朱俊杰 王天順 牙禹 范業(yè)賡 廖潔 閆飛燕
摘要:【目的】探討冬季低溫環(huán)境下萵筍葉片花青素積累對光合作用的影響及作用機(jī)理,以期為萵筍栽培和品種選育提供參考依據(jù)?!痉椒ā糠謩e于常溫季(10月中旬)、冬季低溫初期(11月底—12月初)、中期(翌年1月中旬)和末期(翌年2月上旬)在廣西大學(xué)試驗(yàn)基地活體監(jiān)測萵筍葉片葉綠素?zé)晒夂凸夂蠚怏w交換特性,采用分光光度法測定過氧化氫(H2O2)濃度、超氧化物歧化酶(SOD)、過氧化物酶(POD)、過氧化氫酶(CAT)活性和花青素含量?!窘Y(jié)果】與常溫季相比,低溫初期葉片凌晨最大光化學(xué)效率值(Fv/Fm)略降,基底熒光(Fo)略增,相對電子傳遞速率(ETR)下降8.9%,光化學(xué)耗散(qP)、光化學(xué)途徑能耗效率占比[Y(Ⅱ)]和穩(wěn)態(tài)凈光合速率(Pn)略降,最大凈光合速率(Pmax)則下降3.59 ?mol/(m2·s);SOD和POD活性分別增加5倍和1倍,CAT活性降低31%;H2O2和花青素含量分別增加81%和9倍。到低溫中期時,F(xiàn)v/Fm升至0.85,F(xiàn)o、ETR、Y(II)、Pn和Pmax回升至略高于常溫季水平;SOD和CAT活性較初期增加1倍;H2O2含量略降,花青素含量增至初期的7倍。末期天氣轉(zhuǎn)暖時,F(xiàn)v/Fm降至0.77,F(xiàn)o上升到接近0.10的峰值,組成型能量耗散率[Y(NO)]占比高達(dá)34%,ETR、Pn和Pmax比中期分別降低22%、28%和33%;盡管SOD、POD和CAT活性在中期的基礎(chǔ)上分別增加178%、28%和36%,而H2O2含量依然劇增1.36倍;花青素含量上翻了3倍。相關(guān)分析的結(jié)果表明,花青素含量、SOD活性和H2O2含量兩兩間呈顯著正相關(guān)(P<0.05),而花青素、H2O2含量和光合速率之間相關(guān)性均不顯著(P>0.05),光合速率是多因素綜合作用的結(jié)果?!窘Y(jié)論】與單獨(dú)低溫作用相比,低溫和強(qiáng)光共同作用下萵筍葉片合成更多花青素,通過增加葉片溫度、調(diào)節(jié)葉片能量平衡及與抗氧化系統(tǒng)共同作用等方式起光保護(hù)作用,為低溫下光合機(jī)構(gòu)功能維持及良性運(yùn)轉(zhuǎn)提供支撐。
關(guān)鍵詞: 萵筍葉片;低溫;光抑制;光誘導(dǎo);花青素;葉綠素?zé)晒馓匦?/p>
中圖分類號: S636.2? ? ? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼: A 文章編號:2095-1191(2021)01-0180-09
Abstract:【Objective】To investigate the effects of anthocyanin accumulation on photosynthesis and its mechanism in the asparagus lettuce leaves at low temperature in winter, and provide reference basis for asparagus lettuce cultivation and breeding. 【Method】The seedlings grown in the experimental field in Guangxi University were taken as test materials, and the chlorophyll fluorescence, photosynthetic gas exchange characteristics were measured on the living plants in the field at the normal temperature season(middle October), the early chill season(late November-early December), middle chill season(middle January in next year) and late chill season(early February in next year) in winter respectively, and then, the sample leaves were taken back to laboratory. Hydrogen peroxide(H2O2) concentration, superoxide dismutase(SOD), peroxidase(POD) and catalase(CAT) activities and anthocyanin contents were determined by spectrophotometry in those leaves. 