韓利紅 劉潮 趙明玉 胡麗娟 胡玉霜
摘 要:? 磷轉運蛋白1 (phosphate transporter protein 1, PHT1)家族在植物對磷的吸收及再利用過程中發(fā)揮重要作用。該研究對菠蘿PHT1基因(AcoPHT1)進行全基因組鑒定,并對基因結構、編碼蛋白保守功能域和基因表達進行了分析。結果表明:(1)共鑒定到9個AcoPHT1基因,位于基因組7個連鎖群上,所有基因均含有1~3個內含子,內含子相位類型多樣。(2)除AcoPHT1.8外,AcoPHT1蛋白均為堿性蛋白,所有蛋白屬于親水性蛋白,且含有10~13個跨膜功能域,均具有保守的PHT1蛋白標簽序列GGDYPLSATIxSE,主要定位于葉綠體和細胞質中。(3)AcoPHT1蛋白聚類在單子葉植物組和單雙子葉植物混合組中,相對于擬南芥,水稻PHT1與菠蘿PHT1相似度更高。(4)AcoPHT1基因啟動子區(qū)含有P1BS、W-box等與磷吸收和響應脅迫有關的多個順式作用元件。(5)靶基因預測分析顯示,基因AcoPHT1.2、AcoPHT1.8和AcoPHT1.9受多個miRNA調控。(6)AcoPHT1基因表達存在組織特異性和功能冗余性,不同PHT1基因可能在菠蘿不同組織或發(fā)育階段發(fā)揮作用。該研究結果為菠蘿PHT1家族基因的功能鑒定和育種應用奠定理論基礎。
關鍵詞: 菠蘿, 菠蘿磷轉運蛋白1(PHT1), 磷吸收, 啟動子, miRNA, 組織表達
中圖分類號:? Q943
文獻標識碼:? A
文章編號:? 1000-3142(2021)12-1955-09
收稿日期:? 2020-11-03
基金項目:? 國家自然科學基金 (32060710,31860005);云南省地方本科高?;A研究聯合專項(2017FH001-034) [Supported by the National Natural Science Foundation of China (32060710, 31860005); Yunnan Local Colleges Applied Basic Research Projects (2017FH001-034)]。
作者簡介: 韓利紅(1981-),博士,副教授,主要從事植物系統發(fā)育與進化研究,(E-mail)hanlihong9527@126.com。
通信作者:? 劉潮,博士,副教授,主要從事植物逆境生物學研究,(E-mail)liuchao_80@163.com。
Genomic identification and characterization analysis of the
phosphate transporter protein 1 family gene in pineapple
HAN Lihong, LIU Chao*, ZHAO Mingyu, HU Lijuan, HU Yushuang
( Qujing Normal University, College of Biological Resource and Food Engineering, Key Laboratory of Yunnan Province Universities of the
Diversity and Ecological Adaptive Evolution for Animals and Plants on Yungui Plateau, Qujing 655011, Yunnan, China )
Abstract:? Phosphate transporter protein 1 (PHT1) family plays pivotal roles in the uptake and re-mobilization of phosphate of plants. In this study, the analysis of whole genome-wide sequence of PHT1 genes in pineapple (Ananas comosus) was conducted, and the gene structure, encoding protein conserved domain and gene expression were further investigated. The results were as follows: (1) Nine PHT1 (AcoPHT1) genes of pineapple, which were located in seven linkage groups and contained one to three introns with various intron phase types, were identified. (2) Except for AcoPHT1.8, AcoPHT1 proteins were all basic proteins, and all the AcoPHT1 proteins were hydrophilic and contained 10 to 13 transmembrane domains, which conserved PHT1 protein tag sequence GGDYPLSATIxSE, and was mainly located in chloroplasts and cytoplasm. (3) AcoPHT1 protein clusters were found in monocotyledons group and monocotyledons and dicotyledons mixed group, and compared to Arabidopsis thaliana, AcoPHT1s proteins had higher similarity with rice PHT1 proteins. (4) The promoter region of AcoPHT1 gene contained a large number of P1BS, W-box and other cis-acting elements, which were related to phosphorus absorption and response to stress. (5) Prediction analysis showed that three genes, AcoPHT1.2, AcoPHT1.8 and AcoPHT1.9 were regulated by multiple miRNAs. (6) The expression of AcoPHT1 gene had tissue-specific and functional redundancy, and different PHT1 genes might play roles in different tissues or development stages. The results provide a theoretical reference for functional identification and breeding application of PHT1 family genes in pineapple.
