構(gòu)的四倍以上,并與三維超材料的性能相當。如圖3(c)所示,基于該方法設(shè)計的超構(gòu)表面,可以通過單層結(jié)構(gòu)同時實現(xiàn)偏振濾波和任意波前調(diào)控。器件的多功能性和易制備特性使其有望替代手性光譜儀、手性成像等系統(tǒng)中的部分級聯(lián)光學(xué)元件,從而顯著降低光學(xué)系統(tǒng)的體積、重量、成本和能量損失,為實現(xiàn)輕量化、集成化和平面化系統(tǒng)提供有效途徑。
在過去的幾十年里,圓柱矢量光束特別是徑向偏振光,由于其在聚焦和成像中的獨特性質(zhì)而受到了學(xué)術(shù)界和產(chǎn)業(yè)界的廣泛關(guān)注。然而,傳統(tǒng)的光學(xué)透鏡組存在的體積大、效率低等缺點,嚴重限制了徑向偏振光的發(fā)展和應(yīng)用。超構(gòu)表面的出現(xiàn)為解決上述問題帶來了新的契機。例如,重慶大學(xué)喻洪麟課題組提出的一種基于非對稱PSOI的全介質(zhì)矢量光束生成與調(diào)控器件[51]。在線偏振光入射下,利用非對稱PSOI對線偏振光的左右旋分量進行獨立調(diào)控,最后通過自旋重組同時實現(xiàn)偏振轉(zhuǎn)換和波前調(diào)控,為矢量光束生成調(diào)控器的設(shè)計提供新自由度。在波長為532 nm處,該課題組設(shè)計的超透鏡(數(shù)值孔徑=0.9)實現(xiàn)了超越衍射極限聚焦焦斑,在粒子加速和超分辨率成像方面具有潛在的應(yīng)用價值。
圖3 非對稱PSOI實現(xiàn)圓偏振不對稱傳輸和波前調(diào)控[32]。(a) 超構(gòu)表面電鏡圖; (b) 測試不對稱參數(shù)和消光比;(c) 圓偏振不對稱傳輸超構(gòu)表面波前調(diào)控效果示意圖
在多路偏振調(diào)控方面,2019年天津大學(xué)張偉利教授課題組利用非對稱PSOI的圓偏振獨立調(diào)控能力在太赫茲波段實現(xiàn)了自旋解耦的非對稱偏振產(chǎn)生,即正入射的線偏振光經(jīng)超構(gòu)表面后所產(chǎn)生的同偏振和交叉偏振光分別沿不同的方向偏折[52]。南京大學(xué)王牧教授課題組基于超構(gòu)表面的非對稱PSOI,通過改變元胞中結(jié)構(gòu)單元的幾何尺寸與排列方式,成功實現(xiàn)了多路徑偏振態(tài)任意組合的同步輸出[53]。該設(shè)計方案克服了幾何相位型超構(gòu)表面無法同時產(chǎn)生不同偏振態(tài)的瓶頸,并實驗實現(xiàn)了類似于量子通信中基于通信協(xié)議的秘鑰分發(fā)過程。近期,哈佛大學(xué)Capasso教授課題組利用復(fù)合了傳輸相位和幾何相位的準連續(xù)型超構(gòu)表面,并結(jié)合拓撲優(yōu)化技術(shù)實現(xiàn)了在不同入射角下的偏振態(tài)的連續(xù)變化[24]。
最近,本課題組利用超構(gòu)表面的非對稱PSOI同時實現(xiàn)了聚焦和差分功能,從而實現(xiàn)了基于單片超構(gòu)表面的全光邊緣探測[54]。如圖4所示,具體原理為:利用非對稱PSOI使得線偏振光的兩個正交圓偏振分量產(chǎn)生有一定橫向偏移的兩個圖像;在圖像重疊區(qū),左右旋圓偏振可組合成為線偏振光,因此經(jīng)線偏振片濾波后便得到目標的邊緣信息。相比同類研究[41,55],該方案擺脫了對傳統(tǒng)4-F光學(xué)系統(tǒng)的依賴,可以實現(xiàn)更加緊湊的邊緣探測系統(tǒng)。
非對稱PSOI可以實現(xiàn)LCPL和RCPL的任意獨立調(diào)控,通過利用偏振自由度有效提升信息容量,但難以提升信息安全性??烧{(diào)諧超構(gòu)表面可以顯著提升信息安全性。基于傳輸相位的可調(diào)諧超構(gòu)表面存在設(shè)計復(fù)雜、功能單一等問題,難以實現(xiàn)多個波前的任意獨立調(diào)控[56-58]。基于幾何相位的可調(diào)諧超構(gòu)表面設(shè)計相對簡單,但可調(diào)諧PSOI通常只有“開”和“關(guān)”兩種狀態(tài),且只有“開”的狀態(tài)能貢獻于光束調(diào)控[59-63]。因此,若要實現(xiàn)不同的功能,則需交錯排布多種單元結(jié)構(gòu),使得只有部分單元結(jié)構(gòu)具有積極貢獻,導(dǎo)致器件的信息保真度和效率存在原理性限制。