【Result】Compared with the normal temperature season, predawn maximal photochemical efficiency of PSⅡ(Fv/Fm) value in asparagus lettuce leaves decreased, and the ground fluorescence(Fo) value increased slightly at the early-chill season. At the same time, the apparent photosynthetic electron transport rate(ETR) value decreased by 8.9%, and the photochemical quenching coefficient(qP), actual PSII photochemical efficiency[Y(Ⅱ)], stable net photosynthetic rate(Pn) values were decreased slightly, and the maxim photosynthesis rate(Pmax) decreased by 3.59 ?mol/(m2·s). SOD and POD activity increased by 5 times and once respectively, yet CAT activity decreased by 31%. H2O2 and anthocyanin contents increased by 81% and 9 times respectively at this period. During the middle chill season, Fv/Fm value increased to 0.85, Fo, ETR, Y(II), Pn and Pmax values also increased to be slightly higher than that at the normal temperature season. SOD and CAT activities increased by one time, and H2O2 content was slightly decreased, however, anthocyanin contents raised by 7 times compared with early stage. At the end of the chill season, with the warming up of the weather, Fv/Fm value decreased to 0.77. Both Fo (0.1) and the non-regulatory energy dissipation Y(NO)(34%) value raised to the highest level. The values of ETR, Pn and Pmax decreased by 22%,28% and 33%. Although SOD, POD and CAT activity increased by 178%, 28% and 36%, H2O2 concentration increased by 1.36 times of that at the middle chill season. Anthocyanin concentration also increased by 3 times of that at the middle chill season. Across the normal and the chill season, anthocyanin contents had significant positive correlation with H2O2 concentrations,and H2O2 concentrations had positive correlation with SOD activities(P<0.05). Moreover, there were no significant positive correlations between Pn values and anthocyanin contents and H2O2 concentrations(P>0.05). Pn was affected by multiple factors. 