劉彩霞 鄧常清
〔摘要〕 動(dòng)脈粥樣硬化、冠心病等心血管疾病的病理生理基礎(chǔ)是病理性血管重構(gòu),而血管內(nèi)皮細(xì)胞(vascular endothelial cell, VEC)功能障礙是病理性血管重構(gòu)的始動(dòng)環(huán)節(jié)。VEC是錨定在基底層、與血液成分和細(xì)胞直接接觸的單層細(xì)胞,是氧化應(yīng)激、活性氧及其相關(guān)信號(hào)通路的作用靶點(diǎn)。近年來,中藥在治療心血管疾病方面卓有成效,許多中藥復(fù)方、中藥提取物可通過抗氧化作用保護(hù)VEC,調(diào)節(jié)心血管疾病的發(fā)生發(fā)展。本文對(duì)近年來中藥及復(fù)方改善VEC氧化應(yīng)激損傷的作用及其相關(guān)機(jī)制的研究進(jìn)行總結(jié),為推動(dòng)其抗氧化研究及應(yīng)用提供參考。
〔關(guān)鍵詞〕 血管內(nèi)皮細(xì)胞;氧化應(yīng)激;心血管疾病;中醫(yī)藥
〔中圖分類號(hào)〕R285? ? ? ? 〔文獻(xiàn)標(biāo)志碼〕A? ? ? ?〔文章編號(hào)〕doi:10.3969/j.issn.1674-070X.2021.01.029
〔Abstract〕 Pathological vascular remodeling (PVR) is the pathophysiological basis of cardiovascular diseases such as atherosclerosis and coronary heart disease, The initial link of PVR is vascular endothelial cell (VEC) dysfunction. VEC is monolayer endothelial cell, which is anchored in the basal layer and direct contact with components and cells from blood, as the targets of oxidative stress, reactive oxygen species and their related signaling pathways. In recent years, traditional Chinese medicine (TCM) has made great achievements in the treatment of cardiovascular diseases. Many compound prescriptions and the bioactive ingredients of TCM can protect VEC by antioxidant effects, and regulate the occurrence and development of cardiovascular diseases. In this paper, we summarized the researches on the effects of TCM and compound prescriptions on VEC oxidative stress injury and its related mechanisms in recent years, and provided a reference for promoting its antioxidant research and application.
〔Keywords〕 vascular endothelial cell; oxidative stress; cardiovascular diseases; traditional Chinese medicine
動(dòng)脈粥樣硬化(atherosclerosis, AS)、冠心病等心血管疾病是人類主要的死亡原因之一,雖然心血管疾病病因不同,但病理性血管重構(gòu)是其共同的病理生理基礎(chǔ),其中一個(gè)重要的病理機(jī)制是氧化應(yīng)激(oxidative stress, OS)[1]。OS是由活性氧(reactive oxygen species, ROS)過度生成及其消除不平衡引起,反過來OS也可進(jìn)一步引發(fā)ROS的代謝失衡,導(dǎo)致ROS累積,通過直接氧化細(xì)胞蛋白、脂質(zhì)和DNA或通過死亡信號(hào)通路而引起細(xì)胞損傷,導(dǎo)致內(nèi)皮完整性喪失、屏障功能障礙、血管舒縮調(diào)節(jié)異常、血流動(dòng)力學(xué)改變,引發(fā)心血管事件[2]。血管內(nèi)皮細(xì)胞(vascular endothelium cell, VEC)是錨定在基底層的單層內(nèi)皮細(xì)胞,構(gòu)成動(dòng)脈、靜脈和毛細(xì)血管管壁的最內(nèi)層結(jié)構(gòu),與血液成分和細(xì)胞直接接觸[3],具有維持內(nèi)環(huán)境穩(wěn)態(tài)、營(yíng)養(yǎng)交換、宿主防御反應(yīng)和血管舒張等多種功能[4],是ROS及其相關(guān)信號(hào)通路的作用靶點(diǎn)。因此,作為心血管疾病發(fā)生發(fā)展的關(guān)鍵環(huán)節(jié),對(duì)OS依賴性內(nèi)皮功能障礙進(jìn)行干預(yù)是改善心血管疾病預(yù)后的一個(gè)重要靶點(diǎn)。
中藥(traditional Chinese medicine, TCM)在我國(guó)已經(jīng)使用了幾千年,在治療心血管疾病方面[5]卓有成效?,F(xiàn)代藥理研究表明,許多中藥復(fù)方、單味中藥、中藥提取物可通過抗氧化保護(hù)心血管,降低冠心病、AS等的發(fā)病風(fēng)險(xiǎn)[6-7]。此類心血管疾病的病理基礎(chǔ)是血管重構(gòu),而血管重構(gòu)的發(fā)生與VEC的OS密不可分,因此,本文對(duì)TCM在VEC氧化應(yīng)激損傷(oxidative stress injury, OSI)方面的保護(hù)作用及相關(guān)機(jī)制進(jìn)行綜述。
1 VEC氧化應(yīng)激損傷的相關(guān)信號(hào)通路
