范佩 邱金麗 于偉華 李杰 劉福強(qiáng)
摘 要:優(yōu)選二乙烯三胺(DETA)作為胺化試劑對聚丙烯腈(PAN)納米纖維進(jìn)行改性,制備多胺納米纖維吸附劑D-PAN,探究對Pb(Ⅱ)的吸附特性與機(jī)制。對D-PAN進(jìn)行SEM、BET、FTIR和XPS表征,并通過試驗(yàn)研究溶液初始pH值、接觸時間、溫度、無機(jī)鹽等因素對D-PAN吸附過程的影響。結(jié)果表明:多胺基團(tuán)被成功引入D-PAN的三維網(wǎng)絡(luò)中,多孔道結(jié)構(gòu)有利于改善D-PAN對Pb(Ⅱ)的吸附性能。pH值為5.0時,D-PAN對Pb(Ⅱ)的靜態(tài)吸附性能最優(yōu),由Langmuir模型擬合獲得的最大吸附容量高達(dá)1.73 mmol/g,準(zhǔn)一級動力學(xué)速率常數(shù)高達(dá)0.06 min-1。含鹽體系中D-PAN對Pb(Ⅱ)的吸附量可提高近1倍,“鹽促”效應(yīng)顯著。結(jié)合XPS和DFT結(jié)果分析,多胺基團(tuán)中N原子可與Pb(Ⅱ)形成雙齒和三齒螯合物。多次再生利用性能顯示,D-PAN結(jié)構(gòu)性能具有優(yōu)良的穩(wěn)定性。D-PAN具有吸附快、容量大、易再生等優(yōu)點(diǎn),具有廣闊應(yīng)用前景。
關(guān)鍵詞:鉛離子;多胺;螯合;納米纖維;鹽促
中圖分類號:TU375.4? ?文獻(xiàn)標(biāo)志碼:A ??文章編號:2096-6717(2021)02-0182-08
Abstract: In order to explore the adsorption characteristics of Pb (Ⅱ) and mechanism, polyacrylonitrile was selected as the matrix to be chemically modified with diethylenetriamine (DETA),preferred as an amination reagent,and a kind of polyamine chelating nanofiber (D-PAN) has been successfully prepared. The physical and chemical structure analysis by SEM, BET,F(xiàn)TIR and XPS was performed, and the effects of initial pH value, contact time, temperature, inorganic salt and other factors on the adsorption process of D-PAN were studied.The results show that: amine groups was successfully introduced into three-dimensional network of D-PAN, and multi channel structure is conducive to improve the adsorption properties of D-PAN for Pb (Ⅱ). It had the best static adsorption property at pH 5.0. The maximum adsorption capacity was 1.73 mmol/g obtained by fitting with Langmuir model, and the quasi-first-order kinetic rate constant is up to 0.06 min-1. Moreover, D-PAN had a significant “salt-promoting” effect, and the adsorption amount of Pb (Ⅱ) in the salt-containing system could be nearly doubled.Combining the results of XPS and DFT, it was found that Pb(Ⅱ) could be removed by chelating with N atoms in polyamine groups to form bidentate and tridentate complexes.Furthermore, D-PAN exhibited excellent structural stability after multiple regeneration. In summary, D-PAN has the advantages of fast adsorption, large capacity and easy regeneration, and has broad application prospects.