【Conclusion】The combined effects of low temperature with strong light synthetize more anthocyanin in asparagus lettuce leaves compared with low temperature alone. It maintains the photosynthetic apparatus running in its right track through increasing leaf temperature, regulating energy balance and increasing antioxidant ability under the chilling stress, which provides support for maintenance and functio-ning of photosynthetic apparatus under low temperature.
Key words: asparagus lettuce leaves; low temperature; photoinhibition; photoinduction; anthocyanin; chlorophyll fluorescence characteristics
Foundation item: National Natural Science Foundation of China(31860109)
0 引言
【研究意義】萵筍(Lactuca sativa L.)是一年或二年生的菊科萵苣屬(Lactuca L.)植物,別稱萵苣、萵苣筍、香筍等(袁慶軍和楊昌煦,2002),其組織含有豐富的蛋白質(zhì)、脂類物質(zhì)、碳水化合物、維生素(如尼克酸)和礦質(zhì)元素(如鐵、鋅)等多種營養(yǎng)成分(高天啟,2018),同時還具有良好的保健功效,對改善糖代謝、鎮(zhèn)痛及刺激消化、分解亞硝胺等有良好的作用(戴國輝等,2008)。萵筍廣布于我國31個?。ㄊ小⒆灾螀^(qū)),是各地菜市的保障性蔬菜。南方地區(qū)萵筍常常在11月—次年4月(尤其是春節(jié)前后)大量上市,而這段時期的低溫天氣對其品質(zhì)有較大負(fù)面影響?;ㄇ嗨厥穷慄S酮類的天然植物色素,常常在逆境條件下以碳水化合物為底物應(yīng)急合成,對植物起光保護(hù)作用(Steyn et al.,2002)。研究低溫條件下花青素對萵筍的光保護(hù)效果和作用機(jī)理,可為萵筍低溫栽培管理和抗低溫育種提供理論依據(jù)?!厩叭搜芯窟M(jìn)展】1999年,Smillie和Hetherington首次充分論證了花青素的光保護(hù)功能,此后多學(xué)科(如化學(xué)、農(nóng)學(xué)、環(huán)境科學(xué))研究者紛紛加入花青素光保護(hù)研究陣營(Steyn et al.,2002;Agati and Tattini,2010)。Zhang等(2010)研究得出,植物組織表層的花青素可以反射部分光能,減輕強(qiáng)光對植物葉片的傷害。Hughes(2011)研究發(fā)現(xiàn),葉片表皮的花青素可以屏蔽部分過剩光能,從而對葉片內(nèi)部組織起光保護(hù)作用。此外,有報(bào)道證實(shí)花青素可以有效清除葉片自由基,起抗氧化保護(hù)作用(Agati and Tattini,2010)。近年來,有報(bào)道逆境(如低溫)條件下花青素對氮素的調(diào)節(jié)和再分配作用(Tanaka et al.,2014)。隨著研究對象的擴(kuò)展,研究結(jié)果表明部分植物葉片表層的花青素雖然可以吸收一定波長的自然光,主要是紅光(Hughes et al.,2007;An et al.,2020),但花青素吸收和反射的光量占植物葉片總吸收光量的比例很?。℅ould et al.,1995;Pietrini et al.,2002),光保護(hù)作用有限?;ㄇ嗨氐墓獗Wo(hù)機(jī)制有待在更多的植物和更廣泛的環(huán)境條件下展開更深入的研究?!颈狙芯壳腥朦c(diǎn)】本課題組已經(jīng)在多種植物中研究了花青素的生物學(xué)功能,了解到部分萵筍品種在低溫期間更易于合成花青素,而花青素對萵筍光合作用的影響目前鮮有報(bào)道,其作用機(jī)制更不清楚?!緮M解決的關(guān)鍵問題】以大田種植的萵筍為材料,從低溫來臨前的常溫季節(jié)至低溫天氣結(jié)束開始轉(zhuǎn)暖止,連續(xù)監(jiān)測葉片光合特性、花青素含量及關(guān)鍵抗氧化物質(zhì)的變化動態(tài),分析其相互關(guān)系,揭示低溫下花青素積累對萵筍光合特性的影響及其作用機(jī)理,為萵筍生產(chǎn)提供理論參考。
1 材料與方法
1. 1 試驗(yàn)設(shè)計(jì)
