国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

微藻絮凝采收技術(shù)研究進(jìn)展

2021-02-07 02:51:51薛溪發(fā)張紅兵曹豪豪秦路橋
安徽農(nóng)學(xué)通報(bào) 2021年1期
關(guān)鍵詞:微藻

薛溪發(fā) 張紅兵 曹豪豪 秦路橋

摘 要:當(dāng)前,能源危機(jī)和環(huán)境污染的雙重壓力嚴(yán)重制約著經(jīng)濟(jì)發(fā)展,開(kāi)發(fā)清潔可再生型生物燃料顯得尤為重要。微藻具有易繁殖、富含脂質(zhì)、不與農(nóng)作物爭(zhēng)地等特點(diǎn),被認(rèn)為是極具前景的生物燃料,但微藻采收的高成本是藻類(lèi)工業(yè)化的主要瓶頸。絮凝法是收獲微藻生物質(zhì)高效和優(yōu)選的方法。該文簡(jiǎn)述了目前已使用的一些微藻絮凝采收方法,比較了化學(xué)絮凝、生物絮凝和物理絮凝等方法的收獲效率、能耗及技術(shù)可行性,分析了各種方法的絮凝機(jī)理和影響因素,旨在為選擇適宜的微藻采收方法提供參考。

關(guān)鍵詞:微藻;生物燃料;采收;絮凝

中圖分類(lèi)號(hào) X50文獻(xiàn)標(biāo)識(shí)碼 A文章編號(hào) 1007-7731(2021)01-0033-05

Progress in Flocculation Harvesting of Microalgae

XUE Xifa1 et al.

(1College of Biological Science and Engineering, Hebei University of Economics and Business, Shijiazhuang 050061, China)

Abstract: Currently, the development of economy is seriously restricted by the dual pressure of energy crisis and environmental pollution, it is particularly important to develop clean and renewable biofuels.Microalgae is considered to be promising biofuels due to its easy reproduction, fat - rich, and non-competition with crops and so on.However, the high cost associated with microalgae harvesting is a major bottleneck for commercialization of algae-based industrial products.Hence, microalgae harvesting is recognized as an area that needs to be explored and developed.Additionally, flocculation is an efficient and optimal method for harvesting microalgae biomass.This article aims to collate and present an overview of current harvesting strategies such as physical, chemical, biological,methods along with their future prospects.This review also analyzes their flocculation mechanism and influencing factors.In contrast, the use of natural polymer organic flocculants has received more attention, and future research should focus on assessing the economic feasibility on an industrial scale.This review intends to provide guidance for the high-efficiency and low-cost flocculation? recovery technologies in the biofuel industry.

Key words: Microalgae; Biofuel; Harvesting; Flocculation

目前,人類(lèi)生活所需的能源仍以傳統(tǒng)不可再生型化石能源為主,污染嚴(yán)重。常用甘蔗、大豆、油菜籽、玉米、橄欖、非食用麻風(fēng)樹(shù)等農(nóng)作物制備生物燃料,不僅占用耕地多,還可能引發(fā)糧食安全風(fēng)險(xiǎn)。因此,微藻作為新能源的來(lái)源備受關(guān)注。

微藻作為單細(xì)胞生物,不僅可以自養(yǎng)固定二氧化碳,也可異養(yǎng)利用并處理生活污水中的有機(jī)污染物;同時(shí),微藻生長(zhǎng)不占耕地,無(wú)需農(nóng)藥,環(huán)境友好,真正實(shí)現(xiàn)了生物燃料生產(chǎn)與環(huán)境污染治理的和諧統(tǒng)一。但是微藻懸浮于水中,收獲難度較大,成本居高不下。近年來(lái),研究人員一方面通過(guò)過(guò)程工程策略、新穎的光生物反應(yīng)器、優(yōu)勢(shì)工程菌株篩選和構(gòu)建等方式提高微藻產(chǎn)率,另一方面開(kāi)發(fā)低成本、高效率、無(wú)污染的收獲方式,降低采收成本。目前,微藻采收技術(shù)主要有沉降、離心、浮選和過(guò)濾等幾種物理方法。其中,沉降法不需要消耗能源或化學(xué)物質(zhì),經(jīng)濟(jì)簡(jiǎn)便,但耗時(shí)長(zhǎng),存在微藻生物質(zhì)腐敗變質(zhì)風(fēng)險(xiǎn);過(guò)濾法不破壞細(xì)胞的完整性,過(guò)濾介質(zhì)可重復(fù)使用,但適用面小;離心法效率高、速度快、污染小,但消耗能源,成本較高;浮選法成本低、占地少、操作時(shí)間短、適用范圍廣,但能耗高且對(duì)藻種有選擇性。各種物理收獲方法及絮凝法的優(yōu)缺點(diǎn)比較如表1所示。