Key words: pineapple, phosphate transporter protein 1 (PHT1), phosphorus absorption, promoter, miRNA, tissue expression
磷(phosphorus,P)是生命體重要組成元素之一,在植物生命代謝活動中發(fā)揮著必不可少的作用。植物通過根系從土壤中吸收磷酸鹽形式的磷元素,土壤缺磷嚴重影響植物的生長代謝,是限制作物高產的重要因素(Abel et al., 2002)。為提高對磷的吸收能力,植物采取一系列策略進行應對,其中磷轉運蛋白1 (phosphate transporter,PHT1)為高親和力的磷轉運因子,在低磷條件下對土壤磷的吸收起關鍵作用(Gu et al., 2016)。自擬南芥(Arabidopsis thaliana)PHT1基因首次被克隆鑒定(Muchhal et al., 1996)以來,目前擬南芥(Mudge et al., 2002)、水稻(Oryza sativa)(Liu et al., 2011)、大豆(Glycine max)(Fan et al., 2013)、番茄(Solanum lycopersicum)(Chen et al., 2014)、馬鈴薯(Solanum tuberosum)(Liu et al., 2017)、楊樹(Populus trichocarpa)(Zhang et al., 2016)、蘋果(Malus domestica)(Sun et al., 2017)等多個物種的PHT1家族基因已被鑒定。源自梨狀孢子蟲(Piriformospora indica)的高親和力磷酸轉運蛋白是首個被解析的PHT1晶體結構(Pedersen et al., 2013)。
系統發(fā)育研究表明,植物PHT1為主要促進子超家族(major facilitator superfamily,MFS)典型的phosphate: H+同向轉運子(Liu et al., 2011),與酵母PHO84磷轉運蛋白同源,存在糖轉運功能域(PF00083),具有12個保守的跨膜功能域(transmembrane domains,TM)、親水性N端和C端以及TM6和TM7之間的親水環(huán)結構(Muchhal et al., 1996)。過表達擬南芥PHT1.1增加了植物對磷的吸收(Wang et al., 2014)。PHT1基因的上調表達增加了根際磷的吸收和轉運(Raghothama, 1999)。低磷脅迫條件下,AtPHT1.1和AtPHT1.4在植物根與土壤接觸面上的表皮、根毛細胞和根冠細胞中高度表達(Mudge et al., 2002),AtPHT1.8和AtPHT1.9在磷素由根到莖的轉運過程中起作用(Lapis-Gaza et al., 2014)。OsPHT1.6編碼高親和磷轉運蛋白,在初生根、側根的表皮和皮層細胞中表達,在水稻的磷吸收和轉運中起作用,而OsPHT1.2編碼低親和力磷轉運蛋白,定位于初生根和側根的中柱中,負責磷的轉運(Ai et al., 2009)。叢枝菌根真菌(arbuscular mycorrhizal fungi,AMF)通過誘導真菌PHT1和植物PHT1表達提高植物磷吸收(Javot et al., 2007;Walder et al., 2015)。
菠蘿(Ananas comosus)屬于鳳梨科鳳梨屬多年生單子葉植物,是產量僅次于香蕉和芒果的第三大熱帶水果作物。目前,多個物種PHT1家族基因已被研究,而關于菠蘿PHT1家族基因的研究鮮見報道。菠蘿基因組數據的公布(Ming et al., 2015)為PHT1家族的全基因組鑒定提供了可能。本研究利用生物信息學方法對菠蘿PHT1家族基因進行鑒定,并對PHT1家族成員基因結構、氨基酸保守基序、聚類和基因組織特異性表達進行分析,研究結果可為菠蘿中磷利用機制的闡明和新品種選育提供參考。
1 材料與方法