Keywords:lead ions; polyamine; chelation; nanofiber; “salt promoting” effect
礦冶、鉛酸蓄電池、電鍍等行業(yè)生產(chǎn)是水中重金屬鉛的主要來源[1]。近年來,陜西鳳翔縣[2]、湖南衡東縣[3]、廣東紫金縣[4]等多地爆發(fā)鉛污染事件,嚴(yán)重威脅水生態(tài)安全以及人類健康[5-6]。中國將強(qiáng)毒性鉛列為第一類污染物,《地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)》(GB 3838—2002)中Ⅲ類水的限值為0.05 mg/L,而且相關(guān)行業(yè)鉛的排放限值也十分嚴(yán)格[7-8]。含鉛廢水常用治理技術(shù)包括化學(xué)沉淀法、電解法、膜分離法和吸附法等[9]。吸附法因操作簡便、選擇性好并可循環(huán)使用,成為水體鉛污染的深度治理主流技術(shù)之一[10]。
多種吸附劑及其改性材料已被廣泛用于Pb(Ⅱ)的吸附去除。例如,Niu等[11]、張雪彥等[12]、蘭舫等[13]分別利用復(fù)合生物炭、改性乙酸木質(zhì)素和交聯(lián)羧甲基羅望子膠吸附Pb(Ⅱ),但最大吸附量僅分別為0.58、0.39、0.64 mmol/g。Ma等[14]利用層狀雙金屬氫氧化物納米顆粒吸附Pb(Ⅱ),可在1 h內(nèi)達(dá)到吸附平衡,且最大吸附量高達(dá)1.40 mmol/g,然而,因難以回收再利用限制了其實(shí)際應(yīng)用。因此,亟需研發(fā)容量大、速率快、易回收的高效除Pb(Ⅱ)吸附劑。
納米纖維具有質(zhì)輕、高長徑比、多孔道三維網(wǎng)絡(luò)結(jié)構(gòu)等特點(diǎn)[15]。由其制備的塊體材料不僅具有納米材料的快速吸附優(yōu)勢,而且易于回收[16]。其中,聚丙烯腈(PAN)納米纖維已被廣泛用于去除重金屬離子,例如:Deng等[17]發(fā)現(xiàn)聚乙烯亞胺(PEI)修飾的碳管改性PAN納米纖維對Pb(Ⅱ)的最大吸附量可達(dá)1.12 mmol/g。Wang等[18]制備了鹽酸羥胺改性的PAN多孔層狀吸附劑,對Pb(Ⅱ)的最大吸附量可達(dá)1.17 mmol/g,且共存NaCl可將其平衡吸附量提升約45%,表現(xiàn)出“鹽促”效應(yīng)[19]。因此,利用多胺化合物修飾PAN纖維類吸附劑,可綜合發(fā)揮氮原子配位能力以及PAN納米纖維基體易回收的結(jié)構(gòu)優(yōu)勢,實(shí)現(xiàn)Pb(Ⅱ)的高效去除及吸附劑的再生利用[20]。筆者優(yōu)選二乙烯三胺(DETA)對PAN納米纖維進(jìn)行化學(xué)改性,制備高效吸附劑D-PAN用于Pb(Ⅱ)的去除,觀察溶液初始pH值、接觸時間、溫度等因素對吸附過程的影響,并結(jié)合X射線光電子能譜(XPS)和密度泛函理論計(jì)算(DFT)[21],系統(tǒng)分析D-PAN對水中Pb(Ⅱ)的吸附特性與機(jī)制。
1 試驗(yàn)
1.1 儀器
油浴鍋(AL404),上海森信實(shí)驗(yàn)儀器有限公司;冷凍干燥箱(Scientz-12N),上海上登實(shí)驗(yàn)設(shè)備有限公司;分析天平(AL104)和pH計(jì)(FE20K),梅特勒托利多儀器(上海)有限公司;全溫培養(yǎng)振蕩器(HZP-250),上海精宏實(shí)驗(yàn)設(shè)備有限公司;超純水機(jī)(SYNS OOOCN),密理博有限公司;靜電紡絲機(jī)(CS30K-H),鄭州成越科學(xué)儀器有限公司;等離子體發(fā)射光譜儀(ICAP-6300),賽默飛世爾;掃描電鏡(S4800),日本日立公司;中孔物理吸附儀(TriStar Ⅱ 3020),麥克默瑞提克(上海)儀器有限公司;傅里葉變換紅外光譜儀(Equinox 55),德國布魯克光學(xué)儀器有限公司;電子能譜儀(PHI 5000 VersaProbe),日本UlVAC-PHI公司。