近期,本團隊提出了一種基于相變材料和亞波長“多原子”結(jié)構(gòu)的多態(tài)波前獨立調(diào)控方法,從原理上解決了上述問題[64]。首先設(shè)計出一種可獨立調(diào)控幾何相位和傳輸相位的多原子相變單元,再通過兩者的復(fù)合極大地降低可調(diào)超構(gòu)表面的設(shè)計難度,并且每個單元結(jié)構(gòu)對所有功能均有積極作用。作為方法驗證,在相變材料Ge2Se2Te5(GST)處于非晶態(tài)、半結(jié)晶態(tài)和結(jié)晶態(tài)時,分別實現(xiàn)了對稱、非對稱和弱PSOI。該方法也可以直接拓展至易失性相變材料(如二氧化釩),實現(xiàn)多態(tài)PSOI的動態(tài)切換。如圖5所示,在相變前或過度相變后,只能得到誘導(dǎo)性或無用信息,而無法直接獲取編碼在半結(jié)晶態(tài)中的信息。該研究為動態(tài)可重構(gòu)波前調(diào)控超構(gòu)表面的設(shè)計提供了新方案,并在光存儲、光加密以及信息安全工程領(lǐng)域有較大的應(yīng)用潛力。
圖4 非對稱PSOI實現(xiàn)全光邊緣探測[54]。(a) 單層超構(gòu)表面將LCPL和RCPL分量對應(yīng)的圖像沿x方 向分離;(b) 一個線偏振片被用于濾除LCPL和RCPL圖像重疊部分實現(xiàn)邊緣探測
圖5 多態(tài)可切換PSOI用于全息加密[64]。(a)和(e) 兩個全息超構(gòu)表面樣品的電鏡圖;(b)~(d)和(f)~(h) 分別為GST處于不同狀態(tài)時,兩個器件在RCPL(上)和LCPL(下)入射下產(chǎn)生的衍射圖案
基于超構(gòu)表面的非對稱光子自旋—軌道相互作用在短短的幾年時間里得到了國內(nèi)外的廣泛研究,并涌現(xiàn)出了一系列的功能器件和全新應(yīng)用,如超構(gòu)表面全息器件、渦旋光產(chǎn)生器、偏振調(diào)控器、偏振路由器、矢量光束產(chǎn)生器、全光邊緣探測器等。與傳統(tǒng)器件相比,這類器件不僅尺寸更緊湊,而且具有多功能、單片式等特點,有望推動集成光學(xué)的發(fā)展。隨著研究的不斷深入,基于超構(gòu)表面的非對稱光子自旋—軌道相互作用將在未來的偏振光學(xué)和成像探測等方面發(fā)揮重要作用。
目前關(guān)于非對稱光子自旋—軌道相互作用的研究主要集中于單波長或者窄帶范圍,雖然部分器件也具有一定的工作帶寬,但其性能仍然隨著工作波長遠離中心波長而顯著下降。寬帶非對稱光子自旋—軌道相互作用在偏振成像、生命探測等領(lǐng)域具有重要應(yīng)用前景,也將是未來的研究重點之一。多態(tài)可切換光子自旋—軌道相互作用的研究剛剛起步,僅實現(xiàn)了對稱、非對稱和弱耦合三種狀態(tài)的切換。未來可基于該原理設(shè)計更多的功能性器件,同時探索可調(diào)諧超構(gòu)表面中光子角動量更多耦合形式的實現(xiàn)機理、方法和材料等。
[1] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]., 2006, 96(16): 163905.
[2] Anandan J. The geometric phase[J]., 1992, 360(6402): 307–313.
[3] Chyba T H, Wang L J, Mandel L,. Measurement of the Pancharatnam phase for a light beam[J]., 1988, 13(7): 562–564.
[4] Berry M V. Quantal phase factors accompanying adiabatic changes[J]., 1984, 392(1802): 45–57.
[5] Biener G, Niv A, Kleiner V,. Formation of helical beams by use of Pancharatnam-Berry phase optical elements[J]., 2002, 27(21): 1875–1877.
[6] Bomzon Z, Biener G, Kleiner V,. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]., 2002, 27(13): 1141–1143.