細(xì)胞內(nèi)的抗氧化系統(tǒng)主要包括超氧化物歧化酶(superoxide dismutase, SOD)、過氧化氫酶(catalase, CAT)和谷胱甘肽過氧化物酶(glutathione peroxidase, GSH-PX)等,還有許多重要的小分子抗氧化劑,如β-胡蘿卜素、抗壞血酸、α-生育酚、還原型谷胱甘肽(reduced glutathione, GSH)等[8-9]。多條信號(hào)通路參與細(xì)胞OSI的調(diào)節(jié),其中包括核因子κB(nuclear factor kappa-B, NF-κB)、沉默信息調(diào)節(jié)因子2(silent information regulator 2, Sirtuin 2)家族、磷脂酰肌苷3激酶/蛋白激酶B(phosphatidylinositide 3-kinases /protein kinase B, PI3K/Akt)、核因子E2相關(guān)因子-抗氧化反應(yīng)元件(nuclear factor erythroid 2 related factor-antioxidant response element, Nrf2-ARE)、絲裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)通路等[10-12],另外,泛素化/蛋白酶體系(ubiquitination/proteasome system, UPS)、蛋白激酶A/C/D(protein kinase A/C/D, PKA/PKC/PKD)、線粒體滲透性轉(zhuǎn)換孔(mitochondrial permeability transition pore, mPTP)、Ca2+通道/鈣調(diào)蛋白[13-15]等也與ROS的代謝密切相關(guān)。
2 TCM對(duì)VEC氧化應(yīng)激損傷的作用
2.1? 中藥復(fù)方制劑
本文總結(jié)了7種中藥復(fù)方制劑的主要組成、靶點(diǎn)分子及相關(guān)信號(hào)通路(見表1),主要為益氣活血類復(fù)方、基于復(fù)方制成的藥物等。
2.1.1? 補(bǔ)陽(yáng)還五湯? 補(bǔ)陽(yáng)還五湯(Buyang Huanwu decoction)出自《醫(yī)林改錯(cuò)》,具有補(bǔ)氣活血功效。研究表明,補(bǔ)陽(yáng)還五湯可通過活化Nrf2-ARE信號(hào)通路提升SOD活力,降低丙二醛(malondialdehyde, MDA)含量,抑制細(xì)胞內(nèi)ROS的產(chǎn)生,逆轉(zhuǎn)線粒體膜電位的下降,改善線粒體結(jié)構(gòu)的破壞[16],上調(diào)Nrf2、血紅素氧合酶-1(heme oxygenase-1, HO-1)表達(dá),抑制OS引起的細(xì)胞凋亡,增加細(xì)胞存活率[17]。補(bǔ)陽(yáng)還五湯精簡(jiǎn)方可通過活化Nrf2-ARE信號(hào)通路,不僅可以緩解過氧化氫(hydrogen peroxide, H2O2)引起的血管內(nèi)皮細(xì)胞SOD活力和GSH含量的降低、MDA含量的升高,而且可抑制其HO-1、Nrf2、γ-GCS
mRNA及蛋白表達(dá)水平的增加,抑制細(xì)胞凋亡[18]。
2.1.2? 通心絡(luò)膠囊? 通心絡(luò)膠囊(Tongxinluo)具有益氣活血、通絡(luò)止痛之功效,用于不穩(wěn)定型心絞痛和急性冠脈綜合征的治療。研究表明,通心絡(luò)膠囊參與改善VEC功能、降低血脂、舒張血管、抗炎、抗凋亡和促進(jìn)血管生成[19]。氧化低密度脂蛋白(oxidized low density
lipoprotein, ox-LDL)可減低細(xì)胞間接觸區(qū)緊密連接蛋白ZO-1、occluding和claudin 1表達(dá),并且破壞3種蛋白在細(xì)胞膜的連續(xù)性分布,導(dǎo)致血管滲透性增加,而通心絡(luò)膠囊可通過激活細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2(extracellular signal-regulated kinase 1/2, ERK1/2)對(duì)ox-LDL誘導(dǎo)的VEC單層通透性增高和屏障功能破壞發(fā)揮保護(hù)作用[20-22]。
2.1.3? 當(dāng)歸補(bǔ)血湯? 當(dāng)歸補(bǔ)血湯(Danggui Buxue
decoction)具有益氣補(bǔ)血之功效。當(dāng)歸補(bǔ)血湯除可用于治療多種造血功能低下外,還可通過下調(diào)Caspase-8和Bax的表達(dá)抑制VEC凋亡[23]。當(dāng)歸補(bǔ)血湯促進(jìn)Akt磷酸化而誘導(dǎo)內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthetase, eNOS)表達(dá),促進(jìn)VEC合成釋放一氧化氮(nitric oxide, NO),且促進(jìn)內(nèi)皮祖細(xì)胞增殖、遷移、黏附和成小管功能,通過抗炎、抗氧化作用發(fā)揮心血管保護(hù)效應(yīng)[24-26]。當(dāng)歸補(bǔ)血湯可通過PI3K/Akt信號(hào)通路抑制ox-LDL誘導(dǎo)的人內(nèi)皮祖細(xì)胞凋亡,增加細(xì)胞存活,上調(diào)Bcl-2表達(dá),并促進(jìn)細(xì)胞NO的分泌,上調(diào)eNOS、總Akt、p-Akt的表達(dá),發(fā)揮保護(hù)作用[26]。
2.1.4? 補(bǔ)氣化痰湯? 補(bǔ)氣化痰湯(Buqi Huatan
decoction)出自李紹南方,具有補(bǔ)氣平喘、止咳化痰之功效。補(bǔ)氣化痰湯通過下調(diào)Bcl-2蛋白表達(dá)、上調(diào)血管內(nèi)皮生長(zhǎng)因子和Bax的表達(dá),有效抵抗ox-LDL誘導(dǎo)的VEC損傷[27-28]。
2.1.5? 血府逐瘀湯? 血府逐瘀湯(Xuefu Zhuyu
decoction)出自《醫(yī)林改錯(cuò)》,具有活血化瘀、行氣止痛的功效。血府逐瘀湯可促進(jìn)VEC遷移,促進(jìn)血管新生,其氯仿萃取物可促進(jìn)VEC增殖,增加細(xì)胞培養(yǎng)液中VEGF、NOS、NO的含量[29-30]。另外,血府逐瘀湯降低心肌細(xì)胞ROS、MDA、乳酸脫氫酶(lactate
dehydrogenase, LDH)水平,升高SOD、GSH水平,減輕心肌細(xì)胞的氧化損傷[31]。
2.1.6? 桃紅四物湯? 桃紅四物湯(Taohong? Siwu deco?ction)始見于《醫(yī)宗金鑒》,具有養(yǎng)血活血、祛瘀生新功效。桃紅四物湯通過降低ROS含量和腫瘤壞死因子-α(tumor necrosis factor-α, TNF-α)、單核細(xì)胞趨化蛋白-1(monocyte chemotactic protein-1, MCP-1)、和IL-1β表達(dá),提高人臍靜脈內(nèi)皮細(xì)胞(human umbilical vein endothelial cells, HUVEC)活力[32]。桃紅四物湯可顯著提高SOD活力、降低MDA和LDH水平,一方面通過抑制Caspase-3的表達(dá)來抑制細(xì)胞凋亡[33],另一方面通過低氧誘導(dǎo)因子(hypoxia inducible factor, HIF)-1α途徑增強(qiáng)VEGF表達(dá),從而抵抗細(xì)胞損傷[34]。
