宋建超,尚 斌,陶秀萍,董紅敏,王 俊,郭江鵬
絮凝預(yù)處理對(duì)奶牛場(chǎng)膜生物反應(yīng)器膜污染影響的中試試驗(yàn)
宋建超1,尚 斌1,陶秀萍1※,董紅敏1,王 俊2,郭江鵬2
(1. 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境與可持續(xù)發(fā)展研究所,農(nóng)業(yè)農(nóng)村部設(shè)施農(nóng)業(yè)節(jié)能與廢棄物處理重點(diǎn)實(shí)驗(yàn)室,北京 100081;2. 北京市畜牧總站,北京 100107)
為探討經(jīng)濟(jì)實(shí)用的高濃度奶牛場(chǎng)污水預(yù)處理方法,該研究開展了絮凝預(yù)處理對(duì)膜生物反應(yīng)器(Membrane Bioreactor,MBR)膜污染的影響試驗(yàn),試驗(yàn)采用高濃度奶牛場(chǎng)污水原水和絮凝出水作為MBR進(jìn)水依次運(yùn)行,對(duì)比分析了不同進(jìn)水的膜污染規(guī)律及其原因。結(jié)果表明,絮凝出水作為MBR進(jìn)水時(shí)膜污染速率較污水原水降低47%且膜組件的維護(hù)性清洗時(shí)間間隔由10 d延長(zhǎng)至16 d;MBR處理污水原水的膜池混合液中胞外聚合物(Extracellular Polymeric Substances,EPS)和溶解性微生物產(chǎn)物(Soluble Microbial Products,SMP)濃度分別為4.76和3.94 g/L,而處理絮凝出水時(shí)的EPS和SMP濃度值分別為3.97和2.23 g/L。兩階段MBR膜池混合液各粒徑值總體上均呈現(xiàn)先增大后減小的趨勢(shì),第1和第2階段的最大粒徑體積百分比分別出現(xiàn)在第16天和第23天,第1階段EPS濃度和SMP濃度均隨著顆粒粒徑的增大而減小,第2階段EPS濃度隨著顆粒粒徑的增大而增大但SMP濃度與顆粒物粒徑之間無變化規(guī)律;MBR處理污水原水的膜池混合液顆粒粒徑的峰值較分散,且16 d后峰值向小粒徑方向移動(dòng),而處理絮凝出水的峰值粒徑相對(duì)穩(wěn)定,且峰值粒徑對(duì)應(yīng)的最大體積百分比從3.57%增加至5.95%。MBR對(duì)2種進(jìn)水的化學(xué)需氧量(Chemical Oxygen Demand,COD)去除率均可達(dá)90%以上,氨氮(Ammonia Nitrogen,NH3-N)去除率均接近90%,對(duì)絮凝出水的總磷(Total Phosphorus,TP)處理效果高于污水原水。絮凝預(yù)處理使膜池混合液的EPS和SMP濃度降低且SMP蛋白質(zhì)濃度顯著降低(<0.05)、膜池混合液顆粒粒徑顯著增加(<0.05),有效減緩了MBR的膜污染,絮凝預(yù)處理與MBR組合可望為高濃度奶牛場(chǎng)污水處理提供可靠的技術(shù)途徑。
污水;絮凝;膜; 膜生物反應(yīng)器;奶牛場(chǎng);污染
膜生物反應(yīng)器(Membrane Bioreactor,MBR)將傳統(tǒng)活性污泥法與現(xiàn)代超、微濾膜分離相結(jié)合,在微生物去除污染物的基礎(chǔ)上,借助膜分離進(jìn)一步提高出水水質(zhì),具有占地面積小、易于控制且高容積負(fù)荷等優(yōu)點(diǎn),被廣泛應(yīng)用于各領(lǐng)域污水深度處理[1-3]。現(xiàn)有膜生物反應(yīng)器相關(guān)研究主要集中于工業(yè)廢水[4]、城市污水[5-6]、生活廢水[3,7-8]等,近年來膜生物反應(yīng)器技術(shù)逐漸被應(yīng)用于畜禽養(yǎng)殖污水和沼液處理[9-10],但是膜污染一直是膜生物反應(yīng)器實(shí)際應(yīng)用中的最大限制因素。有關(guān)研究顯示,化學(xué)絮凝預(yù)處理或者M(jìn)BR中投加助濾劑、絮凝助劑以及填料,比如硅藻土、活性炭、鋁鹽和鐵鹽、無機(jī)高分子物質(zhì)、有機(jī)聚合電解質(zhì)以及天然有機(jī)物,可有效緩解膜污染[11-13]。目前有關(guān)膜生物反應(yīng)器處理畜禽養(yǎng)殖污水和沼液的研究,以小試研究為主[14-16],針對(duì)高濃度養(yǎng)殖污水的中試研究鮮有報(bào)道。將膜生物反應(yīng)器應(yīng)用于高濃度養(yǎng)殖污水處理,其膜污染情況將直接關(guān)系到出水效果和運(yùn)行成本,最終影響到膜生物反應(yīng)器應(yīng)用于高濃度養(yǎng)殖污水的可行性。
本研究以機(jī)械清糞奶牛場(chǎng)高濃度污水為研究對(duì)象,探討絮凝預(yù)處理對(duì)膜生物反應(yīng)器中試運(yùn)行的膜污染影響,為高效實(shí)用的奶牛場(chǎng)污水處理工藝的工程應(yīng)用提供科學(xué)依據(jù)和技術(shù)參考。