將33 g市售萵筍種子平均分成3份,于2019年8月1日播種于廣西大學(xué)試驗(yàn)基地3個小地塊中,每地塊3.3 m2。間苗定苗后,每一地塊保留40株以上,按尿素225 kg/ha、硝酸鉀300 kg/ha追肥一次,常規(guī)管理。分別于2019年的10月10—12日(常溫季)、1月29日—12月1日(低溫初期)及2020年的1月10—12日(低溫中期)、2月7—10日(低溫末期)監(jiān)測葉片光合參數(shù),并取樣測定生理指標(biāo)。
1. 2 試驗(yàn)溫度和光照條件
如表1所示,常溫季白天氣溫28.0 ℃左右,葉溫較之高出3.0 ℃左右。晝夜溫差較大,夜溫比白天低7.0 ℃左右;至低溫初期,晝夜溫度比常溫季下降近一半,溫差縮小,葉溫比氣溫高3.5 ℃左右;低溫中期,晝夜溫度比低溫初期各自下降近5.0 ℃,但葉溫只降了2.5 ℃左右;低溫末期,白天氣溫回升到近低溫初期水平,而夜溫比初期高了1.0 ℃,葉溫比初期也增加1.0 ℃。常溫季光量子通量密度(PPFD)最高,接近2000.0 ?mol/(m2·s);低溫初期顯著下降至1800.0 ?mol/(m2·s)左右(P<0.05,下同);低溫中期最低,低溫末期則大幅顯著回升,介于常溫季和低溫初期之間。
1. 3 指標(biāo)測定及方法
1. 3. 1 葉片葉綠素?zé)晒鈪?shù)測定 各地塊選取無明顯病蟲害、長勢中等的萵筍各4株,再從每株莖桿中上部選出3~4片健康葉掛牌標(biāo)記。于凌晨天亮前,用調(diào)制葉綠素?zé)晒獬上裣到y(tǒng)儀IMAGING-PAM MINI-版(Walz公司,德國)監(jiān)測基底熒光(Fo)和最大熒光(Fm),儀器自動計(jì)算最大光化學(xué)效率值(Fv/Fm);稍停片刻測定葉片吸光系數(shù)(Abs),用于后續(xù)計(jì)算相對電子傳遞速率(ETR);然后用250 ?mol/(m2·s)活化藍(lán)光誘導(dǎo)4.5 min,記錄光化學(xué)能量耗散參數(shù)穩(wěn)態(tài)熒光值(Ft)、光化學(xué)耗散(qP)、非光化學(xué)耗散(qN)、ETR、熱耗散(NPQ)、光化學(xué)途徑耗能率[Y(Ⅱ)]、非光化學(xué)途徑耗能率[Y(NPQ)]和組成型能量耗散率[Y(NO)]等熒光參數(shù)值。最后測定ETR和NPQ的光響應(yīng)曲線,設(shè)1500、1000、800、400、300、200、130、70、40、20和0 ?mol/(m2·s) 11個光梯度,每梯度持續(xù)3 min。
1. 3. 2 光合氣體交換參數(shù)的測定 測完熒光參數(shù)后,用鋁箔將標(biāo)記葉片套上暗置30 min,用兩臺LI-6400XT光合系統(tǒng)測定儀(Licor公司,美國)測定標(biāo)記葉片的光誘導(dǎo)參數(shù)和光響應(yīng)曲線。每5 s記錄一個數(shù)據(jù),直至凈光合速率(Pn)達(dá)到穩(wěn)態(tài),誘導(dǎo)結(jié)束后再啟動光響應(yīng)曲線測定程序,設(shè)置1500、1000、800、500、300、200、100、80、40、20和0 ?mol/(m2·s)共12個光強(qiáng)(PPFD)梯度,每梯度至少維持3 min,光響應(yīng)曲線特征參數(shù)用直角雙曲線修正模型擬合,得到最大凈光合速率(Pmax)、光飽和點(diǎn)、光補(bǔ)償點(diǎn)、量子效率和光下暗呼吸速率(Rd)等參數(shù)。
2. 4 萵筍葉片不同生長時段花青素含量、H2O2含量、抗氧化酶活性變化及其相關(guān)性分析
常溫季萵筍葉片花青素含量極微,低溫初期增加9倍,但絕對量依然較低,在低溫中期大幅提升,低溫末期再次急劇增加,為低溫中期的3倍,低溫初期的21倍(圖6-A)。表明花青素的積累不僅受溫度的影響,光照可能也是一個重要因素(表1)。
常溫季萵筍葉片含有少量H2O2(6.8 ?mol/gFW),低溫初期增加81%,為12.3 ?mol/gFW,低溫中期降至9.9 ?mol/gFW,低溫末期又急劇增加至23.4 ?mol/gFW,比中期增加1.36倍(圖6-D)。顯然,H2O2含量的變化季節(jié)間比較復(fù)雜。
抗氧化酶不同生長時期的變化狀況如圖6-D~圖6-F,超氧化物歧化酶(SOD)活性隨著季節(jié)的推移不斷增加,低溫初期比常溫季增加5倍,中期在初期的基礎(chǔ)上又翻了1倍,低溫末期在中期的基礎(chǔ)上再增加178%,該結(jié)果表明SOD一直處于預(yù)警狀態(tài),對環(huán)境變化十分敏感。過氧化物酶(POD)活性變化趨勢與SOD相似,低溫初期比常溫季增加1倍,但低溫中期比初期只是略微增加,而低溫末期在中期基礎(chǔ)上增加28%。過氧化氫酶(CAT)活性變化與前2種酶有所不同,低溫初期活性比常溫季反而下降31%,但隨后迅速增加,低溫末期比中期增加36%。不同時段SOD、POD和CAT 3種酶活性的變化并非同向,可能不同抗氧化酶交替起保護(hù)作用。