2.1.7? 芪藶強(qiáng)心膠囊? 芪藶強(qiáng)心膠囊具有益氣溫陽(yáng)、活血化瘀、利水通絡(luò)之功效[35]。該藥可以通過上調(diào)NO和SOD水平,下調(diào)MDA和內(nèi)皮素-1(endothelin-1, ET-1)的表達(dá),抑制OS反應(yīng),改善VEC功能,改善冠脈粥樣病變伴慢性左心衰患者的心功能[35]。
2.2? 中藥及其有效活性成分
本文總結(jié)了16味中藥的主要有效活性成分、靶點(diǎn)分子及相關(guān)信號(hào)通路,分為活血化瘀類藥、清熱解毒類藥、補(bǔ)益類藥等。
2.2.1? 活血化瘀類藥? (1)當(dāng)歸 當(dāng)歸可保護(hù)VEC活性[36],丁基苯酞(butylidenephthalide)和阿魏酸(ferulic acid)都是當(dāng)歸的有效活性成分。研究發(fā)現(xiàn),丁基苯酞通過抑制磷脂酰肌醇(phosphatidylinositol, PI)、磷脂酶Cγ(phospholipase Cγ, PLCγ)和ERK1/2保護(hù)VEC的氧化損傷[37]。阿魏酸不僅可通過抑制NF-κB信號(hào)途徑減輕VEC氧自由基生成、黏附分子表達(dá),且降低LDH漏出、MDA含量增加,增加SOD活性、NO含量、eNOS和銅鋅SOD蛋白表達(dá)[36],升高細(xì)胞內(nèi)環(huán)磷酸鳥苷水平,恢復(fù)線粒體膜電位,通過增加細(xì)胞抗氧化能力和NO的生物利用度,改善ROS和NO的失衡,改善VEC氧化損傷[36,38-39]。
(2)川芎 川芎嗪(ligustrazine)是從川芎中分離提純的生物堿單體。一方面,通過抑制MAPK和NF-κB信號(hào)通路減低ox-LDL引起的細(xì)胞間黏附分子-1(intercellular adhesion molecule-1, ICAM-1)、環(huán)氧酶2(cyclooxygenase 2, COX-2)、MCP-1表達(dá)的增加,減弱VEC炎癥和黏附反應(yīng)[40-41];另一方面,川芎嗪通過抑制自由基產(chǎn)生、細(xì)胞脂質(zhì)過氧化、降低細(xì)胞培養(yǎng)上清液和細(xì)胞勻漿中MDA含量、LDH釋放,增加SOD和GSH-PX的活性、胞漿磷脂酶A2(cytoplasmic phospholipase, cPLA2)磷酸化以及花生酰磷脂膽堿含量,發(fā)揮抗氧化作用,從而改善VEC的氧化應(yīng)激損傷[40-42]。
(3)丹參 丹參是目前廣泛用于治療心血管疾病的一種中草藥。研究表明,丹參具有舒張血管的功效,通過減少心肌細(xì)胞和VEC活性氧生成,抑制細(xì)胞凋亡,保護(hù)心臟免受缺血再灌注損傷[43-44]。丹參素(Danshensu)是丹參的水溶性成分,丹參素通過Akt-ERK1/2-Nrf2信號(hào)通路降低肌酸激酶(creatine kinase, CK)和LDH水平,增加ROS的清除和內(nèi)源性抗氧化劑(如SOD、CAT、MDA、GSH-PX和HO-1)的活性,改善VEC抗氧化防御系統(tǒng)[45-46]。丹參酚酸(salvianolic acid)和丹參酮(tanshinone)是親水性和親脂性化合物,其中丹參酚酸通過下調(diào)OS和抗凋亡發(fā)揮作用,而丹參酮的作用與細(xì)胞內(nèi)鈣和細(xì)胞黏附有關(guān)[47]。另外,丹參酮ⅡA磺酸鈉可以抑制氧自由基生成,下調(diào)Caspase-3 和Caspase-9的表達(dá),從而減少PM2.5誘導(dǎo)的VEC凋亡[48]。丹參酮ⅡA磺酸鈉通過Rho/Rho激酶系統(tǒng)上調(diào)SOD、NO、NOS含量,減低MDA,保護(hù)HUVEC波動(dòng)性高糖引起的OSI[49]。
(4)三七 三七總皂苷(total saponins of panax not?
oginseng)是三七的有效活性成分,具有活血祛瘀的功效,可抑制血小板聚集、增加心腦血流量和促進(jìn)血管生成[50]。三七總皂苷顯著降低LDH漏出率,提高胞內(nèi)SOD活性,降低線粒體損傷率,提高受損細(xì)胞活力,且引起Caspase-3、ICAM-1和MCP-1在VEC中的表達(dá)下降,而Bcl-2表達(dá)、培養(yǎng)上清液中血小板活化因子(platelet activating factor, PAF)和NO含量增加,顯著降低HUVEC與單核細(xì)胞的黏附率[51-52]。表明三七總皂苷通過改善受損細(xì)胞抗氧化指標(biāo)和降低參與AS相關(guān)細(xì)胞因子表達(dá),改善VEC氧化應(yīng)激損傷,從而預(yù)防和治療AS[53-54]。
(5)王不留行 王不留行為石竹科植物麥藍(lán)菜的干燥成熟種子,從中分離提取的瓦卡林(Vaccarin)是一種天然黃酮苷,具有較強(qiáng)的心血管保護(hù)作用。研究發(fā)現(xiàn),瓦卡林通過AKT-ERK通路激活成纖維細(xì)胞生長(zhǎng)因子2(fibroblast growth factor 2, FGF2)/成纖維細(xì)胞生長(zhǎng)因子受體-1(fibroblast growth factor receptor-1, FGFR-1)促進(jìn)VEC增殖、遷移,誘導(dǎo)血管新生,通過抑制Notch信號(hào)保護(hù)VEC的OSI[55-57]。另外,瓦卡林通過抑制ROS積累、組蛋白去乙?;?(histone deacetylase 1, HDAC1)、Bax、Caspase-3、Bcl-2表達(dá)抑制ox-LDL誘導(dǎo)的VEC凋亡,瓦卡林通過MAPK通路下調(diào)IL-6、MCP-1、血管細(xì)胞黏附分子-1(vascular cell adhesion molecule-1, VCAM-1)、 ICAM-1表達(dá),抑制ox-LDL誘導(dǎo)的HUVEC炎癥和內(nèi)皮-間質(zhì)轉(zhuǎn)化[58-59]。
(6)姜黃 姜黃素(curcumin)是從姜科、天南星科植物的根莖中提取的一種二酮類化合物,具有心肌保護(hù)、降血脂、抗腫瘤、抗炎、抗氧化等心血管保護(hù)作用[60]。研究表明,姜黃素可以顯著下調(diào)VEC的Notch1、Hes1、Caspase-3和Bax表達(dá)水平,上調(diào)Bal-2的表達(dá),保護(hù)VEC免受OSI[61]。
2.2.2? 清熱解毒類藥? (1)梔子 梔子苷(Geniposide)是從茜草科植物梔子的干燥成熟果實(shí)中精制而成,是環(huán)烯醚萜苷類化合物。研究發(fā)現(xiàn),動(dòng)物體內(nèi)梔子苷及其代謝產(chǎn)物具有抗炎、抗氧化作用,能抑制羥自由基引起的脂質(zhì)過氧化,通過拮抗胰高血糖素樣肽(glucagon-like peptide, GLP-1),保護(hù)細(xì)胞的OSI[62]。梔子苷能顯著提高VEC內(nèi)SOD、GSH-Px、NOS的活性,增加NO含量,降低ROS水平,增強(qiáng)VEC增殖率和存活率,減少細(xì)胞凋亡率[63]。也有研究認(rèn)為梔子苷在體外比在體內(nèi)的抗氧化效果要弱,可能跟梔子苷與細(xì)胞膜受體相互作用有關(guān)[64]。