鑒于絮凝是收獲微藻生物質(zhì)的高效和優(yōu)選的方法,本文對(duì)幾種常見(jiàn)的絮凝方法進(jìn)行了綜述,分析其絮凝機(jī)理和影響因素,以期為微藻采收技術(shù)研究提供參考。

1 化學(xué)絮凝

化學(xué)絮凝是指加入化學(xué)絮凝劑與藻類(lèi)細(xì)胞表面的電荷相互作用,藻類(lèi)細(xì)胞形成聚集體,導(dǎo)致重力沉降進(jìn)一步沉淀的過(guò)程。根據(jù)化學(xué)絮凝劑的性質(zhì),可分為無(wú)機(jī)絮凝劑和有機(jī)絮凝劑2種類(lèi)型,無(wú)機(jī)絮凝劑主要包括帶正電的金屬離子,有機(jī)絮凝劑不僅包括天然有機(jī)絮凝劑,還包括合成有機(jī)絮凝劑。絮凝通常與沉降等其他收獲技術(shù)結(jié)合使用。通過(guò)絮凝可以促使微藻細(xì)胞的聚集,從而增加顆粒的大小,提高沉降速度。

微生物絮凝劑涉及微生物的培養(yǎng)和生物絮凝劑的純化,這種絮凝劑的缺點(diǎn)是生產(chǎn)率低,需要更高的劑量,導(dǎo)致絮凝劑成本高,同時(shí)微藻的細(xì)胞表面特性引起的生物絮凝劑的物種特異性也限制了應(yīng)用。

3 電絮凝

電解絮凝的機(jī)理是基于帶負(fù)電荷的微藻向陽(yáng)極運(yùn)動(dòng),失去電荷后形成聚集體,期間不需要添加任何絮凝劑,適合于藻類(lèi)的分離過(guò)程。E. Poelman[26]從懸浮液中絮凝微藻,然后使藻類(lèi)絮體漂浮,結(jié)果不同藻類(lèi)類(lèi)群的去除率可達(dá)95%以上,而耗電量?jī)H為0.3kWh/m 3左右。近年來(lái),基于陽(yáng)極通過(guò)水電解產(chǎn)生的氫氣泡與在陰極的電凝工藝耦合,電凝浮選(ECF)成為重要的電凝聚技術(shù),是一種經(jīng)濟(jì)的收獲方法。如Wong使用優(yōu)化的ECF捕集器,通過(guò)使用帶正電的極板中和微藻表面電荷,對(duì)微藻生物量進(jìn)行了電凝聚浮選。目前,ECF已用于收獲淡水藻(小球藻)和海洋微藻(三角褐指藻)。當(dāng)電流密度為3mA/cm2時(shí),沉淀時(shí)間為30min,在pH值4、6下,小球藻和三角褐指藻的最高回收率分別為80%、95%[27]。影響ECF的因素有電極板材料、電極板數(shù)量、電極電荷、電解質(zhì)濃度和培養(yǎng)液的pH值等。電絮凝是一種不依賴(lài)于菌種、無(wú)化學(xué)物質(zhì)添加的方法。但在整個(gè)收獲過(guò)程中高功率電流可能會(huì)損害細(xì)胞的完整性。

4 磁性顆粒絮凝

磁性顆粒絮凝是在磁場(chǎng)作用下,利用微米或納米尺寸的磁性顆粒直接作用于微藻細(xì)胞表面并誘導(dǎo)其絮凝。通常是通過(guò)裸露的和表面功能化的2種類(lèi)型的磁性粒子收獲微藻[28],在裸磁性粒子存在的情況下,帶負(fù)電的藻類(lèi)細(xì)胞和帶正電的磁性粒子之間通過(guò)靜電相互作用,導(dǎo)致微藻聚集。胡等[29]用聚乙烯亞胺(PEI)對(duì)Fe3O4磁性納米粒子進(jìn)行改性,降低了能量消耗,提高了收獲效率和水的回收利用率,對(duì)小球藻的采收效率達(dá)95%以上。影響磁性顆粒絮凝的因素有磁性納米顆粒粒徑、攪拌速度、攪拌時(shí)間、納米顆粒與微藻的質(zhì)量比等[30]。上述過(guò)程對(duì)藻類(lèi)細(xì)胞生長(zhǎng)及其培養(yǎng)基無(wú)任何不利影響[31],具有降低藻類(lèi)燃料生產(chǎn)成本的潛力。但是磁性顆粒絮凝的缺點(diǎn)是這些納米顆粒價(jià)格昂貴,還需要特殊設(shè)備才能回收。

5 展望

微藻作為一種具有廣泛應(yīng)用前景的生物質(zhì)資源,可用于污水處理、生產(chǎn)生物燃料(例如生物乙醇、生物柴油、生物甲烷和生物氫)和飼料添加劑。為了降低生產(chǎn)成本和收獲時(shí)的能源能耗,開(kāi)發(fā)一種或多種有效的絮凝方法十分重要。