貫通整個測定時期,3類抗氧化酶中只有SOD活性和H2O2含量呈顯著的正相關(guān)關(guān)系,POD和CAT雖然是直接清除H2O2的抗氧化酶,但其活性與H2O2含量卻無顯著相關(guān)性(圖6-D~圖6-F),表明一些非酶類活性氧清除物質(zhì)如花青素等也在起作用。進(jìn)一步分析花青素含量和H2O2含量的相關(guān)性,兩者間呈顯著的線性正相關(guān)關(guān)系(圖6-G),從側(cè)面證實(shí)花青素參與了H2O2的清除活動。
2. 5 萵筍葉片不同生長時段花青素含量和Pmax的關(guān)系
如圖7-A和圖7-B所示,跨越整個測定時期,萵筍葉片花青素含量和Pmax、穩(wěn)態(tài)Pn間均無顯著相關(guān)性,表明花青素含量和Pn間并非單一的同向變化。如前文所述,低溫中期適當(dāng)濃度的花青素對Pn是正效應(yīng),但低溫即將結(jié)束轉(zhuǎn)暖時期,高濃度花青素對Pn是負(fù)效應(yīng)。此外,Pn除受溫度和光照等環(huán)境因子直接影響外,還受葉綠體內(nèi)活性氧(ROS,主要是H2O2)濃度、花青素濃度等影響。從統(tǒng)計(jì)分析的結(jié)果看,Pn和H2O2兩者間也無顯著相關(guān)性(圖7-C)。因此,自然條件下,萵筍葉片光合速率是多因子綜合作用的結(jié)果。
3 討論
15 ℃及以下低溫對一些熱起源植物的生理活動已經(jīng)有明顯影響(Demmig-Adams and Adams,2018),而萵筍這類非熱起源植物則相對耐寒,整個冬季光合作用表現(xiàn)較好。植物凌晨Fv/Fm是反映植物耐受逆境脅迫的重要指標(biāo),已廣泛用于植物對低溫、干旱及重金屬污染等脅迫響應(yīng)的研究之中,同時,其也是衡量植物遭受光抑制程度的重要指標(biāo),數(shù)十種健康陸生微管植物監(jiān)測表明,凌晨Fv/Fm為0.832±0.004(Demmig-Adams and Adams,2018)。低溫初期萵筍葉受到輕微的低溫脅迫,低溫中期反而比常溫季表現(xiàn)更良好,而低溫末期氣溫轉(zhuǎn)暖時則瀕臨光抑制。萵筍葉內(nèi)花青素的積累及與抗氧化系統(tǒng)的共同起作用,維持和保障了光合機(jī)構(gòu)的正常運(yùn)轉(zhuǎn)。
3. 1 低溫初、中期花青素合成對萵筍光合的影響及機(jī)制解析
與常溫季相比,低溫初期凌晨Fv/Fm略下降,而Fo增加,表明低溫(可能還有光照的協(xié)同作用)對光合機(jī)構(gòu)確實(shí)產(chǎn)生了一定的負(fù)面影響。此時,葉內(nèi)合成了少量的花青素。有研究者指出,花青素的合成通常是植物對逆境脅迫的一種應(yīng)激性響應(yīng),尤其是初春、初秋和初冬以及天氣劇烈變動的時候(Steyn et al.,2002)。隨著氣溫進(jìn)一步下降,萵筍的光合效率并沒有相應(yīng)降低,反而表現(xiàn)更好,有些指標(biāo)甚至超過了常溫季,這種現(xiàn)象與冬小麥等其他耐冷植物類似(Savitch et al.,2002)。對此現(xiàn)象可多個角度理解:(1)溫度雖然進(jìn)一步下降,但降幅不是很大(5 ℃左右)。(2)花青素含量增加和與之相關(guān)聯(lián)的抗氧化酶活性的增加起到光保護(hù)作用。植物花青素的低溫光保護(hù)功能可以通過多種機(jī)制實(shí)現(xiàn)(Meng et al.,2014),其吸收光譜和葉綠素(尤其是葉綠素b)吸收光譜有部分重疊(Gitelson et al.,2001),并且大部分花青素分布在葉片表面(Steyn et al.,2002),太陽光到達(dá)葉綠體以前,被這些花青素吸收一部分,間接保護(hù)了低溫(尤其是和強(qiáng)光同時脅迫)下的葉綠體。由于花青素不會覆蓋氣孔,光合氣體交換能力并沒有受到影響。同時,由于花青素濃度不高,吸收部分光能對光合碳同化影響不大。(3)花青素實(shí)際上還有增加葉片溫度的作用(Hughes,2011),從6400-xt光合儀上可以清晰地看到,與低溫初期相比,雖然低溫中期氣溫明顯下降了5 ℃左右,但葉片溫度僅下降2 ℃左右。(4)受花青素和抗氧化物質(zhì)影響,葉片光合碳同化能力增強(qiáng),也消耗了葉綠體內(nèi)部分光能,這可以從葉綠素?zé)晒獗O(jiān)測結(jié)果找到證據(jù),光化學(xué)途徑耗能在這一個時期占到最大比重。(5)萵筍葉片關(guān)鍵抗氧化酶SOD活性顯著增強(qiáng),該酶是植物抗氧化系統(tǒng)主體水—水循環(huán)的第一道防線,可清除葉綠體內(nèi)過多的超氧陰離子(O[-2]·),避免了ROS連環(huán)反應(yīng)引發(fā)的細(xì)胞毒害(Majumdar and Kar,2018)。SOD作為抗氧化系統(tǒng)的預(yù)警者,與花青素協(xié)同變化,為這段時期光合機(jī)構(gòu)的良好運(yùn)轉(zhuǎn)提供了支撐。