中試設(shè)備由絮凝裝置(容積1 m3)和膜生物反應(yīng)器(有效容積6 m3)兩部分組成(圖1),絮凝裝置由箱體(不銹鋼材質(zhì))、攪拌器和控制器組成,膜生物反應(yīng)器由預(yù)曝氣裝置(底設(shè)8個(gè)微孔曝氣盤)、曝氣泵和膜組件構(gòu)成。MBR膜組件為聚偏氟乙烯(Polyvinylidene Fluoride,PVDF)平板膜(RGE-40,南京瑞潔特膜分離科技有限公司),膜厚5 mm、孔徑0.1m、總有效面積20 m2。MBR進(jìn)水(污水原水和絮凝出水)由管道泵提升至膜池,膜池水位由液位器調(diào)節(jié);曝氣泵通過曝氣盤給膜池連續(xù)供氧;自吸泵負(fù)壓抽吸產(chǎn)水,并通過轉(zhuǎn)子流量計(jì)調(diào)節(jié)出水量;管道泵、曝氣泵和自吸泵的運(yùn)行均由可編程邏輯控制箱系統(tǒng)(Programmable Logic Controller,PLC)整體控制。
MBR進(jìn)水包括污水原水和絮凝出水。試驗(yàn)用水在北京某規(guī)?;膛?chǎng)現(xiàn)場(chǎng)取用,該奶牛場(chǎng)采用機(jī)械清糞方式,清理出的奶牛糞尿經(jīng)過擠壓式和振動(dòng)篩兩級(jí)固液分離后的液體為污水原水,為了使原水水質(zhì)與絮凝出水相當(dāng),污水原水需經(jīng)適當(dāng)稀釋后作為第1階段MBR進(jìn)水;試驗(yàn)第2階段MBR進(jìn)水為奶牛場(chǎng)污水原水經(jīng)過絮凝處理后的上清液(絮凝出水)。試驗(yàn)過程中奶牛場(chǎng)污水稍有波動(dòng),第1階段和第2階段MBR進(jìn)水水質(zhì)基本相近,具體的水質(zhì)特性如表1所示。
圖1 絮凝-膜生物反應(yīng)器系統(tǒng)中試裝置圖
表1 試驗(yàn)污水原水和絮凝出水的水質(zhì)特性
1.3.1 絮凝裝置運(yùn)行
根據(jù)作者所在團(tuán)隊(duì)絮凝中試結(jié)果(內(nèi)部資料):基于最佳性價(jià)比,選用非離子聚丙烯酰胺(Non-ionic Polyacrylamide,NPAM)作為絮凝劑,配制1 g/L的投加液、按照1∶400體積比投加,經(jīng)過快速和中速攪拌后靜置沉淀30 min,上清液作為MBR第2階段進(jìn)水。
1.3.2 MBR接種污泥和運(yùn)行
膜生物反應(yīng)器的接種污泥取自奶牛場(chǎng)現(xiàn)有污水處理站穩(wěn)定運(yùn)行的活性污泥(MLSS為5 000 mg/L),首先MBR中加入4 m3接種污泥,然后逐漸增加原水(每次增加處理水量的10%)進(jìn)行曝氣,曝氣5 d后開始連續(xù)出水并測(cè)試出水化學(xué)需氧量(Chemical Oxygen Demand,COD)和氨氮(Ammonia Nitrogen,NH3-N)濃度,直至7 d后處理水量達(dá)到滿荷載(設(shè)計(jì)日處理量為5 m3),此后MBR繼續(xù)曝氣直至污泥呈棕褐色且出水水質(zhì)達(dá)標(biāo)時(shí),馴化階段結(jié)束,正式開始試驗(yàn)。試驗(yàn)運(yùn)行期間MBR的水力停留時(shí)間(Hydraulic Retention Time,HRT)為72 h,膜通量為10 L /(m2·h),曝氣強(qiáng)度為1.8 m3/(m2·h),使膜池混合液的溶解氧(Dissolved Oxygen,DO)濃度控制在(2.4±0.7) mg/L;每周排泥3次、每次排泥500 L使污泥齡(Sludge Retention Time,SRT)保持在28 d;出水泵采用開8 min、停2 min的間歇抽吸方式運(yùn)行,當(dāng)膜組件的跨膜壓力(Transmembrane Pressure,TMP)接近30 kPa時(shí)用次氯酸鈉溶液和檸檬酸溶液進(jìn)行化學(xué)清洗。
第1階段MBR進(jìn)水為污水原水,試驗(yàn)在2019年10月15日—11月14日進(jìn)行,穩(wěn)定運(yùn)行31 d,MBR膜池水溫為(21.0±2.2)℃;第2階段MBR進(jìn)水為絮凝出水,試驗(yàn)在11月29日—12月31日進(jìn)行,穩(wěn)定運(yùn)行33 d,MBR膜池水溫為(19.4±2.0)℃;2個(gè)階段試驗(yàn)中間有2周過渡期,并且第1階段試驗(yàn)結(jié)束后排泥、恢復(fù)試驗(yàn)初始污泥濃度,并對(duì)膜組件進(jìn)行維護(hù)性清洗。整個(gè)試驗(yàn)運(yùn)行期間,室外環(huán)境溫度在-9~19℃且最冷天的日平均溫度為(-6.3±-2.7)℃,為了防止冬季低溫和降雪對(duì)試驗(yàn)的影響,試驗(yàn)裝置外加裝陽(yáng)光棚(在其他季節(jié)將陽(yáng)光板拆除,只保留骨架結(jié)構(gòu)),試驗(yàn)期間MBR水溫平均為(20.1±2.3)℃。