(2)牡丹皮 多種證據(jù)已經(jīng)闡明了牡丹皮的心血管保護(hù)作用,其活性成分丹皮酚(Paeonol)近年來受到廣泛關(guān)注。丹皮酚通過降低ROS、MDA含量改善H2O2引起的脂質(zhì)過氧化,通過降低TNF-α、IL-1β、IL-6的表達(dá)減輕炎癥反應(yīng),通過調(diào)節(jié)Bcl-2/Bax和Caspase-3抑制細(xì)胞凋亡[65]。丹皮酚一方面可通過激活A(yù)MP激活蛋白激酶a(AMP activated protein kinase a, AMPKa)/過氧化物酶體增殖物激活受體d(peroxisome proliferator activated receptor, PPARd)級(jí)聯(lián)和阻斷內(nèi)質(zhì)網(wǎng)應(yīng)激信號(hào)通路,直接誘導(dǎo)ROS下降;另一方面可促進(jìn)NOX的還原,NOX是催化ROS生成的酶,抑制ROS的合成[66-67]。
(3)葛根 葛根素(Puerarin)是從葛根中分離的具有擴(kuò)冠作用的異黃酮類衍生物,通過降低MDA水平和升高SOD活性的抗氧化作用、抑制Caspase-3表達(dá)和維持線粒體膜電位的抗凋亡作用,保護(hù)HUVEC的OSI[68]。另外,葛根素的抗氧化作用與NO、二甲基精氨酸(asymmetric dimethylarginine, ADMA)的分泌和細(xì)胞內(nèi)鈣離子水平減少有關(guān)[69-70]。
2.2.3? 補(bǔ)益類藥? (1)麥冬 麥冬是一種傳統(tǒng)中草藥,被廣泛用于心血管疾病的防治。麥冬素D(ophiopogonin D)可減弱線粒體ROS的產(chǎn)生,通過NF-κB和ERK信號(hào)通路抑制IL-6、TNF-α的釋放、CAT、HO-1和Caspases的活性,顯著抑制H2O2誘導(dǎo)的VEC脂質(zhì)過氧化和蛋白質(zhì)羰基化,恢復(fù)細(xì)胞的抗氧化能力,抑制細(xì)胞凋亡,改善VEC氧化應(yīng)激損傷[71]。
(2)黃芪 黃芪甲苷(Astragaloside IV)是黃酮類化合物,是黃芪的主要有效成分,具有抗氧化和抗炎作用。研究發(fā)現(xiàn),黃芪甲苷通過抑制Wnt/β-catenin信號(hào)通路減少LDH的釋放、ROS和NOX的產(chǎn)生,提高HUVEC的存活率和遷移率,抑制細(xì)胞凋亡;通過活化Nrf2增加HO-1的表達(dá),降低HUVEC表達(dá)和分泌TNF-α和IL-6的增加[72-73]。
(3)天麻 天麻(gastrodiaelata)的甲醇提取物和乙醚部分香蘭素、香草醇、香草醛、羥基苯甲醛和對(duì)羥基苯甲醇等可抑制COX活性和ROS生成,抑制脂質(zhì)過氧化[74-75],乙酸乙酯提取物(對(duì)羥基苯甲醛、對(duì)羥芐基甲醚、對(duì)羥基苯甲醇、4,4′-二羥基二苯基甲烷、4,4′-二羥基二芐醚)可有效提高VEC的舒張能力,且顯著增加VEC內(nèi)NO的含量,可能與抑制細(xì)胞外鈣內(nèi)流有關(guān)[76]。
(4)五味子 五味子多糖(schisandra polysaccharide)是木蘭科植物五味子的有效活性成分,具有抗氧化作用。五味子多糖通過減少LDH和肌酸激酶的水平,增加VEC的存活率和貼壁率,提高NO和MDA含量,保護(hù)VEC的OSI[77-78]。
2.2.4? 其他? (1) 槲皮素 槲皮素(Quercetin)是一種多酚類黃酮化合物,存在于甘藍(lán)、洋蔥、漿果、蘋果、紅葡萄、西蘭花和櫻桃以及茶和紅酒中。由于槲皮素的高溶解度和生物利用度,在形成絡(luò)合物或結(jié)合形成一些用于人類保健的新制劑后也表現(xiàn)出較強(qiáng)的抗氧化活性,對(duì)骨質(zhì)疏松癥、某些癌癥、腫瘤以及肺和心血管疾病等的防治具有重要作用[79-81]。不僅促進(jìn)氧自由基清除、抵抗脂質(zhì)過氧化,而且降低血栓調(diào)節(jié)蛋白的分泌、LDH的漏出、ET和MDA的生成,維持VEC的胞膜完整性,保護(hù)VEC的OSI[82-83]。
(2)滿山紅 杜鵑素(Farrerol)是滿山紅的主要活性物質(zhì),杜鵑素不僅通過活化ERK1/2通路升高Occludin的表達(dá),抑制H2O2誘導(dǎo)的細(xì)胞通透性增大,而且通過抑制p38 MAPK磷酸化減低ROS、MDA含量,抑制Bax、Caspase-3的表達(dá),增加SOD和GSH-Px的活性及Bcl-2的表達(dá),從而增加細(xì)胞活力、抑制細(xì)胞凋亡,發(fā)揮抗氧化作用[84-85]。此外,有研究發(fā)現(xiàn)杜鵑素特異性誘導(dǎo)糖原合成酶激酶-3β(glycogen synthetase kinase-3β, GSK-3β)磷酸化,而不影響其表達(dá)水平,激活Nrf2-ARE通路,促進(jìn)下游靶基因HO-1和NADPH醌氧化還原酶-1(NADPH quinone oxidoreductase-1, NQO1)在EA.hy926細(xì)胞中的表達(dá),減輕VEC的OSI[86]。
(3)大蒜 大蒜素(Garlicin)為三硫代烯丙醚類化合物,存在于百合科植物大蒜的鱗莖中。大蒜素通過抑制Caspase-3和NOX相關(guān)的凋亡信號(hào)傳導(dǎo)通路顯著提高HUVEC的細(xì)胞活力,抑制細(xì)胞凋亡,保護(hù)ox-LDL誘導(dǎo)的VEC損傷[87]。
3 總結(jié)與展望
氧化還原在VEC的生理和病理過程中發(fā)揮關(guān)鍵作用,當(dāng)該平衡受到干擾,過度積累ROS時(shí),細(xì)胞內(nèi)多條信號(hào)通路參與調(diào)控,從而導(dǎo)致VEC功能障礙,引起病理性血管重構(gòu),進(jìn)而參與心血管疾病的發(fā)生發(fā)展。中醫(yī)藥對(duì)于心血管疾病的治療具有不可替代的優(yōu)勢(shì),不僅可以有效緩解病人的癥狀,提高病人的生活質(zhì)量,而且其療效顯著、不良反應(yīng)低、無藥物依賴性,是西藥無法比擬的。本文基于目前國(guó)內(nèi)外已發(fā)表的研究成果,總結(jié)了7種復(fù)方和16種中藥對(duì)VEC氧化應(yīng)激損傷的保護(hù)作用,其中涉及的信號(hào)通路主要是Nrf2-ARE、MAPK、NF-κB、ERK1/2、PI3K/Akt等,但是血府逐瘀湯、桃紅四物湯、補(bǔ)氣化痰湯等復(fù)方和葛根、姜黃等中藥的信號(hào)通路仍需要深入研究。因此,中藥及其復(fù)方在VEC的OSI的保護(hù)作用具有廣闊的研究前景,進(jìn)一步加強(qiáng)對(duì)中藥復(fù)方制劑和藥物有效成分的抗氧化研究對(duì)于心血管疾病的防治具有重大意義。
參考文獻(xiàn)
[1] MüNZEL T, CAMICI G G, MAACK C, et al. Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-part series[J]. Journal of the American College of Cardiology, 2017, 70(2): 212-229.
