明津法 黃曉衛(wèi) 寧新 潘福奎 左保齊
摘要: 為深入了解絲素蛋白材料的制備技術及應用研究現(xiàn)狀,文章介紹了濕法紡絲、干法紡絲等制備絲素蛋白纖維類材料的制備技術及纖維性能特點,發(fā)現(xiàn)濕法紡絲中紡絲液濃度普遍低于干法紡絲,且濕法紡絲過程中凝固浴對材料性能影響波動較大。冷凍干燥法、鹽析法、發(fā)泡法等制備絲素蛋白支架類材料,冷凍干燥法獲得絲素蛋白支架孔隙率可高達99%。同時,對不同制備技術獲得的絲素蛋白材料性能進行分析,綜述了絲素蛋白材料在智能紡織品、生物醫(yī)藥、光電學器件等領域應用研究。指出可通過再生制備技術進行結構設計和材料功能化,可提升蠶絲的附加值和拓寬其應用領域,實現(xiàn)蠶絲產(chǎn)品的多元化應用。
關鍵詞: 濕法紡絲;蠶絲;絲素蛋白;智能可穿戴;生物醫(yī)用
Abstract: In order to deeply understand the research status of the preparation and application of silk fibroin materials, this paper introduces the preparation techniques of silk fibroin fibers, such as wet spinning and dry spinning and the properties of such fibers. It is found the concentration of spinning solution in wet spinning is generally lower than that in dry spinning, and the coagulation bath in wet spinning has a great impact on the properties of materials. Silk fibroin scaffolds are prepared by freeze-drying, salting out and foaming etc. The porosity of silk fibroin scaffolds obtained by freeze-drying can be up to 99%. At the same time, the properties of silk fibroin materials obtained by different preparation techniques are analyzed. The applications of silk fibroin materials in intelligent textiles, biomedicine and optoelectronic devices, etc. are summarized. It is pointed out that the structural design and functionalization of silk by regenerative preparation technology can enhance the additional value of silk and broaden its application fields, so as to realize the diversified application of silk products.
Key words: wet spinning; silk; silk fibroin; intelligent wearable; biomedicine