3. 2 低溫末期氣溫由冷轉(zhuǎn)暖之際,花青素合成對萵筍光合的影響及機(jī)制解析
低溫末期天氣由冷轉(zhuǎn)暖時刻對植物逆境抵御尤為關(guān)鍵,除了低溫脅迫外,光照的急劇增加也是一個重要因素,低溫和強(qiáng)光結(jié)合,其危害遠(yuǎn)比單一低溫強(qiáng)烈(Demmig-Adams and Adams,2018),根本原因在于兩者結(jié)合改變了葉片的能量平衡。南方地區(qū)大量研究和生產(chǎn)實(shí)踐表明,一些冷敏感或者耐冷植物,在低溫期間沒有表現(xiàn)出明顯的寒(冷)害,但是低溫結(jié)束轉(zhuǎn)暖時,受害癥狀就突現(xiàn)出來(如有些萵筍品種出現(xiàn)部分葉片邊緣或上半部分發(fā)黑干枯現(xiàn)象),部分植物更甚直接枯萎死亡。植物長時間與低溫抗?fàn)?,通過細(xì)胞內(nèi)部結(jié)構(gòu)和生理代謝,已逐漸適應(yīng)了低溫環(huán)境,而氣溫忽然轉(zhuǎn)暖,太陽輻射大幅增加,細(xì)胞代謝來不及調(diào)整,原生質(zhì)體內(nèi)尤其是葉綠體內(nèi)能量驟然增加,導(dǎo)致ROS濃度大幅上升,如果葉綠體不能及時將這些剩余自由能耗散掉,并及時將ROS清除,細(xì)胞將面臨死亡的危險(xiǎn)(Demmig-Adams and Adams,2018)。低溫末期,H2O2含量劇增至最高,F(xiàn)o升到峰值,F(xiàn)v/Fm降至最低,Pmax和Pn大幅下降,葉綠體瀕臨光抑制。從能量消耗的角度分析,Y(Ⅱ)較前2個時期明顯下降,Y(NO)則明顯增加,表明葉綠體確實(shí)有一個結(jié)構(gòu)和功能的調(diào)整過程。葉綠體是半自主的細(xì)胞器,與細(xì)胞核有密切的信號和物質(zhì)交流,尤其在脅迫條件下(Schnettger et al.,2010)。該階段花青素含量增加到最高值,除了在葉片表面形成一道光屏蔽體外,還可起到反光(van den Berg et al.,2009)、滲透調(diào)節(jié)(Chen et al.,2015)和直接清除ROS(Hughes et al.,2007)等功能?;ㄇ嗨丶扒绑w物質(zhì)清除ROS的能力比抗壞血酸等抗氧化物質(zhì)強(qiáng)至少4倍以上(Hughes et al.,2007;Attanayake et al.,2019)。雖然這段時期所有抗氧化酶活性都達(dá)到最高值,H2O2含量依然居高不下,花青素含量增加極可能也是葉片抗氧化需求告急的結(jié)果。此外,逆境下植物花青素的積累常和細(xì)胞內(nèi)其他物質(zhì)代謝,如激素代謝(Loreti et al.,2008)、抗氧化物質(zhì)代謝(Page et al.,2012;Zhu et al.,2013;Attanayake et al.,2019)、糖代謝(花青素的合成底物源頭是糖類物質(zhì))(Lin et al.,2018)以及一些次生物質(zhì)代謝(Irshad et al.,2018)交織在一起。本研究中花青素含量和抗氧化系統(tǒng)預(yù)警者SOD的協(xié)同變化從側(cè)面反映出花青素的多重作用。
4 結(jié)論
在廣西南寧的自然條件下,單一低溫對萵筍光合作用影響輕微,但低溫和強(qiáng)光共同作用時,萵筍的光合作用受到較大沖擊,表現(xiàn)出明顯的光抑制效應(yīng)。花青素的增溫、增強(qiáng)抗氧化能力和調(diào)節(jié)葉片光能分配及與之伴隨的抗氧化系統(tǒng)活性上調(diào)等機(jī)制保障了光合機(jī)構(gòu)在低溫季的正常運(yùn)轉(zhuǎn)。
參考文獻(xiàn):
戴國輝,孫志棟,吳海軍,陳惠云,俞靜芬. 2008. 萵筍的營養(yǎng)保健價值及其加工開發(fā)[J]. 農(nóng)產(chǎn)品加工·學(xué)刊,(11): 43-46. [Dai G H,Sun Z D,Wu H J,Chen H Y,Yu J F. 2008. Nutrition health care value and processing development on lettuce[J]. Academic Periodical of Farm Products Processing,(11): 43-46.]