[2] IANTORNO M, CAMPIA U, DANIELE N D, et al. Obesity, inflammation and endothelial dysfunction[J]. International Journal of Immunopathology and Pharmacology, 2014, 28(2): 169-176.
[3] KRüGER-GENGE, BLOCKI, FRANKE, et al. Vascular endothelial cell biology: An update[J]. International Journal of Molecular Sciences, 2019, 20(18): 4411.
[4] MEHTA D, MALIK A B. Signaling mechanisms regulating endothelial permeability[J]. Physiological Reviews, 2006, 86(1): 279-367.
[5] WANG D L, CALABRESE E J, LIAN B L, et al. Hormesis as a mechanistic approach to understanding herbal treatments in traditional Chinese medicine[J]. Pharmacology & Therapeutics, 2018, 184: 42-50.
[6] HAO Q, CHEN X, ZHOU X, et al. Bu-shen-he-mai-fang (HMF) Decoction inhibits atherosclerosis by improving antioxidant and anti-inflammatory activities in ApoE-deficient mice[J]. International Journal of Biomedical Science, 2014,10(4):258-264.
[7] YANG K, ZHANG H J, LUO Y, et al. Gypenoside XVII prevents atherosclerosis by attenuating endothelial apoptosis and oxidative stress: Insight into the ERα-mediated PI3K/Akt pathway[J]. International Journal of Molecular Sciences, 2017, 18(2): 77.
[8] YANG X Y, HE T M, HAN S J, et al. The role of traditional Chinese medicine in the regulation of oxidative stress in treating coronary heart disease[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 1-13.
[9] LEOPOLD J A. Antioxidants and coronary artery disease: From pathophysiology to preventive therapy[J]. Coronary Artery Disease, 2015, 26(2): 176-183.
[10] CROSS J V, TEMPLETON D J. Thiol oxidation of cell signaling proteins: Controlling an apoptotic equilibrium[J]. Journal of Cellular Biochemistry, 2004, 93(1): 104-111.
[11] TSENG A H H, SHIEH S S, WANG D L. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage[J]. Free Radical Biology and Medicine, 2013, 63: 222-234.
[12] LEóN-BUITIMEA A, RODRíGUEZ-FRAGOSO L, LAUER F T, et al. Ethanol-induced oxidative stress is associated with EGF receptor phosphorylation in MCF-10A cells overexpressing CYP2E1[J]. Toxicology Letters, 2012, 209(2): 161-165.
[13] SAG C M, WAGNER S, MAIER L S. Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes[J]. Free Radical Biology and Medicine, 2013, 63: 338-349.
[14] THOMPSON J W, NARAYANAN S V, PEREZ-PINZON M A. Redox signaling pathways involved in neuronal ischemic preconditioning[J]. Current Neuropharmacology, 2012, 10(4): 354-369.
[15] AN B, CHEN Y, LI B Q, et al. Ca(2+)-CaM regulating viability of Candida guilliermondii under oxidative stress by acting on detergent resistant membrane proteins[J]. Journal of Proteomics, 2014, 109: 38-49.
[16] SHEN J, ZHU Y, HUANG K Y, et al. Buyang Huanwu Decoction attenuates H2O2-induced apoptosis by inhibiting reactive oxygen species-mediated mitochondrial dysfunction pathway in human umbilical vein endothelial cells[J]. BMC Complementary and Alternative Medicine, 2016, 16(1): 1-11.
[17] 邵? 樂,夏相宜,王宇紅,等.補(bǔ)陽(yáng)還五湯精簡(jiǎn)方對(duì)氧化應(yīng)激損傷血管內(nèi)皮細(xì)胞的保護(hù)作用研究[J].湖南中醫(yī)藥大學(xué)學(xué)報(bào),2019,39(2):163-167.