使用無(wú)機(jī)絮凝劑可有效回收藻類(lèi),但金屬離子會(huì)污染生物質(zhì)。而使用天然高分子有機(jī)絮凝劑無(wú)毒、可生物降解并且不會(huì)影響下游脂質(zhì)中的提取,在未來(lái)的研究中應(yīng)評(píng)估其在大規(guī)模培養(yǎng)中的經(jīng)濟(jì)可行性。生物絮凝劑節(jié)能、環(huán)保、安全,但消耗碳源、在絮凝過(guò)程中不受控制。應(yīng)選擇合適的絮凝微生物減少污染、優(yōu)化培養(yǎng)條件以及需要深入研究生物絮凝劑的基本特性(生物之間的關(guān)系、活性等),以確定其是否能用于大規(guī)模采收微藻。電絮凝和磁性顆粒絮凝是無(wú)絮凝劑收獲微藻的方法,需要較高的成本,其應(yīng)用需指向具有高價(jià)值的產(chǎn)品。另外,通過(guò)基因工程對(duì)富含脂質(zhì)的微藻進(jìn)行改造,以增強(qiáng)自絮凝作用也是一個(gè)較好的策略。正在進(jìn)行的研究應(yīng)旨在根據(jù)微藻的物理特性、培養(yǎng)基的化學(xué)成分和最終產(chǎn)品的質(zhì)量,開(kāi)發(fā)經(jīng)濟(jì)高效的收獲方式。最后,通過(guò)各種技術(shù)的整合,實(shí)現(xiàn)利用微藻處理生活廢水與生物燃料生產(chǎn)的有機(jī)結(jié)合,達(dá)到環(huán)境保護(hù)和經(jīng)濟(jì)發(fā)展的和諧統(tǒng)一。

參考文獻(xiàn)

[1]ROY M,MOHANTY K.A comprehensive review on microalgal harvesting strategies:Current status and future prospects[J].Algal Research,2019,44:101683.

[2]VU H P,NGUYEN L N,LESAGE G,et al.Synergistic effect of dual flocculation between inorganic salts and chitosan on harvesting microalgae Chlorella vulgaris[J].Environmental Technology & Innovation,2020,17:100622.

[3]彭超,蘇會(huì)波,熊強(qiáng),等.絮凝劑對(duì)雨生紅球藻采收的影響[J].生物加工過(guò)程,2017,15(02):1-6.

[4]馮辰辰,閆謹(jǐn),唐娜,等.五種絮凝劑采收小球藻的研究[J].應(yīng)用化工,2020,49(04):904-908.

[5]CHEN C Y,YEH K L,AISYAH R,et al.Cultivation,photobioreactor design and harvesting of microalgae for biodiesel production:a critical review[J].Bioresour Technol,2011,102(1):71-81.

[6]HARUN R,SINGH M,F(xiàn)ORDE G M,et al.Bioprocess engineering of microalgae to produce a variety of consumer products[J].Renewable and Sustainable Energy Reviews,2010,14(3):1037-1047.

[7]ZHU L,LI Z,HILTUNEN E.Microalgae Chlorella vulgaris biomass harvesting by natural flocculant:effects on biomass sedimentation,spent medium recycling and lipid extraction[J].Biotechnol Biofuels,2018,11:183.

[8]YUE Q Y,GAO B Y,WANG Y,et al.Synthesis of polyamine flocculants and their potential use in treating dye wastewater[J].J Hazard Mater,2008,152(1):221-227.

[9]馮閃閃,吳幸強(qiáng),王純波,等.陽(yáng)離子淀粉制備條件優(yōu)化及其對(duì)野外藍(lán)藻的絮凝效果[J].環(huán)境科學(xué)與技術(shù),2018,41(05):37-42.

[10]LETELIER-GORDO C O,HOLDT S L,De FRANCISCI D,et al.Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch[J].Bioresour Technol,2014,167:214-218.

[11]KIM D Y,LEE K,LEE J,et al.Acidified-flocculation process for harvesting of microalgae:Coagulant reutilization and metal-free-microalgae recovery[J].Bioresour Technol,2017,239:190-196.

[12]HAN S F,JIN W,TU R,et al.Microalgae harvesting by magnetic flocculation for biodiesel production:current? status and potential[J].World J Microbiol Biotechnol,2020,36(7):105.

[13]CHEN L,WANG C,WANG W,et al.Optimal conditions of different flocculation methods for harvesting Scenedesmus sp.cultivated in an open-pond system[J].Bioresour Technol.,2013,133:9-15.