高天啟. 2018. 天祝縣無公害萵筍優(yōu)質(zhì)高產(chǎn)栽培技術(shù)[J]. 甘肅科技縱橫,47(11): 20-22. [Gao T Q. 2018. Study on high quality and yield pollution free lettuce cultivation technique in Tianzhu[J]. Scientific & Technical Information of Gansu,47(11): 20-22.]
袁慶軍,楊昌煦. 2002. 四川萵苣屬及近緣屬10種植物的核型研究[J]. 西南農(nóng)業(yè)大學(xué)學(xué)報(bào),24(1): 30-33. [Yuan Q J,Yang C X. 2002. Karyotypes of 10 species of Lactuca and its allied genera in Sichuan[J]. Journal of Southwest Agricultural University,24(1): 30-33.]
Agati G,Tattini M. 2010. Multiple functional roles of flavonoids in photoprotection[J]. New Phytologist,186(4): 786-793.
An J P,Zhang X W,Bi S Q,You C X,Wang X F,Hao Y J. 2020. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple[J]. The Plant Journal. doi:10.1111/tpj.14555.
Attanayake R,Rajapaksha R,Weerakkody P,Bandaranayake P C G. 2019. The effect of maturity status on biochemical composition,antioxidant activity,and anthocyanin biosynthesis gene expression in a pomegranate(Punica granatum L.) cultivar with red flowers,yellow peel,and pinkish arils[J]. Journal of Plant Growth Regulation,38: 992-1006.
Chen Z H,Hu L Z,Han N,Hu J Q,Yang Y J,Xiang T H,Zhang X J,Wang L L. 2015. Overexpression of a miR393-resistant form of transport inhibitor response protein 1(mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana[J]. Plant and Cell Physiology,56(1): 73-83.
Demmig-Adams B,Adams W W. 2018. An integrative approach to photoinhibition and photoprotection of photosynthesis[J]. Environmental and Experimental Botany,154: 1-3.
Gitelson A A,Merzlyak M N,Chivkunova O B. 2001. Optical properties and nondestructive estimation of anthocyanin content in plant leaves[J]. Photochemistry and Photobiology,74(1): 38-45.
Gould K S,Kuhn D N,Lee D W,Oberbauer S F. 1995. Why leaves are sometimes red[J]. Nature,378: 241-242.
Hughes N M,Morley C B,Smith W K. 2007. Coordination of anthocyanin decline and photosynthetic maturation in juvenile leaves of three deciduous tree species[J]. The New Phytologist,175: 675-685.
Hughes N M. 2011. Winter leaf reddening in ‘evergreen species[J]. New Phytologist,190(3): 573-581.