[18] 佘? 顏,王宇紅,邵? 樂,等.補(bǔ)陽(yáng)還五湯精簡(jiǎn)方對(duì)大鼠腦缺血后血管新生及Nrf2/HO-1信號(hào)途徑的影響[J].中國(guó)藥理學(xué)通報(bào),2016,32(1):123-128.
[19] 吳以嶺,游佳華,袁國(guó)強(qiáng),等.通心絡(luò)超微粉對(duì)高脂飲食兔胸主動(dòng)脈NF-κB、胞間黏附分子1及血管細(xì)胞黏附分子1表達(dá)的影響[J].中華心血管病雜志,2007,35(3):271-274.
[20] CHANG C C, LIU H L, WEI C, et al. Tongxinluo regulates expression of tight junction proteins and alleviates endothelial cell monolayer hyperpermeability via ERK-1/2 signaling pathway in oxidized low-density lipoprotein-induced human umbilical vein endothelial cells[J]. Evidence-Based Complementary and Alternative Medicine, 2017, 2017: 4198486.
[21] LI L M, ZHENG B, ZHANG R N, et al. Chinese medicine Tongxinluo increases tight junction protein levels by inducing KLF5 expression in microvascular endothelial cells[J]. Cell Biochemistry and Function, 2015, 33(4): 226-234.
[22] ZHANG Y, ZHANG XH, ZHENG B, et al. Tongxinluo protects against hypoxia-induced breakdown of the endothelial barrier through inducing tight junction protein expression[J]. International Journal of Clinical and Experimental Medicine, 2016,9(8):15699-15708.
[23] 張志斌,陸? 曙,周春剛,等.當(dāng)歸補(bǔ)血湯不同配比組方抗動(dòng)脈血管內(nèi)皮細(xì)胞凋亡作用[J].遼寧中醫(yī)雜志,2013,40(5):1031-1033.
[24] GONG A G W, LAU K M, ZHANG L M L, et al. Danggui buxue tang, Chinese herbal decoction containing astragali Radix and angelicae sinensis radix, induces production of nitric oxide in endothelial cells: Signaling mediated by phosphorylation of endothelial nitric oxide synthase[J]. Planta Medica, 2016, 82(5): 418-423.
[25] 龔?fù)?,黃水清.當(dāng)歸補(bǔ)血湯有效組分抗動(dòng)脈粥樣硬化配伍比例的基礎(chǔ)研究[J].中藥新藥與臨床藥理,2017,28(4):468-472.
[26] 秦? 臻,黃水清.當(dāng)歸補(bǔ)血湯對(duì)動(dòng)脈粥樣硬化兔內(nèi)皮祖細(xì)胞及血清VEGF、SDF-1的影響[J].中國(guó)病理生理雜志,2012,28(2): 211-215.
[27] 陳? 弢,郜俊清,金惠根,等.補(bǔ)氣化痰方對(duì)氧化低密度脂蛋白誘導(dǎo)血管內(nèi)皮細(xì)胞損傷的保護(hù)作用[J].吉林中醫(yī)藥,2013,33(6):612-614.
[28] 郜俊清,金惠根,劉宗軍,等.補(bǔ)氣化痰方對(duì)氧化低密度脂蛋白損傷血管內(nèi)皮細(xì)胞的抑制及凋亡保護(hù)作用[J].時(shí)珍國(guó)醫(yī)國(guó)藥,2013,24(8):1864-1866.
[29] 林? 凡,鄭躍文,陳斌玲,等.活性氧對(duì)血府逐瘀湯誘導(dǎo)人臍靜脈內(nèi)皮細(xì)胞遷移作用的影響[J].時(shí)珍國(guó)醫(yī)國(guó)藥,2014,25(2):257-259.
[30] 周建衡,周海濤,徐? 偉,等.血府逐瘀湯不同極性溶劑萃取物對(duì)人臍靜脈內(nèi)皮細(xì)胞增生的影響[J].中華中醫(yī)藥學(xué)刊,2009,27(10): 2156-2158.
[31] 唐漢慶,龐路路,張世田,等.血府逐瘀湯對(duì)冠心病血瘀模型家兔氧化應(yīng)激的影響[J].動(dòng)物醫(yī)學(xué)進(jìn)展,2018,39(8):31-35.
[32] 張? 兵.桃紅四物湯含藥血清對(duì)脂多糖誘導(dǎo)人臍靜脈內(nèi)皮細(xì)胞TNF-α、MCP-1和IL-1β表達(dá)的影響[J].遼寧中醫(yī)雜志,2014, 41(11):2280-2283.
[33] 劉竹青, 尹登科,韓? 嵐,等.桃紅四物湯含藥血清對(duì)過氧化氫損傷的人臍靜脈內(nèi)皮細(xì)胞的保護(hù)作用[J].中國(guó)中藥雜志,2013,38(3): 402-406.
[34] 季兆潔,韓? 嵐,吳歡茹,等.桃紅四物湯對(duì)人腦微血管內(nèi)皮細(xì)胞OGD損傷的保護(hù)作用及機(jī)制[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2018,24(7):95-100.
[35] 郭英麗.芪藶強(qiáng)心膠囊對(duì)冠脈粥樣病變伴慢性左心衰患者血管內(nèi)皮細(xì)胞功能及氧化應(yīng)激的影響[J].西部中醫(yī)藥,2017,30(4): 85-87.
[36] 劉雪東,李偉東,蔡寶昌.當(dāng)歸化學(xué)成分及對(duì)心腦血管系統(tǒng)作用研究進(jìn)展[J].南京中醫(yī)藥大學(xué)學(xué)報(bào),2010,26(2):155-157.
[37] YANG J, YANG S, YUAN Y J. Integrated investigation of lipidome and related signaling pathways uncovers molecular mechanisms of tetramethylpyrazine and butylidenephthalide protecting endothelial cells under oxidative stress[J]. Molecular BioSystems, 2012, 8(6): 1789-1797.
[38] 沈? 濤,朱玉萍,阮? 楊,等.阿魏酸通過抑制核因子κB信號(hào)途徑降低腫瘤壞死因子α誘導(dǎo)的人血管內(nèi)皮細(xì)胞氧化應(yīng)激及黏附分子表達(dá)[J].中國(guó)動(dòng)脈硬化雜志,2013,21(5):385-390.
[39] HAN R H, TANG F T, LU M L, et al. Astragalus polysaccharide ameliorates H2O2-induced human umbilical vein endothelial cell injury[J]. Molecular Medicine Reports, 2017, 15(6): 4027-4034.