蠶絲作為一種天然有機高分子材料,隨著材料制備、表征等技術的應用和多學科的交叉融合發(fā)展,蠶絲研究已由宏觀向微觀分子水平方向發(fā)展,其應用領域也由單純絲織物紡織產(chǎn)品向生物醫(yī)藥、光學、電學、智能可穿戴等領域延伸。蠶絲因其良好的生物相容性、生物降解性、優(yōu)異的力學性能等特性,通過各種制備技術加工成纖維、長絲、膜、支架、凝膠等材料(圖1),在生物醫(yī)用領域特別是用作組織工程支架、藥物緩釋載體等已開展深入研究。除生物醫(yī)用外,對蠶絲進行功能化探究,增加蠶絲本身不具有的功能,拓展其在智能紡織品、光電學器件等領域應用。
可穿戴技術于20世紀60年代由美國麻省理工學院媒體實驗室提出,融合材料技術、信息技術等對人體相關信息進行收集、處理和反饋。柔性可穿戴電子器件及相關產(chǎn)品不斷涌現(xiàn),引起學術界和工業(yè)界的廣泛關注。目前,可穿戴電子設備主要依靠將電子裝置黏合到織物上實現(xiàn),缺乏柔性且易產(chǎn)生故障。紡織纖維具有柔韌性、舒適性、輕質(zhì)性和耐用性,將可穿戴電子設備融入到紡織纖維、織物中,可改善其柔韌性,實現(xiàn)其產(chǎn)業(yè)化。蠶絲因顯著的機械韌性、低成本、應用廣泛且具有優(yōu)異的可穿戴舒適性,在智能紡織品等領域的研究和應用日漸凸顯[1-3]。
本文對絲素蛋白材料及其成型方法進行系統(tǒng)敘述,對絲素蛋白材料在智能可穿戴、生物醫(yī)用、光學和電學領域發(fā)展進行分析,全面總結絲素蛋白材料的研究現(xiàn)狀和最新進展,推動蠶絲成為研發(fā)和開發(fā)熱點材料,為繭絲綢行業(yè)轉(zhuǎn)型升級和產(chǎn)品開發(fā)提供借鑒。
1 絲素蛋白材料制備研究
1.1 纖維類材料
蠶吐絲過程是一個環(huán)保和低能耗的典范。蠶腺體內(nèi)絲素蛋白(silk fibroin,SF)水溶液的流動過程中,受溶液質(zhì)量分數(shù)、pH值、金屬離子質(zhì)量分數(shù)、剪切等作用共同影響[4]。近年來,人工模擬蠶吐絲過程制備高性能纖維已成為材料領域研究熱點,主要制備方式有濕法紡絲(含干噴濕法紡絲)、干法紡絲和微流體紡絲等[5-8],具體制備流程如圖2[9-10]所示。
濕法紡絲(含干噴濕法紡絲)中用于制備SF紡絲液的溶劑主要有甲酸、六氟異丙醇、六氟丙酮和水等,所采用的凝固浴大多是醇類溶液,也有部分研究者采用N-甲基嗎啉-N-氧化物及離子液體等為溶劑進行濕法紡絲(表1)。如:采用氯化鈣-甲酸體系制備紡絲液,濕法紡絲經(jīng)3倍牽伸獲得直徑(173±2.5) μm SF長絲[11]。濕法紡絲中SF紡絲液質(zhì)量分數(shù)在13%~19%(w/w)、凝固浴為硫酸銨,可獲得再生SF纖維,并經(jīng)連續(xù)機械牽伸,可提高纖維強力[12],以及采用同軸濕法紡絲獲得連續(xù)中空纖維[13]。基于Hansen溶解相對能差和動力學參數(shù)建立可選擇預測模型,即建立濕法紡絲過程中三個變量:聚合物、溶劑和非溶劑類型,與濕法紡絲纖維直徑和內(nèi)部形貌的關系[14]。此外,高艷菲等[15]以六氟異丙醇溶解再生絲素膜,濕法紡絲制備再生絲素蛋白纖維,并經(jīng)1-(3-二甲基氨基丙基)-3-乙基碳化二亞胺和N-羥基丁二酰亞胺作為交聯(lián)劑進行后處理。研究發(fā)現(xiàn),交聯(lián)改性后纖維直徑變細為87 μm,纖維內(nèi)部結構以silk Ⅰ為主,纖維熱穩(wěn)定性提高,熱分解溫度由281 ℃提高至288 ℃,以及斷裂強度和斷裂伸長率增大到1.41 cN/dtex和11.38%。
干法紡絲與濕法紡絲流程相似,制備過程缺少凝固浴。Yue等[21]以甲酸/氯化鈣為溶劑制備SF紡絲液,采用干法紡絲短流程加工制備再生SF纖維;Peng等[22]用Ca2+調(diào)控的38%~47%SF水溶液進行干法紡絲,初生纖維經(jīng)4倍牽伸后應力可達541.3 MPa,伸長率19.3%。Zhang等[23]以45%的SF/石墨烯水溶液為紡絲液,干法紡絲制備再生纖維,經(jīng)乙醇后處理,其斷裂強度達到435.5 MPa;此外,通過給蠶喂食單臂碳納米管和石墨烯,吐出的絲經(jīng)測定得到納米碳抑制SF結構從無規(guī)卷曲和α-螺旋到β-折疊的轉(zhuǎn)變,同時提高了纖維斷裂伸長率和韌性模量[24]。