試驗(yàn)過程中每天15:00時(shí)采集MBR進(jìn)水和出水樣品,測(cè)定COD、NH3-N和總磷(Total Phosphorus,TP)濃度,其中COD濃度采用環(huán)境行業(yè)標(biāo)準(zhǔn)方法[17]測(cè)定,NH3-N和TP采用HACH快速測(cè)定法。NH3-N樣品中加入HACH專用試劑反應(yīng)20 min、TP樣品加入HACH專用試劑消解(DRB200,COD快速消解儀,HACH Company,USA;溫度穩(wěn)定性:±2℃)30 min后,通過紫外可見光分光光度計(jì)(DR 6000,HACH Company,USA;波長(zhǎng)分辨率:0.1 nm)測(cè)定濃度。所有指標(biāo)均在現(xiàn)場(chǎng)12 h內(nèi)完成測(cè)定。試驗(yàn)水質(zhì)中總氮(Total Nitrogen,TN)指標(biāo)的測(cè)定方法亦采用HACH快速測(cè)定法、總懸浮固體(Total Suspended Solids,TSS)采用質(zhì)量法測(cè)定、pH 值采用酸度計(jì)(Five Go F2-Standard,Mettler-Toledo,CH;精度:±0.01)測(cè)定,DO和水溫采用哈納便攜式溶解氧儀(HI98193,HANNA Instruments,ITA;精度:±1.5%讀數(shù))測(cè)定,膜池NPAM殘留含量采用紫外可見分光光度法(UV3600,紫外分光光度計(jì),SHIMADZU Excellence,JP;波長(zhǎng)分辨率:0.1 nm)測(cè)定。
每個(gè)試驗(yàn)階段從曝氣膜池采集活性污泥混合液樣品2份,其中一份樣品50 mL用于混合液顆粒粒徑測(cè)定,另一份樣品100 mL用于提取溶解性微生物產(chǎn)物(Soluble Microbial Products,SMP)和胞外聚合物(Extracellular Polymeric Substances,EPS),樣品采集間隔均為7 d、兩階段各采樣5次,另外在試驗(yàn)用水進(jìn)入MBR前也采集樣品但僅用于顆粒粒徑測(cè)定。顆粒粒徑(體積平均粒徑[4,3]、累積分布10%的粒徑(0.1)、累積分布50%的粒徑(0.5)和累積分布90%的粒徑(0.9))均采用激光粒度分析儀(Mastersizer 2000,英國(guó)馬爾文儀器有限公司)測(cè)定?;钚晕勰嗷旌弦簶悠吩? 000 r/min下離心5 min,上清液用0.45m濾膜過濾后即為提取的溶解性微生物產(chǎn)物,采用苯酚-硫酸法測(cè)定溶解性微生物產(chǎn)物中的多糖(Polysaccharide of Soluble Microbial Products,SMPs)和考馬斯亮藍(lán)法測(cè)定溶解性微生物產(chǎn)物中的蛋白質(zhì)(Protein of Soluble Microbial Products,SMPp),SMPs值與SMPp值相加即為SMP;在活性污泥混合液提取SMP之后的濃縮污泥中加入蒸餾水補(bǔ)足體積至原體積,采用熱提取法[18]提取EPS,測(cè)定其中的多糖(Polysaccharide of Extracellular Polymeric Substances,EPSs)和蛋白質(zhì)(Protein of Extracellular Polymeric Substances,EPSp)組分濃度,EPSs值與EPSp值相加即為EPS。
通過出水管上真空壓力表測(cè)試跨膜壓力(Transmembrane Pressure,TMP)值,以單位膜面積處理單位水量時(shí)TMP的增長(zhǎng)率(,kPa/m)表示膜污染速率,按式(1)進(jìn)行計(jì)算。
式中?TMP為跨膜壓力的增加值,kPa;為出水流量,m3/d;為運(yùn)行時(shí)間,d;為膜組件有效膜面積,m2。
污水中COD、NH3-N和TP去除率(,%)均按式(2)進(jìn)行計(jì)算。
式中C為進(jìn)水中某種污染物的濃度,mg/L;C為出水中相應(yīng)污染物濃度,mg/L。
2.1.1 膜污染速率
試驗(yàn)期間兩階段運(yùn)行過程中膜生物反應(yīng)器TMP變化情況如圖2所示。第1階段MBR處理污水原水(COD濃度為(6 916±671)mg/L、氨氮濃度為(389±55)mg/L、TSS濃度為(6 490±205)mg/L)時(shí),第1天初始TMP為5 kPa,運(yùn)行第10天達(dá)到29.9 kPa,1~10 d的膜污染速率為10.38 kPa/m,此時(shí)對(duì)膜組件進(jìn)行第1次化學(xué)清洗;膜清洗后TMP恢復(fù)至6.7 kPa,隨著MBR運(yùn)行至試驗(yàn)第20天時(shí)TMP再次升高至29.2 kPa,進(jìn)行第2次膜清洗,在此期間膜污染速率為9.38 kPa/m;膜清洗后TMP恢復(fù)至8.2 kPa,運(yùn)行11 d后(試驗(yàn)第31天)TMP達(dá)到30.5 kPa,在此期間的膜污染速率為8.45 kPa/m,再次對(duì)膜組件進(jìn)行清洗。第1階段對(duì)膜組件的清洗并不能使TMP恢復(fù)至初始狀態(tài),可能是小粒徑污泥堵塞膜孔所致[13]。第2階段MBR進(jìn)水為絮凝出水(COD濃度為(7 013±897)mg/L),運(yùn)行16 d后TMP達(dá)到30 kPa,對(duì)膜組件進(jìn)行清洗,再次運(yùn)行17 d后(試驗(yàn)第33天)TMP再次升高至29.5 kPa,第2階段的膜清洗周期對(duì)應(yīng)的膜污染速率分別為5.73和5.47 kPa/m,均低于第1階段的膜污染速率值且第2階段的膜污染速率值較第1階段可降低47%。盡管第1階段和第2階段MBR進(jìn)水COD濃度相近,但膜清洗間隔由10 d(第1階段)延長(zhǎng)至16 d(第2階段),污水經(jīng)過絮凝處理后可減緩膜污染,延長(zhǎng)膜清洗間隔時(shí)間。