1.2 試劑與材料
聚丙烯腈(PAN,Mw=150 000)和聚乙烯亞胺(PEI,Mw=70 000),麥克林化學(xué)試劑有限公司;二乙烯三胺(DETA)和四乙烯五胺(TEPA),上海阿拉丁生化科技股份有限公司;無水碳酸鈉、氫氧化鈉、硝酸、硝酸鉛、硝酸鈉、硝酸鉀、硝酸鎂、硝酸鈣、氯化鈉、硫酸鈉和NN-二甲基甲酰胺(DMF)等均為分析純,來自南京化學(xué)試劑有限公司;實(shí)驗(yàn)用水為超純水。
1.3 D-PAN的制備方法
稱取1.000 g PAN粉末溶解于10 mL DMF中,室溫下攪拌至完全溶解,制得紡絲前體溶液,將其轉(zhuǎn)移到玻璃注射器中,紡絲機(jī)正、負(fù)極分別與注射器針頭和收集板相接,制備PAN納米纖維。紡絲參數(shù):正、負(fù)極間距16 cm、電壓18 kV、流速1.0 mL/h。
在50 mL三口燒瓶中加入20 mL DETA和0.100 g PAN納米纖維,室溫下靜置2 h,加入0.500 g無水碳酸鈉,于393 K下攪拌反應(yīng)3 h。待冷卻至室溫,濾出纖維,用超純水洗滌至出水呈中性,經(jīng)冷凍干燥后即可制得D-PAN。合成路徑如圖1所示。
1.4 靜態(tài)吸附實(shí)驗(yàn)
量取一定濃度的Pb(Ⅱ)溶液于錐形瓶中,使用HNO3和NaOH調(diào)節(jié)pH值,隨后加入一定量D-PAN,置于恒溫振蕩器中,以140 r/min的轉(zhuǎn)速振蕩24 h,測定平衡時溶液中Pb(Ⅱ)的濃度,并按式(1)計(jì)算平衡吸附量。
2 實(shí)驗(yàn)結(jié)果與討論
2.1 形貌分析
圖2為D-PAN的掃描電鏡圖(SEM)。單根纖維的直徑約為360 nm,各根纖維相互纏繞穿插,形成具有多通道的網(wǎng)絡(luò)結(jié)構(gòu)。與PAN納米纖維相比,D-PAN的比表面積、平均孔直徑和孔體積均增加(表1),且表面粗糙,這是胺化反應(yīng)的結(jié)果[22]。D-PAN形貌和孔徑結(jié)構(gòu)的變化利于更多吸附位點(diǎn)的暴露,用于Pb(Ⅱ)的捕集。
2.2 紅外光譜
圖3為D-PAN的紅外光譜圖(FTIR)。2 923、1 450 cm-1分別為—CH2-的反對稱伸縮振動和面內(nèi)彎曲振動吸收[23],對應(yīng)于PAN基體的碳骨架和胺化試劑DETA中的亞甲基。2 239 cm-1處尖銳的峰為—C≡N的伸縮振動吸收,與PAN納米纖維相比,D-PAN在此處的峰強(qiáng)明顯減弱,反映出少量氰基被保留,而大量氰基發(fā)生胺化反應(yīng)[24]。3 199 cm-1處較寬的峰和1 582 cm-1處尖銳的峰分別對應(yīng)于伯(仲)胺基的N—H伸縮振動和面內(nèi)彎曲振動吸收[25],1 075 cm-1處對應(yīng)于伯(仲)胺基的C—N伸縮振動[23]??梢?,DETA通過氰基的胺化反應(yīng)被成功接枝到PAN基體上。
2.3 pH值的影響
Pb(Ⅱ)初始濃度1.0 mmol/L,吸附劑濃度0.4 g/L,溫度為298 K,探究不同初始pH值(2.0、3.0、4.0、5.0)對D-PAN吸附Pb(Ⅱ)的影響,結(jié)果如圖4所示。吸附量隨著pH值升高而上升。在低pH值時,D-PAN上伯(仲)胺基發(fā)生質(zhì)子化,占用氮原子上的孤對電子,不利于Pb(Ⅱ)的吸附。隨著pH值升高,胺基去質(zhì)子化,并恢復(fù)與Pb(Ⅱ)的配位能力,因此,吸附量顯著提升[25]。