1.1 菠蘿PHT1家族成員的鑒定
以擬南芥和水稻PHT1家族成員蛋白序列作為查詢序列,搜索菠蘿基因組蛋白數據庫,使用NCBI在線工具CDD和SMART軟件進行蛋白功能域分析,剔除不含糖轉運功能域(PF00083)的序列。
1.2 菠蘿PHT1家族成員序列分析
使用ProtParam工具計算蛋白序列理化特征,使用TMpred程序預測蛋白跨膜區(qū)域;使用WoLF PSORT工具預測蛋白亞細胞定位;使用GSDS軟件繪制基因外顯子和內含子結構示意圖;使用MEME在線程序預測氨基酸保守基序,搜索基序數目為10,其他參數默認。
1.3 miRNA靶標PHT1基因的預測
根據miRNA與其靶基因的互補性可預測miRNA的靶基因,使用在線軟件psRNATarget對文獻中菠蘿miRNA(Zheng et al., 2016)的靶標PHT1基因進行預測。
1.4 PHT1家族序列比對及進化分析
使用MEGA 7.0選擇最大似然法和鄰接法構建系統聚類樹,主要參數步長為1 000,替代模型為泊松模型,空位缺失數據的處理為部分刪除;使用EvolView軟件繪制聚類樹;使用序列相似性分析工具Circoletto對擬南芥、水稻和菠蘿PHT1蛋白序列相似性進行分析。
1.5 基因啟動子區(qū)特征分析
從菠蘿基因組數據庫下載AcoPHT1基因轉錄起始位點上游1.5 kb序列,使用PLACE軟件對基因啟動子區(qū)順式作用元件進行分析。
1.6 基因的組織表達分析
菠蘿PHT1基因轉錄組數據于菠蘿基因組數據庫下載,基因組織特異性表達取樣部位分別為根、葉的6個片段,花和果實的5個成熟階段。使用HemI 1.0軟件,根據log2(FPKM+1)值的轉換數據繪制基因表達熱圖。
2 結果與分析
2.1 菠蘿PHT1家族基因的鑒定
以擬南芥和水稻PHT1蛋白作為查詢序列搜索菠蘿蛋白數據庫,共獲得9個菠蘿PHT1蛋白,均含有保守的糖轉運功能域Sugar_tr (PF00083)。根據搜索比對得分,依次將基因命名為AcoPHT1.1-AcoPHT1.9。這9個基因分別位于連鎖群(linkage groups,LG)1、3、6、8、14、20和22上。所有成員氨基酸數為499~602,包含10~13個TMD。除AcoPHT1.8為酸性蛋白外,其他蛋白均為堿性蛋白,等電點為7.99~9.03。所有蛋白平均疏水指數為0.113~0.403,均為正值,屬親水性蛋白。蛋白定位預測分析顯示,AcoPHT1.3、AcoPHT1.6、AcoPHT1.7和AcoPHT1.9主要定位于葉綠體中,AcoPHT1.4、AcoPHT1.5和AcoPHT1.8主要定位于細胞質中,AcoPHT1.1和AcoPHT1.2主要定位于細胞膜上,部分蛋白可能定位于多個細胞器中(表1)。
2.2 miRNA對菠蘿PHT1家族基因的調控分析
miRNAs在轉錄水平和轉錄后水平上調節(jié)基因表達,在植物生長、發(fā)育、成熟、生物和非生物脅迫反應等方面發(fā)揮重要作用(Chen, 2009)。本研究對miRNA及其PHT1家族靶基因的互作及調控關系進行預測。AcoPHT1.8可受到miR2275f的裂解抑制調控,受到miR2673h、miR2673i、miR2673k的轉錄抑制調控,AcoPHT1.2可受到miR2673h、miR2673i、miR2673k和miR399d的轉錄抑制調控,AcoPHT1.9可受到miR2673a、miR528a、miR528b的裂解抑制調控(表2)。
2.3 基因結構和氨基酸基序分析
利用MEGA 7.0 構建聚類樹,發(fā)現菠蘿PHT1主要分為三個聚類組,其中AcoPHT1.8和AcoPHT1.9聚在一組,AcoPHT1.6和AcoPHT1.7聚在一組, 其他5個菠蘿PHT蛋白聚在一組 (圖1:A)?;蚪Y構分析顯示,AcoPHT1基因含有1~3個內含子,其中含有1、2、3個內含子的基因數目分別為4、3和2,內含子相位類型(intron phase)多樣(圖1:B)。使用MEME軟件分析發(fā)現菠蘿PHT1蛋白含有10個保守的氨基酸基序,基序1含有保守的PHT1蛋白標簽GGDYPLSATIxSE,存在于9個菠蘿PHT1蛋白中?;?~7編碼跨膜功能域。AcoPHT1.4缺少基序6,其跨膜功能域相對較少,AcoPHT1.5缺少基序8和基序9,AcoPHT1.8和AcoPHT1.9缺少基序10,基序8~10功能未知(圖1:C, D)。