注:當(dāng)跨膜壓力達(dá)到約30 kPa時(shí)進(jìn)行膜清洗;第2階段為MBR處理絮凝預(yù)處理后的出水,下同。
第2階段MBR進(jìn)水的COD濃度為(7 013±897)mg/L、氨氮濃度為(487±46)mg/L、TSS濃度為(6 879±542)mg/L),氨氮和TSS濃度略高于第1階段進(jìn)水,但第2階段TMP增長(zhǎng)速度較慢,其原因可能是絮凝預(yù)處理使原水中的極細(xì)微顆粒物(包括膠體、懸浮物等肉眼可見物或不可見物)變成大顆粒聚沉去除后,減緩膜污染。本研究對(duì)絮凝出水中的絮凝劑NPAM的殘留量進(jìn)行了分析,其濃度在2~6 mg/L,絮凝出水中殘留少量NPAM,不易透過膜組件,當(dāng)其隨著MBR進(jìn)水在膜池內(nèi)積累后,高分子NPAM可以依靠其長(zhǎng)分子鏈來吸附混合液中膠體有機(jī)物,同時(shí)和膜污染相關(guān)的溶解性大分子在架橋絮凝作用下與活性污泥絮體相結(jié)合,形成大于膜孔的絮體顆粒,有效抑制膜孔堵塞和凝膠層的形成,從而減緩膜污染[19-20]。按照國(guó)家標(biāo)準(zhǔn)《膜生物反應(yīng)器通用技術(shù)規(guī)范》(GB/T 33898—2017),MBR的維護(hù)性清洗周期一般為7~15 d,當(dāng)MBR處理絮凝出水時(shí),維護(hù)性清洗周期得到進(jìn)一步延長(zhǎng)。
2.1.2 胞外聚合物和溶解性微生物產(chǎn)物
2個(gè)試驗(yàn)階段的EPS、SMP中的多糖與蛋白質(zhì)濃度如表2所示,第1階段的EPS和SMP濃度分別為(4.76±1.67)和(3.94±1.41)g/L,均高于第2階段的EPS(3.97±1.58)和SMP(2.23±1.12)g/L,且第1階段SMP蛋白質(zhì)濃度顯著高于第2階段相應(yīng)值(<0.05);兩階段的蛋白質(zhì)濃度均高于多糖,其中第1階段和第2階段EPS蛋白質(zhì)濃度分別是多糖濃度的2.40倍和1.81倍,SMP蛋白質(zhì)濃度分別是多糖濃度的2.61倍和2.48倍。
表2 兩階段膜池混合液中胞外聚合物(EPS)和溶解性微生物產(chǎn)物(SMP)中的多糖和蛋白質(zhì)濃度
注:同一列中不同字母表示差異顯著(<0.05)。
Note: Different letters in the same column indicate significant difference at the level of<0.05.
兩階段膜池混合液中EPS濃度均隨著MBR運(yùn)行時(shí)間逐漸增加(如圖3所示):第1階段第2天的EPS濃度為2.31 g/L,最大增幅出現(xiàn)在第9天、其濃度為第2天的1.85倍,第30天時(shí)達(dá)到6.77 g/L、較第2天增長(zhǎng)1.93倍;第2階段第2天的EPS濃度為2.14 g/L,最大增幅出現(xiàn)在第16天、其濃度為第2天的2.26倍,第30天時(shí)的濃度為5.49 g/L、較第2天濃度增長(zhǎng)1.57倍。第1階段SMP的濃度變化趨勢(shì)與EPS一致,隨著運(yùn)行時(shí)間呈上升趨勢(shì),且最大漲幅出現(xiàn)在第9天(其濃度為第2天的2.09倍);但是第2階段SMP濃度呈現(xiàn)先升高后降低趨勢(shì),最大值4.05 g/L出現(xiàn)在第16天,且試驗(yàn)第30天基本回復(fù)到第2階段的初始濃度水平。
注:SMP和EPS下標(biāo)s和p分別為多糖和蛋白質(zhì)。
EPS和SMP濃度在第1階段第9天和第2階段第16天出現(xiàn)最大增幅,且第1和第2階段第30天的較高EPS和SMP濃度值,均與此時(shí)膜生物反應(yīng)器的高TMP值相一致,EPS和SMP是否是導(dǎo)致TMP增長(zhǎng)的原因,下文將結(jié)合膜池混合液粒徑進(jìn)一步分析。
通常EPS和SMP被認(rèn)為是造成不可逆膜污染的主要因素[21]。盡管兩階段EPS濃度均隨著MBR運(yùn)行而增長(zhǎng),但第2階段EPS比第1階段增幅小,原因是膜池混合液中大部分溶解性和顆粒狀的EPS與絮凝劑NPAM結(jié)合而形成一種聚合物—生物多聚物的混合體,并逐漸裹入到污泥絮團(tuán)中,從而減少EPS對(duì)膜污染的影響[22]。第1階段SMP濃度隨時(shí)間運(yùn)行上升較快,可能是微生物內(nèi)源呼吸加劇所致;第2階段SMP濃度隨時(shí)間運(yùn)行先上升后下降,這是因?yàn)樾跄齽㎞PAM逐漸累積,SMP中蛋白質(zhì)和多糖大分子物質(zhì)被絮凝劑去除,導(dǎo)致SMP濃度降低,同時(shí)增強(qiáng)污泥凝聚性,降低混合液中顆粒物污染。
2.1.3 膜池混合液顆粒粒徑