如圖5所示,D-PAN在30 min內(nèi)快速吸附,達(dá)到平衡吸附量的86.3%,120 min可達(dá)到吸附平衡,準(zhǔn)一級動力學(xué)方程對實(shí)驗(yàn)結(jié)果擬合更優(yōu)。D-PAN對溶液中Pb(Ⅱ)的快速吸附得益于內(nèi)部相互穿插的網(wǎng)絡(luò)和優(yōu)化的孔隙結(jié)構(gòu),利于吸附質(zhì)在纖維內(nèi)部的快速擴(kuò)散[16]。
2.6 常規(guī)無機(jī)離子的影響
Pb(Ⅱ)初始濃度1.0 mmol/L,分別與K+、Na+、Ca2+、Mg2+(2.5、10.0 mmol/L)共存和Pb(Ⅱ)初始濃度3.0 mg/L分別與Cl-、NO-3和SO42-(1.0 mmol/L)共存,吸附劑濃度0.4 g/L,pH=5.0,溫度為298 K,探究無機(jī)陰陽離子共存對D-PAN吸附Pb(Ⅱ)的影響,結(jié)果如圖7所示。常規(guī)陰陽離子共存均不同程度促進(jìn)了D-PAN對Pb(Ⅱ)的吸附,吸附量最高可提升95.87%(K+共存)。“鹽促”效應(yīng)的主要機(jī)制在于:1)伴隨堿(土)金屬鹽的加入,溶液中陰離子濃度增加,可以平衡D-PAN上正電荷,靜電屏蔽作用促進(jìn)D-PAN對Pb(Ⅱ)的吸附[31-33];2)根據(jù)軟硬酸堿理論,Pb(Ⅱ)為交界酸,K+、Na+、Ca2+、Mg2+為硬酸,胺基與Pb(Ⅱ)的親和力更強(qiáng)[34],堿(土)金屬陽離子無法競爭吸附位點(diǎn)。3種陰離子共存的促進(jìn)作用存在細(xì)微的差異,可能是因?yàn)镃l-與Pb(Ⅱ)發(fā)生配位作用,影響水體中Pb(Ⅱ)的形態(tài),而SO2-4的電荷數(shù)高,靜電屏蔽作用更明顯,且可能存在吸附架橋作用[35]。
2.7 再生和穩(wěn)定性能
利用0.1 mol/L的硝酸對D-PAN進(jìn)行再生,隨后進(jìn)行再吸附實(shí)驗(yàn),結(jié)果如圖8所示。4次再生利用后,D-PAN的吸附量為1.10 mmol/g,證明其具有優(yōu)良的再生和穩(wěn)定性能。
2.8 吸附機(jī)理分析
2.8.1 XPS
通過對比D-PAN吸附前后的XPS結(jié)果,探究吸附機(jī)理。對吸附后D-PAN的N1s進(jìn)行分峰擬合,出現(xiàn)氮的4個XPS特征峰,如圖9所示。其中,398.3 eV為—NH2/—NH—的結(jié)合能譜峰,相較于吸附前的398.5 eV發(fā)生了0.2 eV的負(fù)向位移,這是伯(仲)胺基中氮的孤對電子與Pb(Ⅱ)配位的結(jié)果,與DFT計(jì)算結(jié)果一致(見表5,與Pb(Ⅱ)配位后,N1、N2和N4的電荷密度均增加)。405.3 eV為硝態(tài)氮的結(jié)合能譜峰[36],證實(shí)NO-3進(jìn)入D-PAN中,隨著Pb(Ⅱ)的吸附,溶液中的NO-3也被吸附到D-PAN上以平衡電荷,與文獻(xiàn)[37]結(jié)果一致。
2.8.2 DFT計(jì)算
通過DFT計(jì)算模擬吸附過程中可能出現(xiàn)的配合物構(gòu)型[21]。如圖10所示,D-PAN中的N原子通過D-PAN-Pb1(構(gòu)型1)和D-PAN-Pb2(構(gòu)型2)兩種方式與Pb(Ⅱ)發(fā)生配位,具體計(jì)算結(jié)果見表6。配合物中Pb(Ⅱ)的電荷分別為1.298和1.164,表明吸附過程存在配體向Pb(Ⅱ)的電荷轉(zhuǎn)移[38]。構(gòu)型1中,Pb(Ⅱ)與兩個N原子發(fā)生配位,鍵長分別為2.238、2.420 。構(gòu)型2中,Pb(Ⅱ)與3個N原子配位,鍵長分別為2.314、2.433、2.409 。兩種構(gòu)型的結(jié)合能分別為-1 566.49、-1 690.83 kJ/mol,其中,構(gòu)型2的結(jié)合能更低,可能為D-PAN和Pb(Ⅱ)的主要結(jié)合模式。
3 結(jié)論