微流體紡絲模仿蠶體內(nèi)生物紡絲器結構進行紡絲[25-26]。Martel等[27]最先模擬蠶體內(nèi)吐絲管道,設計了套管結構,內(nèi)管截面圓形,外管截面正方形,壁厚50 μm,再生SF溶液和緩沖液在管內(nèi)形成同軸流動,最終的混合溶液從套管內(nèi)流出并在水中收集;Luo等[28]利用微流體技術用于再生SF水溶液組成的動態(tài)調(diào)控;Li等[29]借助計算流體動力學模擬剪切和離子變化對微流體紡SF纖維強力的影響;Kinahan等[8]采用微流體紡絲成功制得再生SF纖維,但纖維力學性能很差,低于10 MPa;Bettinger等[30]使用微流體技術將SF水溶液加工成具有層級結構SF膜,加工過程避免了有毒溶劑和復雜的加工過程;張耀鵬等[10]借助微流控紡絲方法采用高質(zhì)量分數(shù)SF紡絲液制備高性能再生SF纖維;Michelle等[31]討論了微流控溶液紡絲精確控制再生SF纖維形成和性能。此外,雷鳴等[32]利用微流體紡絲技術制備絲素納米銀/PVA共混纖維,當絲素納米銀/PVA共混溶液質(zhì)量比為15,PVA甲酸溶液為25%,紡絲速度0.5 mL/h,步進平移頻率30 Hz,旋轉(zhuǎn)電機速率200 r/min時,制備纖維直徑為13~14 μm,且纖維粘連斷絲較少。
1.2 支架類材料
絲素蛋白支架材料的制備方法有冷凍干燥法、鹽析法、發(fā)泡法等。絲素蛋白支架制備方法特點對比見表2[33],其中冷凍干燥法制備絲素蛋白支架內(nèi)部易形成片層結構、脆性較大。鹽析法通過致孔劑形狀和粒徑可調(diào)控支架中孔徑分布,但孔的貫通性較差,且發(fā)泡法制備的絲素蛋白支架中孔徑分布難以控制。Nazarov等[34]報道鹽析法制備的SF支架孔隙率為84%~98%,壓縮強度達(175±3) kPa。氣泡法制備的SF支架孔隙率為87%~97%、壓縮強度(280±4) kPa,然而冷凍干燥法制備的SF支架孔隙率可達99%、最大壓縮強度為(30±2) kPa。Li等[35]借助超臨界二氧化碳技術和致孔劑析出制備類細胞質(zhì)結構的SF支架,研究表明SF溶液的壓強和質(zhì)量分數(shù)對SF支架的納米結構沒有明顯影響,改變致孔劑含量可調(diào)控SF支架的孔隙率從(32.7±1.7)%到(821±2.3)%,力學強度從(237.0±2.2) kPa到(163.0±6.5) kPa,此外該材料還表現(xiàn)出良好的支持血旺細胞生長和黏附的能力。
2 絲素蛋白材料應用
2.1 智能可穿戴領域
蠶絲具有優(yōu)異的機械穩(wěn)定性和易再生加工等特點,成為可穿戴產(chǎn)品優(yōu)選的熱點材料[36]。李勝優(yōu)等[37]總結近年來蠶絲材料在可穿戴傳感器上的應用包括機械(應變、壓力)、電生理、溫度和濕度傳感器等。蠶絲基材料在可穿戴傳感器領域應用時,既可作柔性基底,提供良好的可拉伸性、生物相容性和可降解性,又可作介電層、摩擦層和中間介質(zhì)。張瑩瑩團隊將靜電紡絲SF納米纖維包纏在CNT紗線表面,制備成導電紗線。該導電紗線表現(xiàn)出優(yōu)異導電性能(3.1×104 S/m)、良好機械強度(16 cN/tex)、良好的韌性和耐久性,以及經(jīng)過后處理可以拒水,用于智能織物(包括電致變色和近場通信)[38]。Wang等[39]將SF納米纖維衍生出柔性透明的碳纖維膜,制備成溫度傳感和壓力傳感的電子皮膚,且溫度傳感器的高溫靈敏度為每度0.81%,壓力傳感器在應變50%條件下測量因子為8 350。
