賈芳 崔海蘭 李香菊 于惠林
摘要 :蒼耳Xanthium strumarium和藜Chenopodium album是常見的兩種闊葉雜草,其在玉米田發(fā)生嚴重,影響了玉米的生長和產量。本文利用整株生物測定法對我國東北及黃淮海玉米產區(qū)采集到的蒼耳及藜種群對草甘膦的敏感性進行了測定。種子室內培養(yǎng)至5~6葉期,噴施草甘膦后14 d稱量鮮重,計算抑制雜草種群50%個體生長的草甘膦劑量(GR50)。草甘膦對10個蒼耳種群GR50在54.87~249.75 g/hm2,平均值為(111.53±20.02)g/hm2,均低于450 g/hm2(1/2倍推薦劑量),表明10個蒼耳種群均對草甘膦敏感;草甘膦對33個藜種群GR50范圍在97.05~920.86 g/hm2,平均值為(313.88±24.70)g/hm2,93%的種群GR50低于450 g/hm2,表明絕大多數(shù)藜種群對草甘膦比較敏感,僅發(fā)現(xiàn)一個藜種群GR50大于900 g/hm2(田間推薦劑量),表明其對草甘膦具有一定耐受性。
關鍵詞 :雜草; 玉米; 草甘膦; 敏感性
中圖分類號: S 451.22
文獻標識碼: B
DOI: 10.16688/j.zwbh.2019596
Sensitivity of two broadleaf weeds Xanthium strumarium and Chenopodium album to glyphosate in corn fields
JIA Fang, CUI Hailan, LI Xiangju, YU Huilin*
(Institute of Plant Protection,Chinese Academy of Agricultural Sciences, Beijing 100193,China)
Abstract :Xanthium strumarium and Chenopodium album are two common broadleaf weeds, and their occurrence seriously affected corn growth and reduce yield in corn fields. In our study the whole plant bioassay was used to determine the sensitivity to glyphosate of ten populations of X.strumarium and 33 populations of C.album collected from two major corn producing areas, Northern China and Huanghuaihai. The seeds of two weeds were sowed in greenhouse, and the glyphosate was applied at the 56 leaf stage of the weeds. 14 days after glyphosate application, fresh weight of plants was weighted and GR50 values were calculated, respectively. GR50 values of glyphosate to ten populations of X.strumarium ranged from 54.87 to 249.75 g/hm2 with the average value of (111.53±20.02)g/hm2, which were lower than 450 g/hm2 (1/2 recommended dose), showing that all populations of X.strumarium were sensitive to glyphosate. Among C.album populations, GR50 values ranged from 97.05 to 920.86 g/hm2 and its average value was (313.88±24.70)g/hm2. The GR50 values of 93% C.album populations were less than 450 g/hm2, indicated that the vast majority of C.album populations were sensitive to glyphosate. And only one population of C.album showed a GR50 value of above 900 g/hm2 (recommended dose), indicating that it had a certain degree of tolerance to glyphosate.
Key words :weed; corn; glyphosate; sensitivity