[7] Luo X G, Pu M B, Li X,. Broadband spin Hall effect of light in single nanoapertures[J].:, 2017, 6(6): e16276.
[8] Guo Y H, Pu M B, Zhao Z Y,. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]., 2016, 3(11): 2022–2029.
[9] Tang D L, Wang C T, Zhao Z Y,. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]., 2015, 9(6): 713–719.
[10] Li Z, Zhang T, Wang Y Q,. Achromatic broadband super-resolution imaging by super-oscillatory metasurface[J]., 2018, 12(10): 1800064.
[11] Li X, Chen L W, Li Y,. Multicolor 3D meta-holography by broadband plasmonic modulation[J]., 2016, 2(11): e1601102.
[12] Pu M B, Li X, Guo Y H,. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing[J]., 2017, 25(25): 31471–31477.
[13] Pu M B, Li X, Ma X L,. Catenary optics for achromatic generation of perfect optical angular momentum[J]., 2015, 1(9): e1500396.
[14] Luo X G, Pu M B, Guo Y H,. Catenary functions meet electromagnetic waves: opportunities and promises[J]., 2020, doi: 10.1002/adom.202001194.
[15] Luo X G.,,[M]. Singapore: Springer, 2019.
[16] Li X, Pu M B, Zhao Z Y,. Catenary nanostructures as compact Bessel beam generators[J]., 2016, 6: 20524.
[17] Wang Y Q, Pu M B, Zhang Z J,. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection[J]., 2016, 5: 17733.
[18] Guo Y H, Yan L S, Pan W,. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion[J]., 2016, 6: 30154.
[19] Guo Y H, Huang Y J, Li X,. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface[J]., 2019, 7(18): 1900503.
[20] Zhang F, Zeng Q Y, Pu M B,. Broadband and high-efficiency accelerating beam generation by dielectric catenary metasurfaces[J]., 2020, 9(9): 2829–2837.
[21] Liu K P, Guo Y H, Pu M B,. Wide field-of-view and broadband terahertz beam steering based on gap Plasmon geodesic antennas[J]., 2017, 7: 41642.
[22] Tan X H. Anomalous scattering-induced circular dichroism in continuously shaped metasurface[J]., 2017, 44(1): 87–91.
[23] Wang D P, Hwang Y, Dai Y M,. Broadband high-efficiency chiral splitters and holograms from dielectric nanoarc metasurfaces[J]., 2019, 15(20): 1900483.
[24] Shi Z J, Zhu A Y, Li Z Y,. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion[J]., 2020, 6(23): eaba3367.
[25] Sell D, Yang J J, Doshay S,. Large-angle, multifunctional metagratings based on freeform multimode geometries[J]., 2017, 17(6): 3752–3757.
[26] Dai C W, Yan C, Zeng Q Y,. A method of designing new Bessel beam generator[J]., 2020, 47(6): 190190.
代成偉, 閆超, 曾慶玉, 等. 一種新型貝塞爾光束器件的設(shè)計方法[J]. 光電工程, 2020, 47(6): 190190.
[27] Li Y F, Ma H, Wang J F,. High-efficiency tri-band quasi-continuous phase gradient metamaterials based on spoof surface plasmon polaritons[J]., 2017, 7: 40727.
[28] Luo X G.[M]. Singapore: Springer, 2019.
[29] Zhang X H, Li X, Jin J J,. Polarization-independent broadband meta-hologramspolarization-dependent nanoholes[J]., 2018, 10(19): 9304–9310.
[30] Khorasaninejad M, Chen W T, Zhu A Y,. Multispectral Chiral Imaging with a metalens[J]., 2016, 16(7): 4595–4600.
[31] Zhang F, Pu M B, Luo J,. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]., 2017, 44(3): 319–325.
[32] Zhang F, Pu M B, Li X,. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions[J]., 2017, 27(47): 1704295.
[33] Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]., 2017, 44(3): 255–275.
李雄, 馬曉亮, 羅先剛. 超表面相位調(diào)控原理及應(yīng)用[J]. 光電工程, 2017, 44(3): 255–275.
[34] Deng Z L, Deng J H, Zhuang X,. Diatomic metasurface for vectorial holography[J]., 2018, 18(5): 2885–2892.
[35] Deng Z L, Jin M K, Ye X,. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]., 2020, 30(21): 1910610.
[36] Balthasar Mueller J P, Rubin N A, Devlin R C,. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]., 2017, 118(11): 113901.
[37] Devlin R C, Ambrosio A, Rubin N A,. Arbitrary spin-to-orbital angular momentum conversion of light[J]., 2017, 358(6365): 896–901.
