郭金興 陳廣新 包婉秋 張春霞 張美樂 劉陽
摘? 要: 針對不同分叉病變區(qū)域長度的個體化冠狀動脈的血流動力學指標分布特征,進行個體化建模,探討不同分叉病變區(qū)域長度對冠狀動脈的影響。應用計算流體力學仿真計算,獲得不同分叉病變區(qū)域長度的冠狀動脈血流動力學指標分布特征。利用CFX CCL語言實現不同的血流動力學指標參數。通過計算機建模與仿真,可實現CTA-STL模型-CFD網格-CFD仿真結果,結果為冠狀動脈分叉病變的血流動力學變化受分叉病變的長度影響。
關鍵詞: CTA;冠狀動脈分叉病變;血流動力學仿真
中圖分類號: TP391.4 ???文獻標識碼: A??? DOI:10.3969/j.issn.1003-6970.2020.07.024
本文著錄格式:郭金興,陳廣新,包婉秋,等. 基于CTA的冠狀動脈分叉病變血流動力學仿真分析[J]. 軟件,2020,41(07):120-125
CTA Based Simulation Analysis of Coronary Bifurcation Lesions
GUO Jin-xing1, CHEN Guang-xin2, BAO Wan-qiu2, ZHANG Chun-xia2, ZHANG Mei-le2, LIU Yang3*
(1. Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, 157011, China; 2. Medical Imaging College of Mudanjiang MedicalUniversity, Mudanjiang, 157011, China; 3. Registrars office of Mudanjiang Medical University, Mudanjiang, 157011, China)
【Abstract】: According to the distribution characteristics of individual coronary artery Hemodynamics index with different length of bifurcation lesion area, the individual model was established to explore the influence of different length of bifurcation lesion area on coronary artery. The distribution characteristics of coronary artery Hemodynamics index were obtained by using computational fluid dynamics simulation calculation. Using CFX CCL language to implement different Hemodynamics parameters. Cta-stl model-CFD grid-CFD simulation results are realized by computer modeling and simulation. The results show that the Hemodynamics of coronary bifurcation lesions is affected by the length of bifurcation lesions.
【Key words】: CTA; Coronary bifurcation lesions; Hemodynamics simulation
0? 引言
冠狀動脈狹窄與心肌缺血是否存在相關性一直沒有定論[1-3],中等程度額的冠狀動脈狹窄病變可能會引起心肌缺血,冠狀動脈分叉病變的影響因素包括狹窄率、狹窄區(qū)域長度,所以冠狀動脈的形態(tài)學研究對弄清冠狀動脈的血流動力學特征變化具有重要的意義[4-5]。本研究即基于不同狹窄區(qū)域長度的三維模型,應用血流動力學的指標包括壁面剪切應力、
震蕩剪切因子、避免剪切應力梯度、時間平均壁面剪切應力等對冠狀動脈不同病變長度的LAD進行分析,探討病變長度對冠狀動脈的的血流動力學因素的影響關系。
1? 個體化冠狀動脈三維模型構建
選取牡丹江醫(yī)學院附屬紅旗醫(yī)院冠狀動脈患者病例一例,CTA斷層影像數據總計402張,層厚0.5?mm,使用比利時醫(yī)學交互式影像控制系統(tǒng)(Mater?ialists Interative Medical Image Control System,MIMICS)高級分割工具(ADVANCED SEGMENT)模塊中的Coronary專用分割工具進行冠狀動脈分割(圖1),提取出左冠狀動脈蒙版(Mask),并經三維模型計算(Calculate Part生成初步的三維模型并以stl格式導入正向工程軟件3-matic中進行光順、三維模型修復、三角面片劃分,最終獲取冠狀動脈三維模型,此模型病變長度為0(圖2),圖2中標示了模型的入口、出口位置和病變區(qū)域。在此動脈模型基礎上構建10 mm,15 mm病變(狹窄)模型。MIMICS是醫(yī)學逆向工程軟件,該軟件可實現斷層數據的提取、三位建模、測量等,3-matic medical版本是基于正向工程技術的一款三維模型的構建、修復處理軟件。
2 ?計算方法
2.1 ?材料屬性與邊界條件
本研究的仿真計算是基于ANSYS CFX軟件,Ansys CFX是一款高性能計算流體動力學(CFD)軟件工具,能快速穩(wěn)健地提供準確可靠的解決方案,適用于眾多CFD和多物理場應用,作為世界上唯一采用全隱式耦合算法的大型商業(yè)軟件[6-8]。算法上的先進性,豐富的物理模型和前后處理的完善性使ANSYS CFX在結果精確性,計算穩(wěn)定性,計算速度和靈活性上都有優(yōu)異的表現。假設血流密度為1066 kg/m3,血液為牛頓流體,動力粘度為0.0035 。冠狀動脈入口采用速度入口,入口速度曲線如圖3所示,出口壓力曲線如圖4所示,不考慮重力的影響。計算兩個周期,每個周期的時長為0.8 s,取最后一個周期的結果進行研究。由于血管內壓力很小,設置流體域的壓力為0。雷諾數為Re=1430<2300,因此采用層流[9-10]。