膜池混合液顆粒物的粒徑分布情況如圖4所示,第1階段粒徑分布在0.40~502.38m之間且峰值較分散,污水原水(0 d)中最大體積百分比僅為3.47%;9和16 d、23和30 d的粒徑分布基本一致,且16 d后峰值向小粒徑方向移動(dòng)。第2階段粒徑分布在0.45~632.46m之間,絮凝出水進(jìn)入MBR之后峰值較集中、峰值粒徑相對(duì)穩(wěn)定且只在16 d后稍微偏右,最大體積百分比持續(xù)增加,從3.57%增加至5.95%。
圖4 兩階段的膜池混合液顆粒粒徑分布
混合液顆粒粒徑隨運(yùn)行時(shí)間的變化如表3所示,其中體積平均粒徑([4,3],m)的變化規(guī)律與顆粒累積分布10%、50%和90%的粒徑(即(0.1)、(0.5)和(0.9))變化規(guī)律相一致。第1階段和第2階段膜池混合液中顆粒粒徑[4,3]總平均值分別為(68.11±42.12)m和(136.02±25.46)m,絮凝預(yù)處理使膜池顆粒粒徑顯著增加(<0.05),第1階段較小膜池混合液顆粒粒徑也是導(dǎo)致MBR膜污染速率和TMP增長(zhǎng)的重要因素。第1階段各粒徑值在0~30 d呈先增長(zhǎng)后降低趨勢(shì),且試驗(yàn)23 d后基本回復(fù)到初始粒徑值;而第2階段各粒徑值在0~30 d呈增長(zhǎng)趨勢(shì),且試驗(yàn)第30天的各粒徑值是初始粒徑值的6~12倍。進(jìn)入MBR之前,絮凝出水中顆粒粒徑值較污水原水稍小但差別不大(對(duì)應(yīng)0 d的粒徑值);兩階段MBR膜池混合液粒徑值,總體上均呈現(xiàn)先增大后減小的趨勢(shì),第1和第2階段的最大值出現(xiàn)在第16天和第23天,較各階段EPS和SMP濃度最大增幅滯后1周,表明,EPS和SMP可能是引起膜池混合液粒徑增加的因素,但并非導(dǎo)致膜污染的直接原因。試驗(yàn)第2天時(shí),第2階段[4,3]、(0.5)和(0.9)值是第1階段粒徑值的1.8~2.5倍,但試驗(yàn)第9~16 d兩階段膜池混合液各粒徑值的差別不大(差值±10%),試驗(yàn)第23天后第2階段各粒徑值是第1階段對(duì)應(yīng)值的4~8倍。第2階段顆粒粒徑較大的原因可能是絮凝出水中殘余NPAM通過吸附和架橋作用使膜池混合液中顆粒物粒徑增大所致。
表3 兩階段膜池混合液顆粒粒徑
注:體積平均粒徑[4,3]表示膜池混合液顆粒平均粒徑;(0.1)、(0.5)和(0.9)分別對(duì)應(yīng)于污泥混合液顆粒累積分布10%,50%和90%的粒徑,下同。
Note: The volume average particle size[4,3] represents the average particle size of the mixed liquid particles in the membrane pool;(0.1),(0.5) and(0.9) respectively correspond to the cumulative distribution of 10%, 50% and 90% particle size of the sludge mixed liquid particles, the same below.
污泥混合液粒徑是影響膜面濾餅層形成以及膜污染程度的關(guān)鍵因素。有研究指出,膜生物反應(yīng)器中小顆粒污泥粒徑會(huì)加重膜的污染[23],而有機(jī)絮凝劑對(duì)于改變污泥形態(tài)學(xué)性質(zhì)的作用較大,其中聚丙烯酰胺的膜污染控制效果是通過降低和轉(zhuǎn)化溶液相中的大分子物質(zhì),增大污泥平均粒徑和污泥絮體的疏松度而實(shí)現(xiàn)的[24]。MBR處理污水原水時(shí)(第1階段)膜池混合液粒徑在后期變小,因?yàn)榛钚晕勰酀舛戎饾u增長(zhǎng),并且在曝氣剪切力的作用下,懸浮于混合液中的細(xì)碎污泥逐漸增多,致使污泥不易聚沉[20];MBR處理絮凝出水時(shí)(第2階段)膜池內(nèi)活性污泥絮體粒徑增大,細(xì)小顆粒比例下降,表明膜池內(nèi)小顆粒和膠體物質(zhì)在殘余NPAM的吸附橋聯(lián)作用下有效聚集形成大顆粒的絮凝體,提高污泥沉降性能,減少細(xì)小顆粒污泥在膜表面的附著幾率以及對(duì)膜孔的堵塞,進(jìn)而延緩膜污染。
2.1.4 EPS和SMP與粒徑的相關(guān)性分析
EPS和SMP與粒徑的相關(guān)性如表4所示,第1階段EPS與SMP極顯著正相關(guān)(<0.01),在試驗(yàn)過程中,EPS與SMP濃度均隨著膜池混合液顆粒粒徑的增大而減小,其原因可能是膜池混合液顆粒主要源自有機(jī)物降解的小分子,而EPS使混合液黏度增加導(dǎo)致膜池內(nèi)小顆粒和膠體物質(zhì)不易凝聚[25],細(xì)碎污泥增多。第2階段EPS濃度隨著顆粒物粒徑的增大而增大,表明膜池混合液中較大顆粒物粒徑主要源于EPS,但SMP濃度與顆粒物粒徑之間無變化規(guī)律,可能是好氧條件下SMP被微生物合成利用轉(zhuǎn)化為EPS,致使第2階段后期SMP濃度下降。
表4 胞外聚合物、溶解性微生物產(chǎn)物與粒徑間的相關(guān)系數(shù)
注:**表示在<0.01水平上因素之間相關(guān)性極顯著。
Note: ** indicates that the correlation between factors is extremely significant at the level of<0.01.