[38] Wu L, Tao J, Zheng G X. Controlling phase of arbitrary polarizations using both the geometric phase and the propagation phase[J]., 2018, 97(24): 245426.
[39] Li Z L, Chen C, Guan Z Q,. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach[J]., 2020, 14(6): 2000032.
[40] Wang B, Dong F L, Feng H,. Rochon-prism-like planar circularly polarized beam splitters based on dielectric metasurfaces[J]., 2018, 5(5): 1660–1664.
[41] Huo P C, Zhang C, Zhu W Q,. photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J]., 2020, 20(4): 2791–2798.
[42] Fan Q B, Zhu W Q, Liang Y Z,. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible[J]., 2019, 19(2): 1158–1165.
[43] Zhang C, Divitt S, Fan Q B,. Low-loss metasurface optics down to the deep ultraviolet region[J]., 2020, 9: 55.
[44] Li S Q, Li X Y, Wang G X,. Multidimensional manipulation of photonic spin hall effect with a single-layer dielectric metasurface[J]., 2019, 7(5): 1801365.
[45] Arbabi A, Horie Y, Bagheri M,. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]., 2015, 10(11): 937–943.
[46] Zhou H Q, Sain B, Wang Y T,. Polarization-encrypted orbital angular momentum multiplexed metasurface holography[J]., 2020, 14(5): 5553–5559.
[47] Zhao R Z, Sain B, Wei Q S,. Multichannel vectorial holographic display and encryption[J]., 2018, 7: 95.
[48] Zhang K, Yuan Y Y, Ding X M,. High-efficiency metalenses with switchable functionalities in microwave region[J]., 2019, 11(31): 28423–28430.
[49] Yuan Y Y, Sun S, Chen Y,. A fully phase-modulated metasurface as an energy-controllable circular polarization router[J]., 2020, 7(18): 2001437.
[50] Yuan Y Y, Zhang K, Ratni B,. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces[J]., 2020, 11(1): 4186.
[51] Chen J Y, Zhang F, Zhang M,. Radially polarized Bessel lens based on all-dielectric metasurface[J]., 2018, 45(11): 180124.
陳俊妍, 張飛, 張明, 等. 基于介質(zhì)超表面的徑向偏振貝塞爾透鏡[J]. 光電工程, 2018, 45(11): 180124.
[52] Xu Y H, Li Q, Zhang X Q,. Spin-decoupled multifunctional metasurface for asymmetric polarization generation[J]., 2019, 6(11): 2933–2941.
[53] Gao Y J, Xiong X, Wang Z H,. Simultaneous generation of arbitrary assembly of polarization states with geometrical-scaling-induced phase modulation[J]., 2020, 10(3): 031035.
[54] He Q, Zhang F, Pu M B,. Monolithic metasurface spatial differentiator enabled by asymmetric photonic spin-orbit interactions[J]., 2020, doi: 10.1515/nanoph-2020-0366.
[55] Zhou J X, Qian H L, Chen C F,. Optical edge detection based on high-efficiency dielectric metasurface[J]., 2019, 116(23): 11137–11140.
[56] De Galarreta C R, Alexeev A M, Au Y Y,. Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared[J]., 2018, 28(10): 1704993.
[57] Chu C H, Tseng M L, Chen J,. Active dielectric metasurface based on phase-change medium[J]., 2016, 10(6): 986–994.
[58] Chen Y G, Li X, Sonnefraud Y,. Engineering the phase front of light with phase-change material based planar lenses[J]., 2015, 5: 8660.
[59] Choi C, Lee S Y, Mun S E,. Metasurface with nanostructured Ge2Sb2Te5 as a platform for broadband-operating wavefront switch[J]., 2019, 7(12): 1900171.
[60] Li J X, Kamin S, Zheng G X,. Addressable metasurfaces for dynamic holography and optical information encryption[J]., 2018, 4(6): eaar6768.
[61] Yin X H, Steinle T, Huang L L,. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]., 2017, 6(7): e17016.
[62] Zhang M, Pu M B, Zhang F,. Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials[J]., 2018, 5(10): 1800835.
[63] Nemati A, Wang Q, Hong M H,. Tunable and reconfigurable metasurfaces and metadevices[J]., 2018, 1(5): 180009.
[64] Zhang F, Xie X, Pu M B,. Multistate switching of photonic angular momentum coupling in phase-change metadevices[J]., 2020, 32(39): 1908194.