Irshad M,Debnath B,Mitra S,Arafat Y,Li M,Sun Y T,Qiu D L. 2018. Accumulation of anthocyanin in callus cultures of red-pod okra[Abelmoschus esculentus(L.) Hongjiao] in response to light and nitrogen levels[J]. Plant Cell,Tissue and Organ Culture,134(1): 29-39.
Lin Y,Wang Y H,Li B,Tan H,Li D N,Li L,Liu X,Han J C,Meng X J. 2018. Comparative transcriptome analysis of genes involved in anthocyanin synthesis in blueberry[J]. Plant Physiology and Biochemistry,127: 561-572.
Loreti E,Povero G,Novi G,Solfanelli C,Alpi A,Perata P. 2008. Gibberellins,jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis[J]. The New Phytologist,179(4): 1004-1016.
Majumdar A,Kar R K. 2018. Orchestration of Cu-Zn SOD and class III peroxidase with upstream interplay between NADPH oxidase and PM H+-ATPase mediates root growth in Vigna radiata(L.) Wilczek[J]. Journal of Plant Physio-logy,232:248-256.
Meng X,Yin B,F(xiàn)eng H L,Zhang S,Liang X Q,Meng Q W. 2014. Overexpression of R2R3-MYB gene leads to accumulation of anthocyanin and enhanced resistance to chil-ling and oxidative stress[J]. Biologia Plantarum,58(1): 121-130.
Murray J R,Hackett W P. 1991. Dihydroflavonol reductase activity in relation to differential anthocyanin accumulation in juvenile and mature phase Hedera helix L.[J]. Plant Physiology,97: 343-351.
Page M,Sultana N,Paszkiewicz K,F(xiàn)lorance H,Smirnoff N. 2012. The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thalia-na: Further evidence for redox control of anthocyanin synthesis[J]. Plant,Cell & Environment,35(2): 388-404.
Pietrini F,Iannelli M A,Massacci A. 2002. Anthocyanin accumulation in the illuminated surface of maize leaves enhances protection from photo-inhibitory risks at low temperature,without further limitation to photosynthesis[J]. Plant,Cell & Environment,25(10): 1251-1259.
Savitch L V,Leonardos E D,Krol M,Jansson S,Grodzinski B,Huner N P A,?quist G. 2002. Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation[J]. Plant,Cell & Environment,25(6): 761-771.
Schnettger B,Critchley C,Santore U J,Graf M,Krause G H. 2010. Relationship between photoinhibition of photosynthesis,D1 protein turnover and chloroplast structure: Effects of protein synthesis inhibitors[J]. Plant,Cell & Environment,17(1): 55-64.
Smillie R M,Hetherington S E. 1999. Photoabatement by anthocyanin shields photosynthetic systems from light stress[J]. Photosynthetica,36(3):451-463.
Steyn W J,Wand S J E,Holcroft D M,Jacobs G. 2002. Anthocyanins in vegetative tissues: A proposed unified function in photoprotection[J]. New Phytologist. doi:10. 1046/j.1469-8137.2002.00482.x.
Tanaka S,Brefort T,Neidig N,Djamei A,Kahnt J,Vermerris W,Koenig S,F(xiàn)eussner K,F(xiàn)eussner I,Kahmann R. 2014. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize[J]. eLife,3: e01355. doi:10.7554/eLife.0135.
van den Berg A K,Vogelmann T C,Perkins T D. 2009. Anthocyanin influence on light absorption within juvenile and senescing sugar maple leaves—Do anthocyanins function as photoprotective visible light screens?[J]. Functional Plant Biology. doi: 10.1071/FP09030.
Zhang K M,Yu H J,Shi K,Zhou Y H,Yu J Q,Xia X J. 2010. Photoprotective roles of anthocyanins in Begonia semperflorens[J]. Plant Science,179: 202-208.
Zhu J J,Li Y R,Liao J X. 2013. Involvement of anthocyanins in the resistance to chilling-induced oxidative stress in Saccharum officinarum L. leaves[J]. Plant Physiology and Biochemistry,73: 427-433.
(責(zé)任編輯 鄧慧靈)