凌盛杰團隊利用六氟異丙醇溶劑實現(xiàn)蠶絲表面溫和可控溶解,實現(xiàn)蠶絲表面均勻負載碳納米管,借助簡單的浸泡-紡紗技術制備成高性能導電蠶絲[40]。導電蠶絲的拉伸強度和應變分別為(633±168) MPa和(12±4)%,與天然蠶絲相近,可實現(xiàn)工業(yè)加工,將導電蠶絲紗線用于可穿戴傳感器、醫(yī)療監(jiān)控及人機交互領域等。
毛翠萍[41]借助石墨烯層層包裹-還原方法制備導電蠶絲纖維,通過不斷循環(huán)浸潤-還原次數(shù),得到蠶絲織物的薄片電阻為1.5 kΩ/Sq,單根蠶絲纖維的電導率高達3 595 S/m。同時,以高導電石墨烯修飾蠶絲織物為基底,將氧化鋅納米棒矩陣沉積到蠶絲織物上,利用氧化鋅納米棒的壓電性質(zhì),將人體運動能量轉(zhuǎn)化為電能,制作成壓電式傳感器,用于人體手指的按壓、扭曲、彎曲等機械運動檢測。
2.2 生物醫(yī)學領域
絲素蛋白因良好的生物相容性和優(yōu)異的物理、化學性能,在生物醫(yī)學領域表現(xiàn)出極大的應用潛力。Vandana Soni團隊綜述了蠶絲作為前沿生物醫(yī)學大分子用于提高藥物釋放[42]。朱良均團隊關注SF復合納米顆粒的制備方法和性能增強,特別是生物醫(yī)用領域應用[43]。Subhas C.Kundu團隊總結了制備各種SF仿生結構,如膜、凝膠、支架、納米纖維和納米顆粒,以及這些仿生材料的功能化和生物醫(yī)用[44],又綜述了絲素蛋白基凝膠的生物醫(yī)學應用[45]。
楊俊團隊將疏水性單體甲基丙烯酸十八烷基酯(C18M)溶于絲素蛋白(SF)溶液中形成疏水締合作用,引入海藻酸鈉離子交聯(lián)網(wǎng)絡中,制備成多功能絲蛋白基天然高分子水凝膠[46]。該凝膠表現(xiàn)出剪切變稀行為,凝膠具有觸變性,當剪切應力消除后,其網(wǎng)絡結構可以快速恢復。此外,在模擬體液中礦化28 d后發(fā)現(xiàn)磷化鈣納米顆粒均勻分布于礦化后的凝膠表面,經(jīng)細胞培養(yǎng)發(fā)現(xiàn),小鼠成骨細胞(MC3T3-E1)在凝膠中存活率仍能達到48.62%。Muthumanickkam等[47]制備負載草藥的SF納米纖維網(wǎng),研究表明:隨著納米纖維直徑增加,熱穩(wěn)定性下降,纖維結晶度下降,以及隨著草藥負載量的增加抗菌性增強;同時,負載1.5%草藥的納米纖維比負載1.0%草藥的納米纖維表現(xiàn)出更持久的藥物釋放性能。Riccardo Raho等[48]采用綠色合成方式制備負載銀納米顆粒的絲素蛋白-纖維素鈉凝膠,凝膠在不同生理溶劑中,溶脹率達到59 g/g;同時,在預防傷口感染和愈合方面表現(xiàn)出良好的抗菌性和生物相容性。凌盛杰團隊通過速度可控的力繅絲,獲得連續(xù)可紡均勻柞蠶絲纖維,用紡紗技術將強拉柞蠶絲組裝成具有可編程驅(qū)動功率(0.77~2.1 W/kg)的雙螺旋微驅(qū)動器[49]。借助表面粗糙度和形狀梯度觸發(fā)并促進水在微驅(qū)動器上的滲透,導致強拉柞蠶絲的膨脹和收縮,這種驅(qū)動作用可使強拉柞蠶絲微驅(qū)動器用于促進傷口愈合。
2.3 電學領域
蠶絲是電的不良導體,為拓展其在電學領域應用,賦予蠶絲新的功能。Vitor Sencadas等[50]用靜電紡制備電極化的SF納米纖維用于能量收集,研究表明,該納米纖維壓電常數(shù)(38±2) pm/V、機械靈敏度0.15 V/kPa、能量儲存容量85 μJ、儲能效率達21%,可用于智能服裝中自供電人體電子監(jiān)測。Manish Singh等[51]采用超臨界二氧化碳浸漬聚吡咯和高錳酸鹽賦予蠶絲纖維導電和催化功能,該復合材料作為生物傳感器可用于檢測雙氧水及其降解。Xu等[52]通過浸漬和碳化相結合方式制備三維層狀繭絲-Co-石墨烯復合材料,碳化繭絲擁有27 dB電磁屏蔽效率(12.4~18 GHz),在石墨烯和Co納米顆粒存在下可增強至55 dB(18 GHz)。可見,繭絲-Co-石墨烯三維層狀材料不僅具有優(yōu)異的電磁屏蔽效能,同時還擁有優(yōu)異的比屏蔽效能664 dB·cm3/g。