2.3 ?網格劃分
各模型的網格劃分采用非結構化的四面體網格(ANSYS FLUENT MESHING劃分),為保證計算精度,邊界層采用5層加密(圖5所示),網格劃分后進行網格獨立性驗證,滿足精度要求。ANSYS FLUENT MESHING是全新的基于Ribbon風格的界面,提高了操作的便捷性,改善了用戶的體驗,同時提供了基于包面方法的全自動腳本生成網格、基于ANSA集成FLUENT MESHING的網格生成、基于SCDM結合FLUENT MESHING等多種網格生成流程。應用該軟件劃分的網格質量較高,并提供獨有的多面體網格技術[11-13]。
3 ?仿真計算結果分析
本計算結果圖像后處理分析采用ENSIGHT進行分析,ENSIGHT是美國CEI公司開發(fā)的一款具有尖端的科學工程可視化的圖像后處理軟件。
3.1 ?血流動力學參數選擇
各參數的實現采用CCL編碼開發(fā),ccl語言通俗易懂,可開發(fā)性較高,本實驗程序編碼部分如下:
inrad1 = sqrt(area()@INLET1/ pi)
inrad2 = sqrt(area()@INLET2/ pi)
invel1 = max(0 [m s^-1], invmax1 * (1.0 - (zxradius1/inrad1)^2))
invel2 = max(0 [m s^-1], invmax2 * (1.0 - (zxradius2/inrad2)^2))
invmax1 = 2 * INLET1f / ( pi *(inrad1^2)*areaAve(density)@INLET1)
invmax2 = 2 * INLET2f / ( pi *(inrad2^2)*areaAve(density)@INLET2)
inxcen1 = areaAve(Global X Coordinate)@INLET1
inxcen2 = areaAve(Global X Coordinate) @INLET2
inycen1 = areaAve(Global Y Coordinate) @INLET1
inycen2 = areaAve(Global Y Coordinate) @INLET2
inzcen1 = areaAve(Global Z Coordinate) @INLET1
inzcen2 = areaAve(Global Z Coordinate) @INLET2
numaneurysms = 1
numsystoliccycles = 3
peaksystole = 0.13
systoliccyclelength = 0.8
visc = viscval * 1[Pa s]
viscval = 0.0035
vortmag2 = Vorticity X^2 + Vorticity Y^2 + Vorticity Z^2
zxradius1 = sqrt((x-inxcen1)^2 + (y-inycen1)^2 + (z-inzcen1)^2)
zxradius2 = sqrt((x-inxcen2)^2 + (y-inycen2)^2 + (z-inzcen2)^2)
END
ADDITIONAL VARIABLE: Qvar
Option = Definition
Tensor Type = SCALAR
Units = [s^-2]
Variable Type = Unspecified
END
ADDITIONAL VARIABLE: ViscDisp
Option = Definition
Tensor Type = SCALAR
Units = [s^-2]
Variable Type = Unspecified
END
ADDITIONAL VARIABLE: WSSField
Option = Definition
Tensor Type = SCALAR
Units = [Pa]
Variable Type = Specific
END
ADDITIONAL VARIABLE: WSSG
Option = Definition
Tensor Type = VECTOR
Units = [Pa m^-1]
Variable Type = Unspecified
END
ADDITIONAL VARIABLE: WSSxF
Option = Definition
Tensor Type = SCALAR
Units = [Pa]
Variable Type = Specific
END
ADDITIONAL VARIABLE: WSSyF
Option = Definition
Tensor Type = SCALAR
Units = [Pa]
Variable Type = Specific
END
ADDITIONAL VARIABLE: WSSzF
Option = Definition
Tensor Type = SCALAR
Units = [Pa]
Variable Type = Specific
END
MATERIAL: Blood
Material Group = User
Option = Pure Substance
PROPERTIES:
Option = General Material
EQUATION OF STATE:
Density = dens
Molar Mass = 1.0 [kg kmol^-1]
Option = Value
END
DYNAMIC VISCOSITY:
Dynamic Viscosity = visc
Option = Value
END
END
END
END
FLOW: Flow Analysis 1
SOLUTION UNITS:
Angle Units = [rad]
Length Units = [m]
Mass Units = [kg]
Solid Angle Units = [sr]
Temperature Units = [K]
Time Units = [s]
END
ANALYSIS TYPE:
Option = Transient
EXTERNAL SOLVER COUPLING:
Option = None
END
INITIAL TIME:
Option = Automatic with Value
Time = 0 [s]
END
TIME DURATION:
Option = Total Time
Total Time = 2.4 [s]
END
TIME STEPS:
Option = Timesteps
Timesteps = 0.008 [s]
END
END
DOMAIN: FLUIDdom
Coord Frame = Coord 0
Domain Type = Fluid
Location = Assembly
BOUNDARY: INLET1
Boundary Type = INLET
Location = INLET1
BOUNDARY CONDITIONS:
ADDITIONAL VARIABLE: WSSField
Option = Zero Flux
END
ADDITIONAL VARIABLE: WSSxF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
ADDITIONAL VARIABLE: WSSyF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
ADDITIONAL VARIABLE: WSSzF
Additional Variable Value = 0 [kg m^-1 s^-2]
Option = Value
END
FLOW REGIME:
Option = Subsonic
END
MASS AND MOMENTUM:
Normal Speed = invel1
Option = Normal Speed
END
END
END
ADDITIONAL VARIABLE: OSIfield
Additional Variable Value = (1 - \
(WSTaveMag/(WSSField.Trnavg+ 1e-15[Pa])))/2
Option = Algebraic Equation
END
ADDITIONAL VARIABLE: PressGauge
Additional Variable Value = pref + Pressure
Option = Algebraic Equation
END
ADDITIONAL VARIABLE: WSSField
Kinematic Diffusivity = 1e-15 [m^2 s^-1]
Option = Poisson Equation
END
ADDITIONAL VARIABLE: WSSG
Option = Vector Algebraic Equation
Vector xValue = -(1.0-Normal X*Normal X)*WSSField.Gradient X \
-(0.0-Normal X*Normal Y)*WSS?Field.Gradient Y -(0.0-Normal X*Normal \
Z)*WSSField.Gradient Z
Vector yValue = -(0.0-Normal Y* Normal X)*WSSField.Gradient X \
-(1.0-Normal Y*Normal Y)*WSS?Field.Gradient Y -(0.0-Normal Y*Normal \
Z)*WSSField.Gradient Z
Vector zValue = -(0.0-Normal Z*Nor?mal X)*WSSField.Gradient X \
-(0.0-Normal Z*Normal Y)*WSS?Field.Gradient Y -(1.0-Normal Z*Normal \
Z)*WSSField.Gradient Z
END
ADDITIONAL VARIABLE: WSSxF
Kinematic Diffusivity = 1e-15 [m^2 s^-1]
Option = Poisson Equation
END
ADDITIONAL VARIABLE: WSSyF
Kinematic Diffusivity = 1e-15 [m^2 s^-1]
Option = Poisson Equation
END
ADDITIONAL VARIABLE: WSSzF
Kinematic Diffusivity = 1e-15 [m^2 s^-1]
Option = Poisson Equation
END
COMBUSTION MODEL:
Option = None
END
HEAT TRANSFER MODEL:
Option = None
END
THERMAL RADIATION MODEL:
Option = None
END
TURBULENCE MODEL:
Option = Laminar
END
END
END
本文選擇血流速度、時間平均壁面切應力(time average wall shear stress,TAWSS)、平均壁面切應力梯度(time average wall shear stress grade,TAWSSG)、剪切震蕩系數(oscillatory shear index,OSI)、壁面切應力(wall shear stress,WSS)是指血液流動時在血管壁表面上引起的切向的動態(tài)摩擦力。對于脈動流,在一個心臟周期內用每個節(jié)點上積分WSS量的值來計算TAWSS:
其中wssi是瞬時剪切應力矢量,T是周期的持續(xù)時間。同時提出了壁面切應力梯度(wall shear stress,WSSG),可以更明顯觀測WSS數值變化,WSSG的時間平均值即平均壁面切應力梯度(TAWSSG):
在一個心動周期內,震蕩剪切系數(OSI)可以描述WSS方向的變化程度,OSI值介于(0,0.5)之間,OSI數值越大,表示WSS方向的變化也就越大,但其值的大小與WSS沒有必然聯(lián)系,其表達式為:
3.2 ?病變長度對TAWSS的影響
本研究提取了最后一個周期的TAWSS云圖 (圖6),由TAWSS分布云圖可見,在分叉病變區(qū)域,無病變、10 mm病變長度,15 mm病變長度的病變部位高TAWSS區(qū)域依次遞增。在病變區(qū)域,高TAWSS區(qū)域的值都較小,普遍都在0.6左右,而非病變區(qū)域的分叉部位病變長度10 mm、15 mm的模型高TAWSS區(qū)域要大于無病變者。