玉米是重要的糧食、經濟和飼料作物,在我國農業(yè)生產和國民經濟中占據重要地位。雜草的發(fā)生與危害是制約玉米高產的重要因素[1]。玉米田雜草的防除主要依賴于化學防除,然而近年來越來越多的抗除草劑(包括莠去津和乙酰乳酸合成酶抑制劑等)雜草種類被發(fā)現(xiàn)[2],不但降低了除草效果還增加了除草成本[3]。自1996年美國孟山都公司首次推出轉基因抗草甘膦(glyphosateresistant,GR)大豆以來,使得滅生性除草劑草甘膦應用于作物田,殺死雜草而不傷害作物,除草方式不但變得簡單靈活,而且提高了除草效果、降低了除草成本,近年來隨著全球轉基因技術研究與產業(yè)應用快速發(fā)展,種植轉基因抗除草劑玉米已成為玉米田雜草防除的一個重要手段。至2018年,全球轉基因抗除草劑(包括IR/HT復合性狀)玉米種植面積為0.53億hm2[4]。
2.2 藜對草甘膦的敏感性
藜不同種群對草甘膦的耐受水平如表4所示,GR50的范圍在97.05~920.86 g/hm2,GR50低于450.00 g/hm2的種群占全部種群的93.94%(圖1),GR50平均值為(313.88±24.70)g/hm2;黃淮海地區(qū)藜種群的GR50均低于450.00 g/hm2(圖1),平均值為(273.46±22.79) g/hm2(圖3);北方地區(qū)藜種群GR50低于450.00 g/hm2的種群占北方地區(qū)全部種群的87.50%(圖1),平均值為(356.83±30.02)g/hm2(圖3)。內蒙古陶卜齊村連續(xù)兩年采集到的種群L173和L1831的種群GR50最高,分別為545.33和920.86 g/hm2(表4)。在各個省份藜種群GR50平均值中,內蒙古最高,為(596.42±196.32)g/hm2;山東省最低,為(127.61±30.53)g/hm2(圖2)。
3 討論
本文從黃淮海玉米產區(qū)采集到的10個蒼耳種群,其GR50均值為(111.53±20.02)g/hm2,所有種群對草甘膦均敏感;從北方及黃淮海玉米產區(qū)采集33個藜種群GR50均值為(313.88±24.70)g/hm2,其中大多數(shù)種群很敏感,但個別種群如內蒙古陶卜齊村藜種群GR50為920.86 g/hm2,對草甘膦有一定的耐受性,需引起密切的關注。
天然對草甘膦具有耐受性的雜草與經過長期篩選而存活下來的抗性雜草相比,因其天然耐受除草劑的能力可遺傳,對轉基因抗草甘膦作物的推廣和種植危害更大[17]。隨著轉基因耐草甘膦作物種植面積日益增長,草甘膦的使用量逐漸增加[33],越來越多的對草甘膦有天然耐受性的雜草種類被發(fā)現(xiàn)[34],其對草甘膦的耐受機制也被解析。比如雜草有獨特的EPSPS蛋白結構(如田旋花)、EPSPS拷貝數(shù)及基因表達量增加(如闊葉山麥冬Liriope muscari)、雜草植株有利的形態(tài)生理特性(瘤梗番薯Ipomoea lacunosa)和有效的代謝及傳導(如苘麻Abutilon theophrasti)等賦予了雜草對草甘膦的天然耐受性,并且一些雜草對草甘膦的耐受性同時存在多種機制[14]。
在美國,1989年Barrentine和McWhorter首次發(fā)現(xiàn)在密西西比的大豆田中蒼耳對ALS類除草劑氯嘧磺隆和咪唑乙煙酸產生抗性[35],此后越來越多關于蒼耳抗ALS類除草劑(滅草喹、咪唑煙酸、咪唑乙煙酸、氯酯磺草胺等)的報道[3640]。玉米田中常見雜草綠穗莧Amaranthus hybridus、長芒莧A.palmeri、反枝莧A. retroflexus、豚草Ambrosia artemisiifolia、地膚Kochia scoparia、牛筋草Eleusine indica等對ALS類除草劑也產生了抗性,使得ALS類除草劑難以在玉米田繼續(xù)使用[2]。在我國東北地區(qū)玉米田莠去津應用已有十幾年歷史,在這種用藥背景下蒼耳已經演替為優(yōu)勢雜草并在局部大發(fā)生[41]。且莠去津在環(huán)境中殘留期較長,不但對后茬作物造成影響還污染環(huán)境[42]。草甘膦作為低毒、低殘留、廣譜除草劑,可有效防治蒼耳。Clay等曾報道用420 g/hm2的草甘膦噴施處于結實期的蒼耳,可以使蒼耳種子百粒重減少69%、單株種子量下降70%[43]。草甘膦處理后植物體內莽草酸積累量可作為判斷植物是否對草甘膦敏感的一個指標[44],Mueller等檢測9種雜草在噴施540 g/hm2草甘膦后的莽草酸積累量,發(fā)現(xiàn)蒼耳體內莽草酸含量最高,為2 000 mg/L[45],本試驗中檢測到黃淮海地區(qū)蒼耳的GR50遠低于田間推薦劑量,目前也未有蒼耳對草甘膦抗性或耐性的報道。