2.4 光學領域
近年來,蠶絲易加工成纖維、薄膜、凝膠等材料,通過改性和功能化使其可應用于光電學器件和生物成像等領域。Lawrence等[53]利用納米形態(tài)學優(yōu)化絲蛋白基生物材料系統(tǒng)的光學特性,將表面形貌控制在125 nm以下,納米圖案成形使絲蛋白形成衍射光學器件,如衍射光柵、模式發(fā)生器和透鏡,這是材料形成過程中通過調(diào)控β-折疊結構結晶度獲得的。Pal等[54]利用光刻技術,將經(jīng)化學修飾的絲蛋白光阻劑制成二維周期性圖形陣列和菲涅耳區(qū)域板。由于布拉格衍射,在這些周期性的微觀圖形中產(chǎn)生了依賴于角度的彩虹色。同時,材料完全可生物降解,可開發(fā)生物兼容的、可控制降解的軟微光學設備。Lee等[55]報道由絲素蛋白和金納米結構組成的生物相容性和高度可調(diào)等離子體生物/化學傳感器,這種蠶絲等離子體吸收傳感器可用作葡萄糖傳感器具有1 200 nm/RIU高靈敏度和高相對強度變化。Bucciarelli等[56]優(yōu)化了一種制備極低粗糙度絲蛋白薄膜的自旋涂覆方法,使其應用于光學領域;同時,采用橢圓偏振法對絲素蛋白和絲膠蛋白的折射率和光阻進行了表征。
3 結 語
本文對絲素蛋白材料的制備和應用進行綜述,纖維類絲素蛋白材料的制備方法包括濕法紡絲、干法紡絲和微流控紡絲等;支架類絲素蛋白材料的制備方法包括冷凍干燥法、鹽析法、發(fā)泡法等。每種制備技術各有優(yōu)缺點,制備的材料性能和功能各異,拓展了蠶絲蛋白材料的研究開發(fā)和應用領域,除紡織領域應用外還可以用于生物醫(yī)藥、光電學器件等。
參考文獻:
[1]SONG P, TAO J, HE X M, et al. Silk inspired stretchable fiber shaped supercapacitors with ultrahigh volumetric capacitance and energy density for wearable electronics[J]. Chemical Engineering Journal, 2020, 386(15): 124024.
[2]WANG C Y, LI X, GAO E L, et al. Carbonized silk fabric for ultrastretchable highly sensitive and wearable strain sensors[J]. Advanced Materials, 2016, 38(31): 6640-6648.
[3]NA D, CHOI J, LEE J, et al. Commercial silk based electronic yarns fabricated using microwave irradiation[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27353-27357.
[4]JIN H J, KAPLAN D L. Mechanism of silk processing in insects and spiders[J]. Nature, 2003, 424(6952): 1057-1061.
[5]ZHANG F, LU Q, YUE X X, et al. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2 formic acid solvent[J]. Acta Biomaterialia, 2015, 12: 139-145.
[6]魏偉. 再生絲素蛋白水溶液的干法紡絲及后處理研究[D]. 上海: 東華大學, 2011.