Fig.6? TAWSS distribution nephogram (from left to right: no lesion (a), 10 mm lesion length model (b),15 mm lesion length model (c))
3.3 ?病變長度對OSI的影響
Zhang等人的那研究證實低的OSI能夠降低血管內膜增生的可能性。由圖7可見,無病變模型、10 mm病變長度模型、15 mm病變長度模型OSI分布差別較小。
3.4 ?病變長度對TAWSSG的影響
由圖8可見,各模型的分叉病變高TWSSG區(qū)域按無病變、10 mm、15 mm順序依次遞增。在管壁分叉處,TAWSSG值都較高,有血管損傷的風險。
3.5 ?病變長度對血流速度分布的影響
為考察病變長度對血流速度的影響,選取血管病變位置的截面速度進行比較研究,圖9為截面的位置。三個不同病變長度的截面血流速度分布如圖10所示,由圖可見,在脈動流周期的入口血流速度峰值時刻,無病變、10 mm病變長度、15 mm病變長度模型的截面血流速度依次遞增。
4 ?討論
本研究構建了冠狀動脈的LAD的不同長度狹窄區(qū)域的血管3D模型,并在此基礎上使用ANSYS CFX流體仿真軟件進行仿真計算,獲得冠狀動脈不同狹窄區(qū)域長度的血流動力學指標分布特征。冠狀動脈WSS是引起血管發(fā)生病變及病變惡化的重要影響因素,WSS高、低區(qū)域的震蕩是引起血管損傷的重要因素,其低WSS區(qū)域或震蕩可能擴大病變狹窄程度,而高WSS可能會造成斑塊的軟化和不穩(wěn)定;高OSI可能會增加內皮細胞的功能紊亂和血管內膜增生[12-13]。
參考文獻
Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2015 update: a report from the american heart association. Circulation, 2015, 131: e29-e322.
Zarins CK, Taylor CA, Min JK. Computed fractional flow reserve(FFTCT) derived from coronary CT angiography. Journal of Cardiovascular Translational Research, 2013, 6(5): 708-714.
Zhang JM, Zhong L, Luo T, et al. Numerical simulation and clinical implications of stenosis in coronary blood flow. In: BioMed Research International, 2014: 1-10.
Taylor CA, Fonte TA, Min JK. Computational fluid dyna?mics applied to cardiac computed tomography for noninva?sive quantification of fractional flow reserve. Journal of the American College of Cardiology, 2013, 61(22): 2233-2241.
Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia- causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Journal of the American College of Cardiology, 2011, 58(19): 1889-1996.
Yong AS, Ng AC, Brieger D, et al. Three-dimensional and two dimensional quantitative coronary angiography, and their prediction of reduced fractional flow reserve. European Heart Journal, 2011, 32(3): 345-353.
Iguchi T, Hasegawa T, Nishimura S, et al. Impact of lesion length on functional significance in intermediate coronary lesions. Clinical Investigations, 2013, 36(3): 172-177.
Kristensen TS, Engstr?mb T, Kelb?k H, et al. Correlation between coronary computed tomographic angiography and fractional flow reserve. International Journal of Cardiology, 2010, 144(2): 200-205.
Alghamdi A, Balgaith M, Alkhaldi A. Influence of the length of coronary artery lesions on fractional flow reserve across intermediate coronary obstruction. European Heart Journal Supplements, 2014, 16(Supplement B): 76-79.
隋國慶, 張培新, 楊國柱, 等. 冠狀動脈的數值模擬分析及在支架介入的應用研究[J]. 軟件. 2020(1).
陳廣新, 趙東良, 郭金興, 等. 基于CTA的個體化腦動脈瘤的流固耦合分析及其臨床應用[J]. 2020(1).
王汝良, 胡霖霖, 郭金興, 等. 頸動脈分叉的非穩(wěn)態(tài)數值模擬分析[J]. 2018(10).
張凱旋, 陳廣新, 邱收, 等. 椎動脈阻斷術前后基底動脈瘤的血流動力學數值模擬分析[J]. 2019(6).