通過二乙烯三胺改性聚丙烯腈納米纖維成功制備多胺螯合納米纖維吸附劑D-PAN。pH=5.0時,2 h內(nèi)可達(dá)到Pb(Ⅱ)的吸附平衡,常溫下最大吸附量為1.73 mmol/g。無機(jī)鹽共存通過電荷屏蔽作用促進(jìn)D-PAN對Pb(Ⅱ)的吸附,具有顯著的“鹽促”效應(yīng)。經(jīng)4次再生利用后,D-PAN的吸附量仍可達(dá)1.10 mmol/g。結(jié)合XPS表征和DFT計(jì)算結(jié)果分析吸附機(jī)理可知,Pb(Ⅱ)通過與多胺基團(tuán)中N原子形成雙齒和三齒配合物,構(gòu)建穩(wěn)定螯合結(jié)構(gòu)實(shí)現(xiàn)Pb(Ⅱ)的去除。綜上所述,D-PAN具有吸附快、容量大、易再生和“鹽促”等優(yōu)點(diǎn),因而具有廣闊的應(yīng)用前景。
參考文獻(xiàn):
[1] SUN Y J, ZHOU S B, PAN S Y, et al. Performance evaluation and optimization of flocculation process for removing heavy metal [J]. Chemical Engineering Journal, 2020, 385: 123911.
[2] 韓穎. “血鉛超標(biāo)”事件追蹤[J]. 勞動保護(hù), 2011(4): 34-36.
HAN Y. The event tracking of "blood lead excess"[J]. Labour Protection, 2011(4): 34-36. (in Chinese)
[3] 吳龍貴. “吃鉛筆也超鉛”可怕在哪[J]. 環(huán)境教育, 2014(7): 30.
WU L G. The point in the phenomenon that eating pencils leads to excessive Pb [J]. Environmental Education, 2014(7): 30. (in Chinese)
[4] 葉偉雄, 葉藝娟, 黃振波, 等. 紫金縣臨江開發(fā)區(qū)1297名學(xué)生血鉛檢測結(jié)果分析[J]. 海峽預(yù)防醫(yī)學(xué)雜志, 2013, 19(3): 29-30.
YE W X, YE Y J, HUANG Z B,et al. Analysis of blood lead test results of 1297 students in Linjiang Development Zone, Zijin County [J]. Strait Journal of Preventive Medicine, 2013, 19(3): 29-30. (in Chinese)
[5] FU J J, ZHANG A Q, WANG T, et al. Influence of E-waste dismantling and its regulations: temporal trend, spatial distribution of heavy metals in rice grains, and its potential health risk [J]. Environmental Science & Technology, 2013, 47(13): 7437-7445.
[6] TURNER A. Heavy metals in the glass and enamels of consumer container bottles [J]. Environmental Science & Technology, 2019, 53(14): 8398-8404.
[7] 辛玉婷, 花月, 沈小帥, 等. 鉛蓄電池行業(yè)大氣污染物現(xiàn)行排放標(biāo)準(zhǔn)在江蘇省的適用性分析[J]. 環(huán)境科技, 2016, 29(5): 73-77.