[14]GERCHMAN Y,VASKER B,TAVASI M,et al.Effective harvesting of microalgae:Comparison of different polymeric flocculants[J].Bioresour Technol,2017,228:141-146.

[15]C. G. GOLUEKE J A W J. Surface Properties and Ion Exchange in Algae Removal [J]. Water Pollution Control Federation,2016,228:304-314.

[16]趙飛燕.共培養(yǎng)促進(jìn)微藻自絮凝沉降的研究[D].昆明:昆明理工大學(xué),2019.

[17]VANDAMME D,F(xiàn)OUBERT I,MUYLAERT K.Flocculation as a low-cost method for harvesting microalgae for bulk biomass production[J].Trends Biotechnol,2013,31(4):233-239.

[18]TRAN N T,SEYMOUR J R,SIBONI N,et al.Photosynthetic carbon uptake induces autoflocculation of the marine microalga Nannochloropsis oculata[J].Algal Research,2017,26:302-311.

[19]UMMALYMA S B,MATHEW A K,PANDEY A,et al.Harvesting of microalgal biomass:Efficient method for flocculation through pH modulation[J].Bioresour Technol,2016,213:216-221.

[20]LI S,HU T,XU Y,et al.A review on flocculation as an efficient method to harvest energy microalgae:Mechanisms,performances,influencing factors and perspectives[J].Renewable and Sustainable Energy Reviews,2020,131:110005.

[21]GUO H,HONG C,ZHENG B,et al.Bioflocculants' production in a biomass-degrading bacterium using untreated corn? stover as carbon source and use of bioflocculants for microalgae harvest[J].Biotechnol Biofuels,2017,10:306.

[22]TAN J S,LEE S Y,CHEW K W,et al.A review on microalgae cultivation and harvesting,and their biomass extraction processing using ionic liquids[J].Bioengineered,2020,11(1):116-129.

[23]LEE A K,LEWIS D M,ASHMAN P J.Energy requirements and economic analysis of a full-scale microbial flocculation system for microalgal harvesting[J].Chemical Engineering Research and Design,2010,88(8):988-996.

[24]VANDAMME D,PONTES S C,GOIRIS K,et al.Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae[J].Biotechnol Bioeng,2011,108(10):2320-2329.

[25]ZHOU W,CHENG Y,LI Y,et al.Novel Fungal Pelletization-Assisted Technology for Algae Harvesting and Wastewater Treatment[J].Applied Biochemistry and Biotechnology,2012,167(2):214-228.

[26]E.POELMAN N D P B.Potential of electrolytic flocculation for recovery of micro-algae[J].Conservation and Recycling,1997,19(1):1-10.

[27]VANDAMME D,PONTES S C,GOIRIS K,et al.Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae[J].Biotechnol Bioeng,2011,108(10):2320-2329.

[28]PROCHAZKOVA G,SAFARIK I,BRANYIK T.Harvesting microalgae with microwave synthesized magnetic microparticles[J].Bioresour Technol,2013,130:472-477.

[29]HU Y R,GUO C,XU L,et al.A magnetic separator for efficient microalgae harvesting[J].Bioresour Technol.,2014,158:388-391.

[30]劉雨熹.磁絮凝法收獲城市污水中藻體的研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2019.

[31]ABO M A,LLIMOS-TURET J,F(xiàn)ERRER I,et al.The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater[J].Water Res.,2019,159:490-500.

(責(zé)編:張宏民)

猜你喜歡
微藻
微藻大能
碳酸酐酶胞外酶影響下的巖溶湖泊微藻碳匯研究
代食品運(yùn)動(dòng)中微藻的科研與生產(chǎn)
微藻,跨界小能手
富油微藻分離鑒定技術(shù)研究進(jìn)展
云南化工(2020年7期)2020-08-12 10:44:36
絮凝法采收生物燃料微藻的研究進(jìn)展
微藻——小身材,大能量
微藻生物技術(shù)產(chǎn)業(yè)的發(fā)展
巴斯夫和Solazyme推出首款商用微藻衍生甜菜堿表面活性劑
微藻對(duì)低溫響應(yīng)的Ca2+信號(hào)傳導(dǎo)途徑研究進(jìn)展
昌宁县| 西乌珠穆沁旗| 乌拉特中旗| 唐山市| 中江县| 茶陵县| 嘉义县| 乌鲁木齐市| 荥经县| 沐川县| 霍州市| 杭锦后旗| 钟山县| 临江市| 塔城市| 平江县| 永济市| 岳西县| 句容市| 乌苏市| 梁河县| 逊克县| 林芝县| 克拉玛依市| 玉田县| 冀州市| 酒泉市| 安图县| 许昌市| 武定县| 南溪县| 隆安县| 北票市| 石林| 哈尔滨市| 汉沽区| 红河县| 常熟市| 全南县| 峨眉山市| 略阳县|