Loux等發(fā)現(xiàn)長期噴施草甘膦的轉基因大豆田中,藜對草甘膦的敏感性降低[46],而在長期施用草甘膦8年的轉基因抗草甘膦玉米田中,藜已經演變成優(yōu)勢雜草[47]。長期單一噴施草甘膦,導致農田中藜對草甘膦耐受水平顯著提高,當與不施用任何除草劑農田中生長的藜同時噴施草甘膦后,長期單一噴施草甘膦的農田中的藜死亡率顯著下降[48]。Schuster等發(fā)現(xiàn)當藜植株高度為2.5 cm,草甘膦對其生長抑制GR50在430~560 g/hm2;當植株高度為15 cm,GR50在1 010~2 770 g/hm2 [49], 有研究證明,在藜20 cm高時噴施草甘膦,草甘膦的GR50會比10 cm噴施時高1.9~3倍[50]。劉小龍從無草甘膦用藥史的地區(qū)采集到藜并通過整株生物測定法測定了草甘膦對藜5葉期時的GR50,為215.27 g/hm2 [51]。本文研究發(fā)現(xiàn)絕大多數(shù)藜種群對草甘膦沒有耐受性。東北地區(qū)的藜種群較黃淮海地區(qū)種群對草甘膦的耐受性強,可能是由于地區(qū)間植物形態(tài)差異造成的,雖所有種群生長時間相同,但東北地區(qū)種群與黃淮海地區(qū)種群比較,植株普遍偏高,植株生物量增加,因此單位面積的植物組織所接收到的有效成分減少;另外植株生物量增加,使得植物組織中的鈣含量也相應增加,而植物組織中的陽離子鈣與除草劑陰離子具有拮抗效應[49,52]。
在GR作物田中少耕或免耕的耕作制度和單一依賴草甘膦控制雜草策略在很大程度上影響了雜草群落組成和密度,為特定適應的雜草種類增長提供了生態(tài)機會,并導致雜草種群的重大變化,以至于不可避免地發(fā)生種群的演替。這種種群演替帶來的結果將增加雜草防除難度和成本,限制GR作物的可持續(xù)應用[34]。雖然在我國并未商業(yè)化種植轉基因抗草甘膦玉米,但應借鑒國外長期種植轉基因抗除草劑作物的經驗,在轉基因抗草甘膦作物田防除雜草時,應避免長期、單一地噴施草甘膦,可以使用不同作用模式的除草劑如2,4滴、莠去津、硝磺草酮等混用;結合苗前除草和生長期除草,苗前除草可使用甲草胺、乙草胺等,生長期可使用煙嘧磺隆、砜磺隆、莠去津[5354]。
參考文獻
[1] 謝樹章, 楊小艷, 林清, 等. 抗草甘膦轉基因玉米研究進展[J]. 中國農業(yè)科技導報, 2013, 15(3): 3641.
[2] HEAP I. The international survey of herbicide resistant weeds [EB/OL].[20190916].http:∥www.weedscience.org.
[3] 李香菊, 梁帝允, 袁會珠. 除草劑科學使用指南[M]. 北京: 中國農業(yè)科學技術出版社, 2015: 58.
[4] JAMES C. ISAAA brief 54:Global status of commercialized biotech/GM crops in 2018 [DB/OL].The International Service for the Acquistion of Agribiotech Applications,Ithaca,NY: 2018. http:∥www.isaaa.org/resources/publications/briefs/54.
[5] 張翼翾.全球抗草甘膦雜草的概況[J].世界農藥, 2018, 40(3): 3845.
[6] GOTTRUP O, OSULLIVAN P A, SCHRAA R J, et al. Uptake, translocation, metabolism and selectivity of glyphosate in Canada thistle and leafy spurge [J]. Weed Research, 1976, 16(3): 197201.
[7] ULLOA S M, OWEN M D K. Response of Asiatic dayflower (Commelina communis) to glyphosate and alternatives in soybean [J]. Weed Science, 2009, 57(1): 7480.
[8] 劉延. 田旋花和打碗花對草甘膦的耐藥性研究[D]. 北京: 中國農業(yè)科學院, 2008: 5584.
[9] SHERRICK S L, HOLT H A, HESS F D. Effects of adjuvants and environment during plant development on glyphosate absorption and translocation in field bindweed (Convolvulus arvensis) [J]. Weed Science, 1986,34(6): 811816.
[10]SANTOS I C, SILVA A A, FERREIRA F A, et al. Efficiency of glyphosate in the control of Commelina benghalensis and Commelina diffusa [J]. Planta Daninha, 2001, 19(1): 135143.