2.4 聚類分析
為了解植物PHT1家族的聚類及進化,使用擬南芥、水稻、玉米、大豆、楊樹和菠蘿的PHT1全長蛋
白序列,利用MEGA 7.0軟件應用最大似然法和鄰接法構建系統發(fā)育樹,兩種進化樹結果相似,文中選擇最大似然法的結果進行展示(圖2)。結果顯示,植物PHT1蛋白共歸為3組,分別為雙子葉植物組、單子葉植物組和單雙子葉植物混合組。菠蘿PHT1主要分布在單子葉植物組中的亞組b、c和e以及單雙子葉混合組的亞組b和c中。為了解菠蘿PHT1蛋白的起源和進化,使用Circoletto軟件對擬南芥、水稻和菠蘿PHT1蛋白序列相似性進行分析,圖3結果顯示,絕大多數菠蘿PHT1蛋白與水稻PHT1蛋白相似度較高,這些蛋白可能具有共同的起源,如AcoPHT1.1/AcoPHT1.2與OsPHT1.6,AcoPHT1.3/AcoPHT1.5與OsPHT1.2,AcoPHT1.8/AcoPHT1.9與OsPHT1.10,AcoPHT1.4與OsPHT1.4,AcoPHT1.6與OsPHT1.11具有較高的相似性,而AcoPHT1.7與AtPHT1.3具有較高的相似性。
2.5 菠蘿PHT1家族基因啟動子順式作用元件分析
使用PLACE軟件對AcoPHT1基因上游1.5 kb序列順式作用元件進行分析(圖4),結果發(fā)現180個順式作用元件,這些元件參與植物生長發(fā)育、響應激素和脅迫信號等生物過程。AcoPHT1.1、AcoPHT1.5、AcoPHT1.6和AcoPHT1.7的啟動子中存在2~4個P1BS元件(PHR1-binding site,GNATATNC)。OSE1ROOTNODULE(organ-specific elements of root nodules,AAAGAT)存在于AcoPHT1.1、AcoPHT1.3、AcoPHT1.4、AcoPHT1.6、AcoPHT1.7和AcoPHT1.8的啟動子中,OSE2ROOTNODULE(CTCTT)存在于9個AcoPHT1基因啟動子中。除AcoPHT1.5外,AcoPHT1基因均含有至少1個W-box。此外,菠蘿PHT1家族基因啟動子中還存在ABRELATERD1 (ACGTG)、CACGTGMOTIF (CACGTG)、LTRE1HVBLT49 (CCGAAA)、ELRECOREPCRP1(W-box,TTGACC)等脅迫響應和激素響應相關元件。
2.6 菠蘿PHT1家族基因的組織表達分析
為了解菠蘿PHT1家族基因在植物不同組織器官中的表達,從菠蘿基因組數據庫中下載并分析PHT1家族基因在根、葉、花和果實等器官的表達(圖5)。發(fā)現除AcoPHT1.6外,其余8個AcoPHT1基因在不同組織中均有表達。其中,AcoPHT1.4和AcoPHT1.9在4類組織中均有表達,AcoPHT1.1在除部分葉片節(jié)段外的組織中有表達,AcoPHT1.7和AcoPHT1.8主要在葉組織中有表達,AcoPHT1.7在花組織中有表達,AcoPHT1.2僅在花組織中有較高表達,AcoPHT1.3和AcoPHT1.5主要在花、葉部分節(jié)段以及根和果實成熟不同階段的組織中有表達。這些特征表明,菠蘿PHT1家族基因具有組織表達特異性,且存在功能冗余,不同的PHT1基因可能在不同的組織或發(fā)育階段發(fā)揮作用。
3 討論與結論