XIN Y T, HUA Y, SHEN X S, et al. The applicability of air pollutants eemission standards for lead battery industry in Jiangsu Province [J]. Environmental Science and Technology, 2016, 29(5): 73-77. (in Chinese)
[8] 王宗爽, 徐舒, 安廣楠, 等. 鉛大氣污染物環(huán)境保護(hù)標(biāo)準(zhǔn)限值研究[J]. 環(huán)境科學(xué)學(xué)報(bào), 2019, 39(9): 3163-3170.
WANG Z S, XU S, AN G N, et al. Research on the lead limit values of environmental protection standards [J]. Acta Scientiae Circumstantiae, 2019, 39(9): 3163-3170. (in Chinese)
[9] LUO J M, SUN M, RITT C L, et al. Tuning Pb(Ⅱ) adsorption from aqueous solutions on ultrathin iron oxychloride (FeOCl) nanosheets [J]. Environmental Science & Technology, 2019, 53(4): 2075-2085.
[10] SIRVI J A, VISANKO M. Lignin-rich sulfated wood nanofibers as high-performing adsorbents for the removal of lead and copper from water [J]. Journal of Hazardous Materials, 2020, 383: 121174.
[11] NIU Z R, FENG W L, HUANG H, et al. Green synthesis of a novel Mn-Zn ferrite/biochar composite from waste batteries and pine sawdust for Pb2+ removal [J]. Chemosphere, 2020, 252: 126529.
[12] 張雪彥, 金燦, 劉貴鋒, 等. 希夫堿型木質(zhì)素基吸附材料的制備及其對Pb2+吸附性能研究[J]. 離子交換與吸附, 2017, 33(5): 403-415.
ZHANG X Y, JIN C, LIU G F, et al. Preparation of schiff base-modified-lignin adsorbent and its adsorption performance of Pb2+ [J]. Ion Exchange and Adsorption, 2017, 33(5): 403-415. (in Chinese)
[13] 蘭舫, 牛春梅, 李紹英, 等. 交聯(lián)羧甲基羅望子膠對Pb2+的吸附研究[J]. 離子交換與吸附, 2014, 30(3): 242-249.
LAN F, NIU C M, LI S Y, et al. Adsorption performance of Pb2+ by crosslinked carboxymethyl tamarind [J]. Ion Exchange and Adsorption, 2014, 30(3): 242-249. (in Chinese)
[14] MA L J, WANG Q, ISLAM S M, et al. Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS2-4 ion [J]. Journal of the American Chemical Society, 2016, 138(8): 2858-2866.
[15] XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications [J]. Chemical Reviews, 2019, 119(8): 5298-5415.
[16] QIU J L, FAN P, YUE C L, et al. Multi-networked nanofibrous aerogel supported by heterojunction photocatalysts with excellent dispersion and stability for photocatalysis [J]. Journal of Materials Chemistry A, 2019, 7(12): 7053-7064.
[17] DENG S, LIU X H, LIAO J B, et al. PEI modified multiwalled carbon nanotube as a novel additive in PAN nanofiber membrane for enhanced removal of heavy metal ions [J]. Chemical Engineering Journal, 2019, 375: 122086.
[18] WANG G, WANG J R, ZHANG H, et al. Functional PAN-based monoliths with hierarchical structure for heavy metal removal [J]. Chemical Engineering Journal, 2017, 313: 1607-1614.
[19] 徐超, 劉福強(qiáng), 巢路, 等. 新型多胺類螯合樹脂的設(shè)計(jì)、制備及其對重金屬離子吸附特性的研究[J]. 離子交換與吸附, 2013, 29(6): 481-495.
XU C, LIU F Q, CHAO L, et al. Synthesis of polyamine chelating resins and adsorption properties toward heavy metal ions from aqueous media [J]. Ion Exchange and Adsorption, 2013, 29(6): 481-495. (in Chinese)
[20] ZHOU H, ZHU H X, XUE F, et al. Cellulose-based amphoteric adsorbent for the complete removal of low-level heavy metal ions via a specialization and cooperation mechanism [J]. Chemical Engineering Journal, 2020, 385: 123879.