WEI Wei. Studies on Dry Spinning of Regenerated Silk Fibroin Aqueous Solution and Post Treatment of the Resultant Fibers[D]. Shanghai: Donghua University, 2011.
[7]林永佳, 楊董超, 張佩華, 等. 再生絲素蛋白/脫細胞真皮基質(zhì)共混納米纖維膜的制備及其性能[J]. 紡織學報, 2019, 40(7): 13-18.
LIN Yongjia, YANG Dongchao, ZHANG Peihua, et al. Preparation and properties of regenerated silk fibroin acellular dermal matrix blended nanofiber membrane[J]. Journal of Textile Research, 2019, 40(7): 13-18.
[8]KINAHAN M E, FILIPPIDI E, KOSTER S, et al. Tunable silk using microfluidics to fabricate silk fibers with controllable properties[J]. Biomacromolecules, 2011, 12(5): 1504-1511.
[9]KOEPPEL A, HOLLAND C. Progress and trends in artificial silk spinning a systematic review[J]. ACS Biomaterials Science & Engineering, 2017, 3(3): 226-237.
[10]PENG Q F, SHAO H L, HU X C, et al. Microfluidic dry spinning and characterization of regenerated silk fibroin fibers[J]. Journal of Visualized Experiments, 2017(127): 56271.
[11]吳惠英, 左保齊. 氯化鈣甲酸溶解體系再生絲素長絲的制備及其性能[J]. 紡織學報, 2016, 37(2): 1-6.
WU Huiying, ZUO Baoqi. Preparation and properties of regenerated silk fibroin filaments using CaCl2 formid acid system[J]. Journal of Textile Research 2016, 37(2): 1-6.
[12]YAN J P, ZHOU G Q, KNIGHT D P, et al. Wet spinning of regenerated silk fiber from aqueous silk fibroin solution discussion of spinning parameters[J]. Biomacromolecules, 2010, 11(1): 1-5.
[13]NG P F, LEE K I, MENG S F, et al. Wet spinning of silk fibroin based core sheath fibers[J]. ACS Biomaterials Science & Engineering, 2019, 5(6): 3119-3130.
[14]TRIPATHI A, RUTKEVICIUS M, BOSE A, et al. Experimental and predictive description of the morphology of wet spun fibers[J]. ACS Applied Polymer Materials, 2019, 1(6): 1280-1290.
[15]高艷菲, 明津法, 鄧春閩, 等. 再生絲素纖維的濕法紡絲及其交聯(lián)改性研究[J]. 絲綢, 2012, 49(4): 10-14.
GAO Yanfei, MING Jinfa, DENG Chunmin, et al. Wet spinning of the regenerated silk fibroin fibers and its cross linking modification research[J]. Journal of Silk, 2012, 49(4): 10-14.
[16]HU X J, LI J G, BAI Y X. Fabrication of high strength graphene regenerated silk fibroin composite fibers by wet spinning[J]. Materials Letters, 2017, 194: 224-226.
[17]LI X R, MING J F, NING X. Wet spun conductive silk fibroin polyaniline filaments prepared from a formic acid shell solution[J]. Journal of Applied Polymer Science, 2019, 136(9): 47127.
[18]YAZAWA K, MALAY A D, IFUKU N, et al. Combination of amorphous silk fiber spinning and postspinning crystallization for tough regenerated silk fibers[J]. Biomacromolecules, 2018, 19(6): 2227-2237.
[19]FRYDRYCH M, GREENHALGH A, VOLLRATH F. Artificial spinning of natural silk threads[J]. Scientific Reports, 2019, 9(1): 247-255.
[20]ZHANG C, ZHANG Y P, SHAO H L, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solution[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3349-3358.
[21]YUE X X, ZHANG F, WU H Y, et al. A novel route to prepare dry-spun silk fibers from CaCl2 formic acid solution[J]. Materials Letters, 2014, 128: 175-178.