Metasurfaces enabled by asymmetric photonic spin-orbit interactions
Zhang Fei1, Guo Yinghui1,2, Pu Mingbo1,2, Li Xiong1,2, Ma Xiaoliang1,2,3, Luo Xiangang1,2*
1State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;2School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China;3National Institute of Defense Technology Innovation, Academy of Military Sciences PLA China, Beijing 100071, China
Optical hologram and OAM generation based on asymmetric PSOI
Overview:It is well known that photons carry not only polarization-dependent spin angular momentum but also space-dependent orbit angular momentum. Photonic spin-orbit interaction, which describes the coupling between spin and orbital angular momenta during the propagation of light, is an important phenomenon ignored by classical optics. In recent years, it has been found that this phenomenon can be significantly enhanced by artificial subwavelength structures and adjusted on demand. Traditional metasurfaces only support symmetric photon spin-orbit interactions, and there are limitations in conjugate symmetry, which makes it difficult to use different spin states for multifunctional integration, complex optical field regulation, information encryption, and storage. For example, orbit angular momentum beams generated by traditional metasurfaces mentioned above are always in pairs with opposite topological charges, and holographic images for two opposite spins are usually central symmetric. This conjugate symmetry causes fundamental limitations in energy efficiency and information fidelity for spin-selective multifunctional devices. The asymmetric photon spin-orbit interaction can decouple left and right circularly polarized light, which brings new opportunities for breaking the above-mentioned theoretical and application limitations. This review first introduces the principle and realization method of asymmetric photon spin-orbit interactions. Then, some representative applications and characteristics of asymmetric photon-spin-orbit interactions are introduced. For example, the first monolayer all-dielectric metasurface, simultaneously exhibiting the wavefront manipulation ability and giant circular asymmetric transmission more than four times greater than the previously reported monolayer metasurfaces, was experimentally demonstrated by asymmetric photon spin-orbit interactions. Furthermore, a monolithic metasurface spatial differentiator without 4-F systems was also experimentally demonstrated based on asymmetric photonic spin-orbit interactions, enabling edge detection systems with higher integration level and compactness. Finally, the challenges and prospects for future research directions of asymmetric photon spin-orbit interactions are outlined.
Citation: Zhang F, Guo Y H, Pu M B,Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]., 2020, 47(10): 200366
Metasurfaces enabled by asymmetric photonic spin-orbit interactions
Zhang Fei1, Guo Yinghui1,2, Pu Mingbo1,2, Li Xiong1,2, Ma Xiaoliang1,2,3, Luo Xiangang1,2*
1State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China;2School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China;3National Institute of Defense Technology Innovation, Academy of Military Sciences PLA China, Beijing 100071, China
Photonic spin-orbit interaction is an important phenomenon ignored by classical optics. In recent years, studies have found that this phenomenon can be significantly enhanced by artificial subwavelength structures and adjusted on demand. Traditional metasurfaces only support symmetric photon spin-orbit interactions, and there are limitations in conjugate symmetry, which makes it difficult to use different spin states for multifunctional integration, complex optical field regulation, information encryption, and storage. The asymmetric photon spin-orbit interaction can decouple left and right circularly polarized light, which brings new opportunities for breaking the above-mentioned theoretical and application limitations. This article first introduces the principle and realization method of asymmetric photon spin-orbit interactions, secondly introduces the representative applications and characteristics of asymmetric photon-spin-orbit interactions, and finally outlines the challenges and prospects of asymmetric photon spin-orbit interactions for future research directions.
metasurface; photonic spin-orbit interaction; orbital angular momentum; optical catenary
TB383
A
張飛,郭迎輝,蒲明博,等. 基于非對稱光子自旋—軌道相互作用的超構(gòu)表面[J]. 光電工程,2020,47(10): 200366
10.12086/oee.2020.200366
: Zhang F, Guo Y H, Pu M B,Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]., 2020, 47(10): 200366
2020-09-03;
2020-09-29
國家自然科學(xué)基金資助項目(61975210,61875253);中科院青年創(chuàng)新促進會(2019371);中國博士后科學(xué)基金資助項目(2020M680153)
張飛(1992-),男,博士,博士后,主要從事微納光學(xué)的研究。E-mail:zhangfei_ns@163.com
羅先剛(1970-),男,博士,研究員,主要從事數(shù)字光學(xué),懸鏈線光學(xué),微納光刻,亞波長電磁學(xué),結(jié)構(gòu)功能材料及器件,仿生光子器件及系統(tǒng)等的研究。E-mail:lxg@ioe.ac.cn
Supported by National Natural Science Foundation of China (61975210, 61875253), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2019371), and China Postdoctoral Science Foundation (2020M680153)
* E-mail: lxg@ioe.ac.cn