MBR處理2個(gè)階段進(jìn)水污染物的去除效果如表5所示,MBR對(duì)污水原水和絮凝出水的COD去除率均在90%以上,對(duì)絮凝出水的去除率與對(duì)污水原水的去除率差異不顯著,其原因可能是絮凝出水中的顆粒粒徑(0 d的[4,3]粒徑值)較污水原水中0 d的對(duì)應(yīng)值小,更利于微生物利用和降解。MBR對(duì)2種進(jìn)水的NH3-N去除率在90%左右,但對(duì)絮凝出水的氨氮去除率顯著高于原水氨氮去除率(<0.05),可能活性污泥中微生物增強(qiáng)對(duì)氨氮的降解作用[26]。MBR對(duì)2種進(jìn)水的TP去除率分別為47.9%±16.8%和68.3%±12.0%,絮凝出水TP去除率顯著高于原水TP去除率(<0.05),原因是MBR處理絮凝出水時(shí)除了排掉剩余污泥來實(shí)現(xiàn)除磷外,還包括化學(xué)除磷過程,即NPAM對(duì)難溶性磷及有機(jī)磷等的混凝去除[27]。MBR處理污水原水和絮凝出水時(shí)的平均膜池水溫分別為(21.0±2.2)和(19.4±2.0)℃,試驗(yàn)期間膜池水溫對(duì)污染物去除無影響。
表5 MBR對(duì)不同進(jìn)水中污染物去除效果
注:同一列中不同小寫字母表示差異顯著(<0.05)。
Note: Different lowercase letters on the same column indicate significant difference (<0.05).
綜上,絮凝前處理在提高M(jìn)BR處理效果的同時(shí)能有效降低膜污染,基于本文MBR處理效果,如果采用絮凝前處理與MBR組合工藝,可以對(duì)COD濃度約18 000 mg/L的高濃度污水進(jìn)行處理并達(dá)到本文處理效果、絮凝運(yùn)行成本僅0.08元/m3。對(duì)于周圍無消納農(nóng)田的規(guī)模化奶牛場(chǎng),絮凝前處理+MBR組合工藝將為其高濃度污水處理提供新的技術(shù)途徑。
絮凝預(yù)處理對(duì)MBR進(jìn)水碳氮比的影響、絮凝出水作為MBR進(jìn)水時(shí)污染物去除及其膜污染減輕的微生物機(jī)制尚有待進(jìn)一步研究。
1)膜生物反應(yīng)器(Membrane Bioreactor,MBR)處理絮凝出水的膜污染速率較其處理污水原水降低了47%,膜清洗間隔較污水原水延長(zhǎng)了6 d。
2)MBR處理污水原水的胞外聚合物(Extracellular Polymeric Substances,EPS)和溶解性微生物產(chǎn)物(Soluble Microbial Products,SMP)濃度分別為(4.76±1.67)和(3.94±1.41)g/L,均高于處理絮凝出水的EPS(3.97±1.58)和SMP(2.23±1.12)g/L。MBR處理污水原水的膜池混合液顆粒粒徑的峰值較分散且16 d后峰值向小粒徑方向移動(dòng),而處理絮凝出水的峰值粒徑相對(duì)穩(wěn)定,且峰值粒徑對(duì)應(yīng)的最大體積百分比持續(xù)增加。
3)MBR進(jìn)水化學(xué)需氧量(Chemical Oxygen Demand,COD)濃度在7 000 mg/L左右、氨氮濃度在400 mg/L左右時(shí),MBR對(duì)2種進(jìn)水的COD去除率均可達(dá)90%以上,NH3-N去除率在90%左右,對(duì)絮凝出水的總磷處理效果高于污水原水。
[1] Masse A, Sperandio M, Cabassud C. Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time[J]. Water Research, 2006, 40(12): 2405-2415.
[2] Zahid W M, El-Shafai S A. Impacts of alum addition on the treatment efficiency of cloth-media MBR[J]. Desalination, 2012, 301: 53-58.
[3] 張恒亮,段亮,姚美辰,等. MBBR-MBR組合工藝處理生活污水效能及膜污染研究[J]. 環(huán)境工程技術(shù)學(xué)報(bào),2019,9(3):245-251. Zhang Hengliang, Duan Liang, Yao Meichen, et al. Study on performance and membrane fouling of MBBR-MBR combined process for treatment of domestic wastewater[J]. Journal of Environmental Engineering Technology, 2019, 9(3): 245-251. (in Chinese with English abstract)
[4] Babatsouli P, Palogos I, Michalodimitraki E, et al. Evaluation of a MBR pilot treating industrial wastewater with a high COD/N ratio[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(1): 26-33.
[5] Sung H N, Katsou E, Statiris E, et al. Operation of a modified anaerobic baffled reactor coupled with a membrane bioreactor for the treatment of municipal wastewater in Taiwan[J]. Environmental Technology, 2019, 40(10): 1233-1238.
[6] Foglia A, Akyol ?, Frison N, et al. Long-term operation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating high salinity low loaded municipal wastewater in real environment[J]. Separation and Purification Technology, 2020, 236: 116279.
[7] 許得雨,李正浩,盛國(guó)平,等. 厭氧膜生物反應(yīng)器處理低濃度廢水的運(yùn)行效能及膜污染特性[J]. 環(huán)境工程學(xué)報(bào),2019,13(12):2878-2883. Xu Deyu, Li Zhenghao, Sheng Guoping, et al. Performance and membrane fouling properties of anaerobic biofilm membrane bioreactor for low-concentration wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2019, 13(12): 2878-2883. (in Chinese with English abstract)
[8] 朱逸舟,李秀芬,王新華,等. 高有機(jī)負(fù)荷沖擊對(duì)填料型MBR運(yùn)行性能的影響[J]. 中國(guó)環(huán)境科學(xué),2019,39(5):1985-1992. Zhu Yizhou, Li Xiufen, Wang Xinhua, et al. Effect of high organic load shock on the performance and membrane fouling of membrane bioreactor with suspended carriers[J]. China Environmental Science, 2019, 39(5): 1985-1992. (in Chinese with English abstract)
[9] 肖華,徐杏,周昕,等. 膜技術(shù)在沼氣工程沼液減量化處理中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(14):226-236. Xiao Hua, Xu Xing, Zhou Xin, et al. Application of membrane technology for volume reduction of biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020,36(14):226-236. (in Chinese with English abstract)
[10] Prado N, Ochoa J, Amrane A. Zero Nuisance Piggeries: Long-term performance of MBR (membrane bioreactor) for dilute swine wastewater treatment using submerged membrane bioreactor in semi-industrial scale[J]. Water Research, 2009, 43(6): 1549-1558.