[22]PENG Q F, SHAO H L, HU X C, et al. Role of humidity on the structures and properties of regenerated silk fibers [J]. Progress in Natural Science Materials International, 2015, 25(5): 430-436.
[23]ZHANG C, ZHANG Y P, SHAO H L, et al. Hybrid silk fibers dry-spun from regenerated silk fibroin/graphene oxide aqueous solution[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3349-3358.
[24]WANG Q, WANG C Y, ZHANG M C, et al. Feeding single walled carbon nanotubes or graphene to silkworms for reinforced silk fibers[J]. Nano Letters, 2016, 16: 6695-6700.
[25]PENG Q F, SHAO H L, HU X C, et al. The development of fibers that mimic the core-sheath and spindle knot morphology of artificial silk using microfluidic devices[J]. Macromolecular Materials and Engineering, 2017, 302(10): 201700102.
[26]KONWARH R, GUPTA P, MANDAL B B. Silk microfluidics for advanced biotechnological applications a progressive review [J]. Biotechnology Advances, 2016, 34(5): 845-858.
[27]MARTEL A, BURGHAMMER M, DAVIES R, et al. A microfluidic cell for studying the formation of regenerated silk by synchrotron radiation small and wide angle X-ray scattering[J]. Biomicrofluidics, 2008, 2(2): 24104.
[28]LUO J, ZHANG Y P, HUANG Y, et al. A bio-inspired microfluidic concentrator for regenerated silk fibroin solution [J]. Sensors and Actuators B: Chemical, 2012, 162(1): 435-440.
[29]LI D, JACOBSEN M M, RIM N G, et al. Introducing biomimetic shear and ion gradients to microfluidic spinning improves silk fiber strength [J]. Biofabrication, 2017, 9(2): 025025.
[30]BETTINGER C J, CYR K M, MATSUMOTO A, et al. Silk fibroin microfluidic devices [J]. Advanced Materials, 2007, 19(19): 2847-2850.
[31]KINAHAN M E, FILIPPIDI E, KOSTER S, et al. Tunable silk using microfluidics to fabricate silk fibers with controllable properties[J]. Biomacromolecules, 2011, 12(5): 1504-1511.
[32]雷鳴, 張逸, 焦晨璐, 等. 微流體紡絲制備絲素納米銀/PVA共混纖維的研究[J]. 絲綢, 2018, 55(2): 1-7.
LEI Ming, ZHANG Yi, JIAO Chenlu, et al. Study on preparation of silk fibroin stabilized silver nanoparticles PVA composite microfibers by microfluidic spinning[J]. Journal of Silk, 2018, 55(2): 1-7.
[33]殷麗華, 牟星, 余占海, 等. 絲素蛋白及其復合支架制備方法的研究進展[J]. 材料導報, 2013, 27(17): 110-112.
YIN Lihua, MOU Xing, YU Zhanhai, et al. Research development in preparation of silk fibroin and its composite scaffolds[J]. Materials Reports, 2013, 27(17): 110-112.
[34]NAZAROV R, JIN H J, KAPLAN D L. Porous 3D scaffolds from regenerated silk fibroin[J]. Biomacromolecules, 2004, 5(3): 718-726.
[35]LI Z H, WANG L, DAI H L, et al. Fabrication characterization and in vitro evaluation of biomimetic silk fibroin porous scaffolds via supercritical CO2 technology[J]. The Journal of Supercritical Fluids, 2019, 150: 86-93.
[36]WANG C Y, XIA K L, ZHANG Y Y, et al. Silk based advanced materials for soft electronics[J]. Accounts of Chemical Research, 2019, 52(10): 2916-2927.
[37]李勝優(yōu), 劉鎵榕, 文豪, 等. 蠶絲基可穿戴傳感器的研究進展[J]. 物理學報, 2020, 69(17): 130-142.
LI Shengyou, LIU Jiarong, WEN Hao, et al. The recent advances of silk based wearable sensors[J]. Acta Physica Sinica, 2020, 69(17): 130-142.