[21] ZOU L Z, SHAO P H, ZHANG K, et al. Tannic acid-based adsorbent with superior selectivity for lead(Ⅱ) capture: Adsorption site and selective mechanism [J]. Chemical Engineering Journal, 2019, 364: 160-166.
[22] XU X, ZHANG H J, AO J X, et al. 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater [J]. Energy & Environmental Science, 2019, 12(6): 1979-1988.
[23] NIE R F, MIAO M, DU W C, et al. Selective hydrogenation of C=C bond over N-doped reduced graphene oxides supported Pd catalyst [J]. Applied Catalysis B: Environmental, 2016, 180: 607-613.
[24] ALMASIAN A, GIAHI M, CHIZARI FARD G, et al. Removal of heavy metal ions by modified PAN/PANI-nylon core-shell nanofibers membrane: Filtration performance, antifouling and regeneration behavior [J]. Chemical Engineering Journal, 2018, 351: 1166-1178.
[25] HONG G S, LI X, SHEN L D, et al. High recovery of lead ions from aminated polyacrylonitrile nanofibrous affinity membranes with micro/nano structure [J]. Journal of Hazardous Materials, 2015, 295: 161-169.
[26] ZIMMERMANN A C, MECAB A, FAGUNDES T, et al. Adsorption of Cr(VI) using Fe-crosslinked chitosan complex (Ch-Fe) [J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 192-196.
[27] CHEN C, ZHANG M, GUAN Q X, et al. Kinetic and thermodynamic studies on the adsorption of xylenol orange onto MIL-101(Cr) [J]. Chemical Engineering Journal, 2012, 183: 60-67.
[28] HUI B, ZHANG Y, YE L. Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal [J]. Chemical Engineering Journal, 2014, 235: 207-214.
[29] SAEED K, HAIDER S, OH T J, et al. Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime)nanofibers and their applications to metal ions adsorption [J]. Journal of Membrane Science, 2008, 322(2): 400-405.
[30] ZOU M Y, ZHANG J D, CHEN J W, et al. Simulating adsorption of organic pollutants on finite (8, 0) single-walled carbon nanotubes in water [J]. Environmental Science & Technology, 2012, 46(16): 8887-8894.
[31] LI J, ZHANG S W, CHEN C L, et al. Removal of Cu(Ⅱ) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles [J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4991-5000.
[32] KOSA S A, AL-ZHRANI G, ABDEL SALAM M. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline [J]. Chemical Engineering Journal, 2012, 181/182: 159-168.
[33] HU R, WANG X K, DAI S Y, et al. Application of graphitic carbon nitride for the removal of Pb(Ⅱ) and aniline from aqueous solutions [J]. Chemical Engineering Journal, 2015, 260: 469-477.
[34] KUMAR P A, RAY M, CHAKRABORTY S. Adsorption behaviour of trivalent chromium on amine-based polymer aniline formaldehyde condensate [J]. Chemical Engineering Journal, 2009, 149(1/2/3): 340-347.
[35] BRADL H B. Adsorption of heavy metal ions on soils and soils constituents [J]. Journal of Colloid and Interface Science, 2004, 277(1): 1-18.
[36] LIU W J, ZENG F X, JIANG H, et al. Adsorption of lead (Pb) from aqueous solution with Typha angustifolia biomass modified by SOCl2 activated EDTA [J]. Chemical Engineering Journal, 2011, 170(1): 21-28.
[37] ZHU C Q, LIU F Q, XU C, et al. Enhanced removal of Cu(Ⅱ) and Ni(Ⅱ) from saline solution by novel dual-primary-amine chelating resin based on anion-synergism [J]. Journal of Hazardous Materials, 2015, 287: 234-242.
[38] ZHU S, ASIM KHAN M, WANG F Y, et al. Rapid removal of toxic metals Cu2+ and Pb2+ by amino trimethylene phosphonic acid intercalated layered double hydroxide: A combined experimental and DFT study [J]. Chemical Engineering Journal, 2020, 392: 123711.
(編輯 胡玲)