[11] 王小佳,李繼香,夏四清. 化學(xué)絮凝預(yù)處理對(duì)膜生物反應(yīng)器膜污染的影響[J]. 中國(guó)給水排水,2010,26(3):18-21. Wang Xiaojia, Li Jixiang, Xia Siqing. Effect of chemical flocculation pretreatment on membrane fouling in MBR[J]. China Water & Wastewater, 2010, 26(3): 18-21. (in Chinese with English abstract)
[12] Ma Baiwen, Wang Xing, Liu Ruiping, et al. Enhanced antimony(V) removal using synergistic effects of Fe hydrolytic flocs and ultrafiltration membrane with sludge discharge evaluation[J]. Water Research, 2017, 121: 171-177.
[13] Koseoglu H, Yigit N O, Iversen V, et al. Effects of several different flux enhancing chemicals on filterability and fouling reduction of membrane bioreactor (MBR) mixed liquors[J]. Journal of Membrane Science, 2008, 320(1): 57-64.
[14] 龍用波,鄧仕槐,朱春蘭,等. 膜生物反應(yīng)器(MBR)處理畜禽廢水的效果研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào)(增刊),2007,26(S2):418-422. Long Yongbo, Deng Shihuai, Zhu Chunlan, et al. System removal efficiency of membrane biology reactor processing poultry wastewater[J]. Journal of Agro-Environment Science, 2007, 26(S2): 418-422. (in Chinese with English abstract)
[15] Han Xiaomeng, Zhou Zhen, Mei Xiaojie, et al. Influence of fermentation liquid from waste activated sludge on anoxic/oxic- membrane bioreactor performance: Nitrogen removal, membrane fouling and microbial community[J]. Bioresource Technology, 2018, 250: 699-707.
[16] 楊愛軍,于玉彬,白新征,等. 低能耗復(fù)合膜生物反應(yīng)器處理畜禽廢水的研究[J]. 膜科學(xué)與技術(shù),2018,38(1):88-90,96. Yang Aijun, Yu Yubin, Bai Xinzheng, et al. Treatment of livestock wastewater by hybrid MBR with low energy consumption[J]. Membrane Science and Technology, 2018, 38(1): 88-90, 96. (in Chinese with English abstract)
[17] 國(guó)家環(huán)境保護(hù)總局. HJ/T399-2007,水質(zhì)化學(xué)需氧量的測(cè)定快速消解分光光度法[S]. 北京:中國(guó)環(huán)境科學(xué)出版社,2007.
[18] 薛秀玲,樊國(guó)峰,李吉安. 活性污泥中EPS的2種測(cè)定方法及其對(duì)膜通量的影響[J]. 環(huán)境工程學(xué)報(bào),2013,7(9):222-226. Xue Xiuling, Fan Guofeng, Li Jian. Two methods for determination of extracellular polymeric substances in active sludge and its effects on membrane fouling[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 222-226. (in Chinese with English abstract)
[19] Ji Jing, Li Jianfeng, Qiu Jiangping, et al. Polyacrylamide–starch composite flocculant as a membrane fouling reducer: Key factors of fouling reduction[J]. Separation and Purification Technology, 2014, 131: 1-7.
[20] 凌琪,方濤,伍昌年,等. PAM對(duì)DMBR污泥混合液特性的影響[J]. 中國(guó)給水排水,2016,32(17):90-94. Ling Qi, Fang Tao, Wu Changnian, et al. Effect of PAM on characteristics of DMBR sludge mixed liquor and modeling of filter cake layer resistance[J]. China Water & Wastewater, 2016, 32(17): 90-94. (in Chinese with English abstract)
[21] 王朝朝,李軍. 膜生物反應(yīng)器強(qiáng)化脫氮除磷工藝優(yōu)化與控制[J]. 水處理技術(shù),2011,37(5):12-16,21. Wang Zhaozhao, Li Jun. Optimization and control of membrane bioreactor-enhanced nitrogen and phosphorus removal process[J]. Technology of Water Treatment, 2011, 37(5): 12-16, 21. (in Chinese with English abstract)
[22] 趙英,顧平,劉志陽(yáng). 高分子絮凝劑對(duì)膜生物反應(yīng)器的影響研究[J]. 給水排水(增刊),2008,44(S1):181-184.
[23] Bai R, Leow H F. Microfiltration of activated sludge wastewater: the effect of system operation parameters[J]. Separation and Purification Technology, 2002, 29(2): 189-198.
[24] 紀(jì)婧. 絮凝劑對(duì)減緩膜—生物反應(yīng)器膜污染速率的效果和機(jī)理研究[D]. 上海:上海交通大學(xué),2010. Ji Jing. Study on Effect and Mechanism of Flocculants on Mitigating Membrane Fouling in Membrane Bioreactors[D]. Shanghai: Shanghai Jiaotong University, 2010. (in Chinese with English abstract)
[25] Nagaoka H, Ueda S, Miya A. Influence of bacterial extracellular polymers on the membrane separation activated sludge process[J]. Water Science and Technology, 1996, 34(9): 165-172.