[38]YIN Z, JIAN M Q, WANG C Y, et al. Splash resistant and light weight silk sheathed wires for textile electronics[J]. Nano Letters, 2018, 18: 7085-7091.
[39]WANG C Y, XIA K L, ZHANG M C, et al. An all silk derived dual mode E-skin for simultaneous temperature pressure detection [J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39484-39492.
[40]YE C, REN J, WANG Y L, et al. Design and fabrication of silk templated electronic yarns and applications in multifunctional textiles[J]. Matter, 2019, 1(5): 1411-1425.
[41]毛翠萍. 納米功能化蠶絲織物的制備及其在可穿戴領域的應用研究[D]. 重慶: 西南大學, 2016.
MAO Cuiping. Nanomaterial Functionalized Silk and Its Application in Wearable Electronics[D]. Chongqing: Southwest University, 2016.
[42]PANDEY V, HAIDER T, JAIN P, et al. Silk as a leading edge biological macromolecule for improved drug delivery[J]. Journal of Drug Delivery Science and Technology, 2020, 55: 101294.
[43]XU Z P, SHI L Y, YANG M Y, et al. Preparation and biomedical applications of silk fibroin nanoparticles composites with enhanced properties a review[J]. Materials Science and Engineering C, 2019, 95: 302-311.
[44]KUNDU B, KURLAND N E, BANO S, et al. Silk protein for biomedical applications bioengineering perspectives[J]. Progress in Polymer Science, 2014, 39(2): 251-267.
[45]KAPOOR S, KUNDU S C. Silk protein based hydrogels promising advanced materials for biomedical applications[J]. Acta Biomaterialia, 2016, 31: 17-32.
[46]MENG L, SHAO C Y, CUI C, et al. Autonomous self healing silk fibroin injectable hydrogels formed via surfactant free hydrophobic association[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1628-1639.
[47]MUTHUMANICKKAM A, SUBRAMANIAN S, SATHIYARAJ M, et al. Development of herb based Nigella sativa eri silk nanofibrous mat for biomedical applications[J]. Materials Today: Proceedings, 2020, 22(3): 585-588.
[48]RAHO R, NGUYEN N Y, ZHANG N Y, et al. Photo-assisted green synthesis of silver doped silk fibroin carboxymethyl cellulose nanocomposite hydrogels for biomedical applications[J]. Materials Science and Engineering C, 2020, 107: 110219.
[49]LIN S H, WANG Z, CHEN X Y, et al. Ultrastrong and highly sensitive fiber microactuators constructed by force reeled silks[J]. Advanced Science, 2020, 7(6): 201902743.
[50]SENCADAS V, GARVEY C, MUDIE S, et al. Electroactive properties of electrospun silk fibroin for energy harvesting applications[J]. Nano Energy, 2019, 66: 104106.
[51]SINGH M, BOLLELLA P, GORTON L, et al. Conductive and enzyme like silk fibers for soft sensing application[J]. Biosensors and Bioelectronics, 2020, 150: 111859.
[52]XU Z Q, LIANG M W, HE X H, et al. The preparation of carbonized silk cocoon Co graphene composite and its enhanced electromagnetic interference shielding performance[J]. Composites Part A: Applied Science and Manufacturing, 2019, 119: 111-118.
[53]LAWRENCE B D, GOLOMB M C, GEORGAKOUDI I, et al. Bioactive silk protein biomaterial systems for optical devices[J]. Biomacromolecules, 2008, 9(4): 1214-1220.
[54]PAL R K, KURLAND N E, WANG C Z, et al. Biopatterning of silk proteins for soft micro-optics[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8809-8816.
[55]LEE M, JEON H, KIM S. A highly tunable and fully biocompatible silk nanoplasmonic optical sensor[J]. Nano Letters, 2015, 15(5): 3358-3363.
[56]BUCCIARELLI A, MULLONI V, MANIGLIO D, et al. A comparative study of the refractive index of silk protein thin films towards biomaterial based optical devices[J]. Optical Materials, 2018, 78: 407-414.