植物根系通過PHT蛋白調控土壤磷素吸收,并轉運到其他部分。本研究從菠蘿基因組中鑒定到9個PHT1家族基因。菠蘿中PHT1家族基因數目與擬南芥(9個)(Mudge et al., 2002)、番茄(8個)(Chen et al., 2014)相當,略少于水稻(13個)(Liu et al., 2011)、大豆(14個)(Fan et al., 2013)、蘋果(14 個)(Sun et al., 2017)、楊樹(14個)(Zhang et al., 2016)、陸地棉(Gossypium hirsutum)(17個)(晁毛妮等,2017),明顯少于小麥(Triticum aestivum)(36個)(Teng et al., 2017)。一些物種中大量PHT1基因的存在,反映了在進化過程中發(fā)生的廣泛的基因重復和多樣化,是基因組不斷擴展和重新排列的結果。系統發(fā)育可以作為推斷物種間蛋白結構和功能變化的依據。本研究中,植物PHT1主要分為單子葉植物組、雙子葉植物組和單雙子葉混合組三類,植物PHT1家族進化分組與物種有明顯的相關性。大多數菠蘿PHT1蛋白與水稻PHT1蛋白相似度較高,親緣關系較近。單雙子葉植物混合組中的PHT1成員可能屬于更古老的基因,在單雙子葉植物進化分開后,通過基因復制進一步擴展出雙子葉植物組或單子葉植物組新成員。
順式作用元件通過與反式調節(jié)因子的相互作用調節(jié)基因的表達,在基因功能發(fā)揮中起決定作用。P1BS為植物基因上游的PHR1識別序列,控制磷脅迫響應基因在根中的表達和對低磷脅迫的響應(Rubio et al., 2001)。OSE1ROOTNODULE和OSE2ROOTNODULE為根瘤感染細胞中基因啟動的兩個器官特異性元件(Vieweg et al., 2004),這兩個基序是根瘤感染細胞啟動子活性所必需的(Stougaard et al., 1990)。WBOXNTERF3 (W-box,TGACY)在植物磷吸收和響應脅迫過程中起作用(Nishiuchi et al., 2004;Devaiah et al., 2007)。ABRELATERD1、CACGTGMOTIF、LTRE1HVBLT49、ELRECOREPCRP1屬于脅迫響應和激素響應相關元件(Dunn et al., 1998;Eulgem et al., 1999;Chakravarthy et al., 2003)。本研究分析發(fā)現,一些AcoPHT1基因啟動子區(qū)含有磷脅迫相關元件P1BS,這些基因受PHR1轉錄因子調控,可能在磷的吸收和利用過程中起作用(Rubio et al., 2001)。一些基因啟動子區(qū)含有元件OSEROOTNODULE,這些元件存在于根瘤活化的基因啟動子中,可能在菌根真菌與植物共生過程中促進植物營養(yǎng)元素吸收有關。大部分菠蘿PHT1基因啟動子區(qū)含有多個W-box,WRKY轉錄因子能通過結合W-box啟動基因的表達,在植物的磷饑餓響應和應對多種脅迫過程中起作用(Devaiah et al., 2007;Xie et al., 2018)。菠蘿PHT1家族基因啟動子區(qū)含有大量與植物生長發(fā)育、響應激素和脅迫信號相關的順式作用元件,說明該家族基因受多種信號調控,在植物生長發(fā)育、應對環(huán)境脅迫過程中發(fā)揮作用。
基因組織特異性表達與基因的功能密切相關。菠蘿PHT1家族蛋白均含有多個跨膜結構域,可定位于多種細胞器膜上,其在特定組織中的表達,表明其功能的特異性與多樣性。植物PHT1基因表達受環(huán)境磷素含量和水分條件影響(Mudge et al., 2002;Sun et al., 2017)。研究表明,PHT1家族基因受低磷誘導表達,在植物營養(yǎng)元素吸收過程中起作用。OsPHT1.3受OsPHR2直接調控,低磷脅迫下,其在幼葉和莖基部的表達高于根和老葉,OsPHT1.3介導了水稻對磷的吸收、轉運和再利用,過表達OsPHT1.3增強了植物根和莖對磷的吸收(Chang et al., 2019)。OsPHT1.2和OsPHT1.3在植物體內存在物理互作關系(Chang et al., 2019)。AcoPHT1.1、AcoPHT1.3、AcoPHT1.5和AcoPHT1.9在菠蘿根組織中檢測到表達,這些基因可能在根的生長或某些功能的發(fā)揮中起作用,如磷的吸收。AcoPHT1.1、AcoPHT1.4和AcoPHT1.9在菠蘿多個組織器官中均檢測到表達,這些基因可能參與了植物多種生命過程。