[26] 劉軍平,王曉昌,王興斌. 聚丙烯酰胺對(duì)活性污泥特性的影響研究[J]. 環(huán)境工程學(xué)報(bào),2010,4(12):2669-2672. Liu Junping, Wang Xiaochang, Wang Xingbin. Study on effect of polyacrylamine on characteristics of activated sludge[J]. Chinese Journal of Environmental Engineering, 2010, 4(12): 2669-2672. (in Chinese with English abstract)
[27] 萬俐,趙君鳳,付永勝,等. 不同絮凝劑對(duì)活性污泥特性及除污效能的影響研究[J]. 環(huán)境工程,2017,35(2):49-52,58. Wan Li, Zhao Junfeng, Fu Yongsheng, et al. Effect of flocculants on sludge characteristic and pollutant removal efficiency[J]. Environmental Engineering, 2017, 35(2): 49-52, 58. (in Chinese with English abstract)
Pilot study on the effects of flocculation pretreatment on membrane fouling of membrane bioreactor treating wastewater from dairy cattle farms
Song Jianchao1, Shang Bin1, Tao Xiuping1※, Dong Hongmin1, Wang Jun2, Guo Jiangpeng2
(1.,,,,100081,; 2.,100107,)
A cost-effective pretreatment method is highly demanding for the high-strength wastewater from dairy cattle farms in modern agricultural industry. In this study, a pilot test was conducted to investigate the effects of the flocculation on the membrane fouling of submerged membrane bioreactor (MBR). Normally, the wastewater from dairy cattle farm cannot be directly used as the influent of MBR, due to it contains high organic matters. Therefore, the flocculated and diluted raw wastewater can serve as the influent of MBR, where the chemical oxygen demand (COD) contents were similar. Two specific stages can be selected to operate sequentially in membrane fouling. The mechanism was also proposed in terms of transmembrane pressure, particle size, extracellular polymeric substances, and soluble microbial products inside MBR process tank during the two stages. The results showed that the transmembrane pressure in the first stage increased rapidly with time, when the flocculated effluent was used in the second stage, the membrane fouling rate decreased by 47% and the maintenance cleaning interval was 16 d in comparison with the interval of 10 d in the first stage. The concentration of extracellular polymeric substances (EPS) and soluble microbial products (SMP) of MBR in treating raw wastewater in the first stage were (4.76 ± 1.67) g/L and (3.94 ± 1.41) g/L, while the corresponding values of EPS and SMP in treating flocculated effluent were (3.97 ± 1.58) g/L and (2.23 ± 1.12) g/L, respectively. The SMP concentration in the first stage increased rapidly after the operation of the membrane bioreactor, but the SMP concentration in the second stage increased first and then decreased with time, and basically returned to its initial concentration level on the 30th day into the experiment. During both operation stages of MBR, the EPS concentration gradually increased with the running time. The peak volume percentages of the maximum particle size (MPS) in both stages increased first and then declined, and the maximum values in the first and second stage appeared on 16 d and 23 d, respectively. Both EPS concentration and SMP concentration decreased with the increase of particle size in the first stage, while in the second stage, EPS concentration increased with the increase of particle size, but there was no change rule between SMP concentration and particle size. Dispersed distribution of MPS in the first stage was observed and MPS turned to decrease after 16 days, while the MPS in the second stage remained relatively stable, and the maximum volume percentage of MPS increased from 3.57% to 5.95%. The COD removal rate of two influent waters by MBR can reach more than 90%, and the NH3-N (ammonia nitrogen) removal rate was close to 90%. The TP (total phosphorus) treatment effect of flocculated effluent was higher than that of raw sewage. The concentration of NPAM residue in flocculating effluent was analyzed, and the concentration ranged from 2 to 6 mg/L. When the flocculated effluent entered the process tank as MBR influent, the residual flocculant was not easy to permeate through the membrane module, and subsequently accumulated in the MBR process tank, where the macromolecule NPAM can combine the soluble constituents with the activated sludge flocs to form floc particles larger than the membrane pores, indicating effective to inhibit the clogging of membrane pores and the forming of gel layer, thereby to mitigate the membrane fouling. In Flocculation pretreatment, the EPS and SMP concentrations of liquid inside MBR process tank decreased with the concentration of SMP protein decreased significantly (<0.05), but the particle size of liquid inside MBR process tank increased significantly (<0.05), indicating beneficial for MBR fouling mitigation. The cost of dairy wastewater flocculation was estimated to be 0.08 Yuan/m3. The combination of flocculation and MBR can be expected to be a promising technology for high-strength wastewater treatment in dairy cattle farms.
wastewater; flocculation; films; membrane bioreactor; dairy cattle farm; fouling
宋建超,尚斌,陶秀萍,等. 絮凝預(yù)處理對(duì)奶牛場(chǎng)膜生物反應(yīng)器膜污染影響的中試試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(20):34-41.doi:10.11975/j.issn.1002-6819.2020.20.005 http://www.tcsae.org
Song Jianchao, Shang Bin, Tao Xiuping, et al. Pilot study on the effects of flocculation pretreatment on membrane fouling of membrane bioreactor treating wastewater from dairy cattle farms[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 34-41. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.20.005 http://www.tcsae.org
2020-05-27
2020-07-10
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0501410);北京市奶牛產(chǎn)業(yè)創(chuàng)新團(tuán)隊(duì)項(xiàng)目(BAIC06-2020);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程協(xié)同創(chuàng)新任務(wù)(CAAS-XTCX2016011-01)
宋建超,研究方向?yàn)檗r(nóng)業(yè)廢棄物處理與利用。Email:a18735431445@163.com。
陶秀萍,研究員,博士生導(dǎo)師,研究方向?yàn)樾笄蒺B(yǎng)殖環(huán)境控制與廢棄物處理。Email:taoxiuping@caas.cn。
10.11975/j.issn.1002-6819.2020.20.005
X713
A
1002-6819(2020)-20-0034-08