[11]YUAN C I, CHAING M Y, CHEN Y M. Triple mechanisms of glyphosateresistance in a naturally occurring glyphosateresistant plant Dicliptera chinensis? [J]. Plant Science (Shannon), 2002, 163(3): 543554.
[12]SANTOS S A D, TUFFISANTOS L D, SANTANNASANTOS B F, et al. Influence of shading on the leaf morphoanatomy and tolerance to glyphosate in Commelina benghalensis L. and Cyperus rotundus L. [J]. Australian Journal of Crop Science, 2015, 9(2): 135142.
[13]GOMEZ J M. Glyphosatetolerant Asiatic dayflower (Commelina communis L.): ecological, biological and physiological factors contributing to its adaptation to Iowa agronomic systems [D]. USA: Iowa State University, 2012: 6699.
[14]賈芳, 崔海蘭, 李香菊, 等. 耐草甘膦雜草的研究現(xiàn)狀[J].雜草學報, 2019, 37(1): 19.
[15]中國科學院中國植物志編輯委員會. 中國植物志[M]. 北京: 科學出版社, 1993.
[16]強科斌, 丁偉, 強小蓉. 野生油脂植物——蒼耳的觀察研究[J].甘肅農業(yè)大學學報, 1992(3): 262265.
[17]強勝. 雜草學[M]. 第2版.北京: 中國農業(yè)出版社, 2009: 216219.
[18]馬承忠. 圖說農田雜草識別及防除[M]. 第2版.北京: 中國農業(yè)出版社, 2013: 204205.
[19]李揚漢. 中國雜草志[M]. 北京: 中國農業(yè)出版社, 1998.
[20]OGG A G, DAWSON J H. Time of emergence of eight weed species [J]. Weed Science, 1984, 32(3): 327335.
[21]THARP B E, KELLS J J. Influence of herbicide application rate, timing, and interrow cultivation on weed control and corn (Zea mays) yield in glufosinateresistant and glyphosateresistant corn [J]. Weed Technology, 1999, 13(4): 807813.
[22]PANDEY H N, MISRA K C, MUKHERJEE K L. Phosphate uptake and its incorporation in some crop plants and their associated weeds [J]. Annals of Botany, 1971, 35(2): 367372.
[23]VENGRIS J, COLBY W G, DRAKE M. Plant nutrient competition between weeds and corn 1 [J]. Agronomy Journal, 1955, 47(5): 213216.
[24]MULUGETA D, STOLTENBERG D E. Influence of cohorts on Chenopodium album demography [J]. Weed Science, 1998, 46(1): 6570.
[25]魏守輝, 張朝賢, 翟國英, 等. 河北省玉米田雜草組成及群落特征[J]. 植物保護學報, 2006, 33(2): 212218.
[26]代偉程, 高興文, 馬成立, 等. 泰安市夏玉米田雜草種類及群落構成研究[J]. 山東農業(yè)科學, 2013, 45(9): 9698.
[27]呂躍星, 王權. 吉林省中部地區(qū)玉米田雜草種類及其優(yōu)勢種群調查報告[J]. 吉林農業(yè)科學, 2002(S1): 4647.
[28]張杰. 周口地區(qū)農業(yè)耕作模式對田間雜草的影響[D]. 新鄉(xiāng): 河南師范大學, 2014.
[29]黃春艷, 郭玉蓮, 王宇, 等. 不同耕作模式對玉米大豆輪作區(qū)玉米田土壤潛雜草群落的影響[C]∥植??萍紕?chuàng)新與農業(yè)精準扶貧——中國植物保護學會2016年學術年會論文集.北京: 中國農業(yè)科學技術出版社, 2016:505.
[30]潘思楊.黑龍江省玉米田主要雜草調查及對除草劑敏感性的研究[D]. 哈爾濱:東北農業(yè)大學, 2015.
[31]鄭麗敏.安陽地區(qū)夏玉米田雜草發(fā)生規(guī)律與防治技術研究[D].鄭州: 河南農業(yè)大學, 2009.
[32]STREIBIG J C. Herbicide bioassay [J]. Weed Research, 1988, 28(6): 479484.