參考文獻:
ABEL S, TICCONI CA, DELATORRE CA,2002. Phosphate sensing in higher plants [J]. Physiol Plant, 115(1): 1-8.
AI PH, SUN SB, ZHAO JN, et al., 2009. Two rice phosphate transporters, OsPht1; 2 and OsPht1; 6, have different functions and kinetic properties in uptake and translocation [J]. Plant J, 57(5): 798-809.
CHAKRAVARTHY S, TUORI RP, D’ASCENZO MD, et al., 2003. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements [J]. Plant Cell, 15(12): 3033-3050.
CHANG MX, GU M, XIA YW,et al., 2019. OsPHT1; 3 mediates uptake, translocation, and remobilization of phosphate under extremely low phosphate regimes [J]. Plant Physiol, 179(2): 656-670.
CHAO MN, ZHANG ZY, SONG HN, et al., 2017. Genome-wide identification and expression analysis of Pht1 family genes in cotton (Gossypium hirsutum L.)? [J]. Cotton Sci, 29(1): 59-69.? [晁毛妮, 張志勇, 宋海娜, 等, 2017. 陸地棉Pht1家族成員的全基因組鑒定及表達分析 [J]. 棉花學報, 29(1): 59-69.]
CHEN AQ, CHEN X, WANG HM, et al., 2014. Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato [J]. Plant Biol, 14(1): 61.
CHEN XM, 2009. Small RNAs and their roles in plant development [J]. Ann Rev Cell Dev Biol, 25: 21-44.
DEVAIAH BN, KARTHIKEYAN AS, RAGHOTHAMA KG, 2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis [J]. Plant Physiol, 143(4): 1789-1801.
DUNN MA, WHITE AJ, VURAL S, et al., 1998. Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.) [J]. Plant Mol Biol, 38(4): 551-564.
EULGEM T, RUSHTON PJ, SCHMELZER E, et al., 1999. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors [J]. EMBO J, 18(17): 4689-4699.