[40] 王國(guó)峰,陸? 峰,趙? 霞,等.川芎嗪對(duì)氧化低密度脂蛋白誘導(dǎo)內(nèi)皮細(xì)胞炎癥反應(yīng)的影響[J].中華高血壓雜志,2012,20(4):347-351.
[41] 王國(guó)峰,陸? 峰,趙? 霞,等.川芎嗪對(duì)氧化型低密度脂蛋白誘導(dǎo)的血管內(nèi)皮細(xì)胞損傷的保護(hù)作用[J].中華老年心腦血管病雜志, 2012,14(3):298-301.
[42] 魏蕓,彭小春.川芎嗪對(duì)血管內(nèi)皮細(xì)胞損傷的保護(hù)作用[J].長(zhǎng)江大學(xué)學(xué)報(bào)(自科科學(xué)版),2007,4(3):223-224,232.
[43] ZHOU X L, CHAN S W, TSENG H L, et al. Danshensu is the major marker for the antioxidant and vasorelaxation effects of Danshen (Salvia miltiorrhiza) water-extracts produced by different heat water-extractions[J]. Phytomedicine, 2012, 19(14): 1263-1269.
[44] ZHAO Q T, GUO Q M, WANG P, et al. Salvianic acid A inhibits lipopolysaccharide-induced apoptosis through regulating glutathione peroxidase activity and malondialdehyde level in vascular endothelial cells[J]. Chinese Journal of Natural Medicines, 2012, 10(1): 53-57.
[45] TANG Y Q, WANG M H, LE X Y, et al. Antioxidant and cardioprotective effects of Danshensu (3-(3, 4-dihydroxyphenyl)-2-hydroxy-propanoic acid from Salvia miltiorrhiza) on isoproterenol-induced myocardial hypertrophy in rats[J]. Phytomedicine, 2011, 18(12): 1024-1030.
[46] LI G H, LI Y R, JIAO P, et al. Therapeutic potential of salviae miltiorrhizae Radix et rhizoma against human diseases based on activation of Nrf2 mediated antioxidant defense system: Bioactive constituents and mechanism of action[J]. Oxidative Medicine and Cellular Longevity, 2018, 2018: 1-13.
[47] WANG X Y, WANG Y, JIANG M, et al. Differential cardioprotective effects of salvianolic acid and tanshinone on acute myocardial infarction are mediated by unique signaling pathways[J]. Journal of Ethnopharmacology, 2011, 135(3): 662-671.
[48] 王? 芳,盧欣爍,李? 巖,等.丹參酮ⅡA磺酸鈉對(duì)PM2.5染毒血管內(nèi)皮細(xì)胞的保護(hù)作用[J].廣東藥科大學(xué)學(xué)報(bào),2017,33(2):207-210,230.
[49] 張? 晶,王大新,何勝虎,等.丹參酮ⅡA對(duì)波動(dòng)性高糖體外誘導(dǎo)人臍靜脈內(nèi)皮細(xì)胞損傷保護(hù)作用的機(jī)制研究[J].中國(guó)臨床藥理學(xué)雜志,2016,32(4): 346-348.
[50] SHI H B, CHEN J D, CHEN X H, et al. Effects of salvianolic acid and notoginseng triterpenes on angiogenesis in EA-hy926 cells in vitro[J]. Chinese Journal of Natural Medicines, 2014, 11(3): 254-257.
[51] 秦建輝,朱陵群,崔? 巍,等.三七總皂苷對(duì)氧化型低密度脂蛋白誘導(dǎo)的人臍靜脈內(nèi)皮細(xì)胞血管細(xì)胞黏附分子1表達(dá)的影響水[J].中國(guó)組織工程研究,2009,13(15):2896-2900.
[52] 陳劍鴻,王碧江,劉松青,等.三七總皂苷對(duì)內(nèi)毒素?fù)p傷血管內(nèi)皮細(xì)胞炎癥特性的影響[J].中國(guó)醫(yī)院藥學(xué)雜志,2004,24(3):140-141.
[53] 侯立靜,孫付軍,張? 荔,等.三七總皂苷對(duì)過氧化氫損傷人臍靜脈內(nèi)皮細(xì)胞的保護(hù)作用研究[J].中藥藥理與臨床,2015,31(1): 69-71.
[54] 李? 響,吳振起,馬雪濤,等.注射用血栓通對(duì)大鼠血管內(nèi)皮細(xì)胞凋亡機(jī)制的影響[J].中華中醫(yī)藥雜志,2010,25(7):1137-1139.
[55] XIE F S, FENG L, CAI W W, et al. Vaccarin promotes endothelial cell proliferation in association with neovascularization in vitro and in vivo[J]. Molecular Medicine Reports, 2015, 12(1): 1131-1136.
[56] SUN H J, CAI W W, GONG L L, et al. FGF-2-mediated FGFR1 signaling in human microvascular endothelial cells is activated by vaccarin to promote angiogenesis[J]. Biomedicine & Pharmacotherapy, 2017, 95: 144-152.
[57] XIE F S, CAI W W, LIU Y L, et al. Vaccarin attenuates the human EA.hy926 endothelial cell oxidative stress injury through inhibition of Notch signaling[J]. International Journal of Molecular Medicine, 2015, 35(1): 135-142.
[58] ZHU X X, LEI Y Y, TAN F G, et al. Vaccarin protects human microvascular endothelial cells from apoptosis via attenuation of HDAC1 and oxidative stress[J]. European Journal of Pharmacology, 2018, 818: 371-380.
[59] GONG L L, LEI Y Y, LIU Y X, et al. Vaccarin prevents ox-LDL-induced HUVEC EndMT, inflammation and apoptosis by suppressing ROS/p38 MAPK signaling[J]. American Journal of Translational Research, 2019, 11(4): 2140-2154.
[60] DHAR I, DHAR A, WU L Y, et al. Arginine attenuates methylglyoxal-and high glucose-induced endothelial dysfunction and oxidative stress by an endothelial nitric-oxide synthase-independent mechanism[J]. The Journal of Pharmacology and Experimental Therapeutics, 2012, 342(1): 196-204.
[61] YANG Y, DUAN W, LIANG Z, et al. Curcumin attenuates endothelial cell oxidative stress injury through Notch signaling inhibition[J]. Cellular Signalling, 2013, 25(3):615-629.