[33]楊益軍. 2018年中國(全球)草甘膦市場分析[J]. 農藥市場信息, 2018(5): 2731.
[34]OWEN M D. Weed species shifts in glyphosateresistant crops [J]. Pest Management Science, 2008, 64(4): 377387.
[35]BARRENTINE W L, MCWHORTER C G. Chlorimuron and imazaquin rates for postemergence control of common cocklebur in soybeans [J]. Research Report, Mississippi Agricultural and Forestry Experiment Station, 1989,14(9): 3.
[36]WESLEY R A, SHAW D R, BARRENTINE W L. Incorporation depths of imazaquin, metribuzin, and chlorimuron for common cocklebur (Xanthium strumarium) control in soybeans (Glycine max) [J]. Weed Science, 1989,37(4):596599.
[37]SPRAGUE C L, STOLLER E W, WAX L M. Common cocklebur (Xanthium strumarium) resistance to selected ALSinhibiting herbicides [J]. Weed Technology, 1997,11(2):241247.
[38]OHMES G A, KENDIG J A. Inheritance of an ALScrossresistant common cocklebur (Xanthium strumarium) biotype [J]. Weed Technology, 1999,13(1):100103.
[39]SCHMIDT L A, TALBERT R E, MCCLELLAND M. Management of acetolactate synthase (ALS)resistant common cocklebur (Xanthium strumarium) in soybean [J]. Weed Technology, 2004,18(3):665674.
[40]MARIC D, KONSTANTINOVIC B. Resistance study of Xanthium strumarium L. species population to the herbicide imazethapyr in the south Banat [J]. Herbologia, 2014,14(1):7179.
[41]孫會杰. 遼寧省玉米田雜草群落調查及反枝莧對莠去津抗性研究[D].沈陽: 沈陽農業(yè)大學, 2007.
[42]邱罡, 謝凝子.農藥莠去津的危害與非生物降解研究進展[J].廣東化工, 2008, 35(1): 7377.
[43]CLAY P A, GRIFFIN J L. Weed seed production and seedling emergence responses to lateseason glyphosate applications [J]. Weed Science, 2000, 48(4): 481486.
[44]侯曉玉. 龍葵對草甘膦抗性機理的研究[D].哈爾濱:東北農業(yè)大學, 2016.
[45]MUELLER T C, ELLIS A T, BEELER J E, et al. Shikimate accumulation in nine weedy species following glyphosate application [J]. Weed Research, 2008, 48(5): 455460.
[46]LOUX M M, STACHLER J M, MILLER B A, et al. Response of common lambsquarters to glyphosate in the greenhouse and growth chamber [C]∥North Central Weed Science Society Proceedings, 2005, 60: 202.
[47]JESCHKE M R, STOLTENBERG D E. Weed community composition after eight years of continuous glyphosate use in a cornsoybean annual rotation [C]∥Milwaukee: North Central Weed Science Society Proceedings, 2006, 58: 59.
[48]KNISS A R, MILLER S D, WESTRA P H, et al. Glyphosate susceptibility in common lambsquarters (Chenopodium album) is influenced by parental exposure [J]. Weed Science, 2007, 55(6): 572577.
[49]SCHUSTER C L, ALKHATIB S K. Response of common lambsquarters (Chenopodium album) to glyphosate as affected by growth stage [J]. Weed Science, 2007, 55(2): 147151.
[50]SIVESIND E C, GASKA J M, JESCHKE M R, et al. Common lambsquarters response to glyphosate across environments [J].Weed Technology, 2011, 25(1): 4450.
[51]劉小龍. 鐵莧菜(Acalypha australis L.)對草甘膦的耐受性機理研究[D]. 北京: 中國農業(yè)科學院, 2016: 2935.
[52]HALL G J, HART C A, JONES C A. Plants as sources of cations antagonistic to glyphosate activity [J]. Pest Management Science, 2000, 56(4): 351358.
[53]WESTHOVEN A M, STACHLER J M, LOUX M M, et al. Management of glyphosatetolerant common lambsquarters (Chenopodium album) in glyphosateresistant soybean [J]. Weed Technology, 2008, 22(4): 628634.
[54]杜麗娟. 玉米田化學除草的藥害及方法[J].農業(yè)科技通訊, 2015(6): 227230.
(責任編輯:楊明麗)