FAN CM, WANG X, HU RB, et al., 2013. The pattern of Phosphate transporter 1 genes evolutionary divergence in Glycine max L. [J]. Plant Biol, 13(1): 48.
GU M, CHEN AQ, SUN SB, et al., 2016. Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application: what is missing? [J]. Mol Plant, 9(3): 396-416.
JAVOT H, PUMPLIN N, HARRISON MJ, 2007. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles [J]. Plant Cell Environ, 30(3): 310-322.
LAPIS-GAZA HR, JOST R, FINNEGAN PM, 2014. Arabidopsis PHOSPHATE TRANSPORTER1 genes PHT1; 8 and PHT1; 9 are involved in root-to-shoot translocation of orthophosphate [J]. Plant Biol, 14(1): 334.
LIU BL, ZHAO S, WU XF, et al., 2017. Identification and characterization of phosphate transporter genes in potato [J]. J Biotechnol, 264: 17-28.
LIU F, CHANG XJ, YE Y, et al., 2011. Comprehensive sequence and whole-life-cycle expression profile analysis of the phosphate transporter gene family in rice [J]. Mol Plant, 4(6): 1105-1122.
MING R, VANBUREN R, WAI CM, et al., 2015. The pineapple genome and the evolution of CAM photosynthesis [J]. Nat Genet, 47(12): 1435-1442.
MUCHHAL US, PARDO JM, RAGHOTHAMA KG, 1996. Phosphate transporters from the higher plant Arabidopsis thaliana [J]. Proc Natl Acad Sci USA, 93(19): 10519-10523.
MUDGE SR, RAE AL, DIATLOFF E, et al., 2002. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis [J]. Plant J, 31(3): 341-353.
NISHIUCHI T, SHINSHI H, SUZUKI K, 2004. Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves possible involvement of NtWRKYs and autorepression [J]. J Biol Chem, 279(53): 55355-55361.
PEDERSEN BP, KUMAR H, WAIGHT AB, et al., 2013. Crystal structure of a eukaryotic phosphate transporter [J]. Nature, 496(7446): 533-536.
RAGHOTHAMA KG,1999. Phosphate acquisition [J]. Ann Rev Plant Biol, 50(1): 665-693.
RUBIO V, LINHARES F, SOLANO R, et al., 2001. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae [J]. Gene Dev, 15(16): 2122-2133.
STOUGAARD J, JRGENSEN JE, CHRISTENSEN T, et al., 1990. Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin lbc 3 and N23 gene promoters [J]. Mol Gen Genet, 220(3): 353-360.
SUN TT, LI MJ, SHAO Y, et al., 2017. Comprehensive genomic identification and expression analysis of the phosphate transporter (PHT) gene family in apple [J]. Front Plant Sci, 8: 426.
TENG W, ZHAO YY, ZHAO XQ, et al., 2017. Genome-wide identification, characterization, and expression analysis of PHT1 phosphate transporters in wheat [J]. Front Plant Sci, 8: 543.
VIEWEG MF, FRHLING M, QUANDT HJ, et al., 2004. The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants [J]. Mol Plant Microb Interact, 17(1): 62-69.
WALDER F, BRUL D, KOEGEL S, et al., 2015. Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax [J]. New Phytol, 205(4): 1632-1645.
WANG H, XU Q, KONG YH, et al., 2014. Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation [J]. Plant Physiol, 164(4): 2020-2029.
XIE T, CHEN CJ, LI CH, et al., 2018. Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress [J]. BMC genomics, 19(1): 490.
ZHANG CX, MENG S, LI MJ, et al., 2016. Genomic identification and expression analysis of the phosphate transporter gene family in poplar [J]. Front Plant Sci, 7: 1398.
ZHENG Y, LI T, XU ZN, et al., 2016. Identification of microRNAs, phasiRNAs and their targets in pineapple [J]. Trop Plant Biol, 9(3): 176-186.
(責任編輯 周翠鳴)