[62] LIU J H, YIN F, ZHENG X X, et al. Geniposide, a novel agonist for GLP-1 receptor, prevents PC12 cells from oxidative damage via MAP kinase pathway[J]. Neurochemistry International, 2007, 51(6/7): 361-369.
[63] 丁嵩濤,劉洪濤,李文明,等.梔子苷對(duì)氧化應(yīng)激損傷血管內(nèi)皮細(xì)胞的保護(hù)作用[J].中國(guó)藥理學(xué)通報(bào),2009,25(6):725-729.
[64] WANG F F, ZHANG Y M, WU S H, et al. Studies of the structure-antioxidant activity relationships and antioxidant activity mechanism of iridoid valepotriates and their degradation products[J]. PLoS One, 2017, 12(12): e0189198.
[65] 楊? 倩,謝艷華,孫紀(jì)元,等.丹酚酸B配伍丹皮酚對(duì)H2O2誘導(dǎo)的人臍靜脈內(nèi)皮細(xì)胞氧化損傷模型Bcl-2、Bax、caspase-3 mRNA及蛋白表達(dá)的影響[J].中國(guó)醫(yī)藥導(dǎo)報(bào),2013,10(2):26-28.
[66] CHOY K W, MUSTAFA M R, LAU Y S, et al. Paeonol protects against endoplasmic Reticulum stress-induced endothelial dysfunction via AMPK/PPARδ signaling pathway[J]. Biochemical Pharmacology, 2016, 116: 51-62.
[67] CHOY K W, LAU Y S, MURUGAN D, et al. Chronic treatment with paeonol improves endothelial function in mice through inhibition of endoplasmic Reticulum stress-mediated oxidative stress[J]. PLoS One, 2017, 12(5): e0178365.
[68] 高培國(guó),強(qiáng)? 輝,凌? 鳴.葛根素對(duì)過氧化氫誘導(dǎo)的血管內(nèi)皮細(xì)胞損傷的保護(hù)作用[J].西安交通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2012,33(2):245-248,260.
[69] 李菊香,羅? 偉,汪進(jìn)益,等.葛根素對(duì)ox-LDL培養(yǎng)血管內(nèi)皮細(xì)胞內(nèi)源性一氧化氮合酶抑制物代謝的研究[J].中國(guó)藥科大學(xué)學(xué)報(bào),2004,35(4):353-356.
[70] 高愛社,沈曉君.葛根素對(duì)oxLDL誘導(dǎo)的血管內(nèi)皮細(xì)胞凋亡的防護(hù)作用[J].山東中醫(yī)雜志,2008,27(5): 334-335.
[71] QIAN J C, JIANG F R, WANG B, et al. Ophiopogonin D prevents H2O2-induced injury in primary human umbilical vein endothelial cells[J]. Journal of Ethnopharmacology, 2010, 128(2): 438-445.
[72] ZHU Z S, LI J Y, ZHANG X R. Astragaloside IV protects against oxidized low-density lipoprotein (ox-LDL)-induced endothelial cell injury by reducing oxidative stress and inflammation[J]. Medical Science Monitor, 2019, 25: 2132-2140.
[73] 馬海濤,王? 輝.黃芪甲苷對(duì)過氧化氫誘導(dǎo)損傷的人臍靜脈內(nèi)皮細(xì)胞的保護(hù)作用[J].鄭州大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2016,51(2): 248-251.
[74] LEE J Y, JANG Y W, KANG H S, et al. Anti-inflammatory action of phenolic compounds from Gastrodiaelata root[J]. Archives of Pharmacal Research, 2006, 29(10): 849-858.
[75] JUNG T Y, SUH S I, LEE H, et al. Protective effects of several components of Gastrodiaelata on lipid peroxidation in gerbil brain homogenates[J]. Phytotherapy Research, 2007, 21(10): 960-964.
[76] 張維明,楊蓮,李秀芳,等.云南昭通天麻松弛血管平滑肌活性成分的篩選[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2011,17(6):157-160.
[77] 唐澤波,溫娜,金宏.五味子多糖對(duì)氧化應(yīng)激損傷血管內(nèi)皮細(xì)胞的保護(hù)作用[J].中國(guó)西部科技,2014(11):97-98.
[78] 王春梅,李賀,陳建光.北五味子多糖對(duì)高脂血癥大鼠血管內(nèi)皮功能的影響[J].中藥藥理與臨床,2013,29(3):100-103.
[79] XIE X X, SHEN Q C, CAO L S, et al. Depression caused by long-term stress regulates premature aging and is possibly associated with disruption of circadian rhythms in mice[J]. Physiology & Behavior, 2019, 199: 100-110.
[80] HALEVAS E. Encapsulation of flavonoid quercetin in PEGylated SiO2 nanoparticles against Cu (II)-induced oxidative stress[J]. Hellenic Journal of Nuclear of Medicine, 2017, 20:156-168.
[81] AYTAC Z, KUSKU S I, DURGUN E, et al. Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: Slow release and high solubility[J]. Food Chemistry, 2016, 197: 864-871.
[82] 孫? 靜,程嘉藝,滕? 丹,等.槲皮素對(duì)H2O2致內(nèi)皮細(xì)胞損傷的保護(hù)作用[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2012,18(5):174-176.
[83] 林蓉,劉俊田.槲皮素對(duì)缺氧缺糖誘導(dǎo)血管內(nèi)皮細(xì)胞損傷的保護(hù)作用[J].中國(guó)藥理學(xué)通報(bào),2003,19(4):475-476.
[84] LI J K,GE R, TANG L, et al. Protective effects of farrerol against hydrogen-peroxide-induced apoptosis in human endothelium-derived EA.hy926 cells[J]. Canadian Journal of Physiology and Pharmacology, 2013, 91(9): 733-740.
[85] LI J K, GE R, ZHAO C X, et al. Farrerol regulates occludin expression in hydrogen peroxide-induced EA.hy926 cells by modulating ERK1/2 activity[J]. European Journal of Pharmacology, 2014, 734: 9-14.
[86] YAN C Q, ZHANG X Y, MIAO J Q, et al. Farrerol directly targets GSK-3β to activate Nrf2-ARE pathway and protect EA.hy926 cells against oxidative stress-induced injuries[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020: 1-17.
[87] CHEN X S, PANG S N, LIN J F, et al. Allicin prevents oxidized low-density lipoprotein-induced endothelial cell injury by inhibiting apoptosis and oxidative stress pathway[J]. BMC Complementary and Alternative Medicine, 2016, 16: 133.