陳品珍 成細(xì)華 廖菁 陳聰 童巧珍 劉洋 張儀 袁夢(mèng)
〔摘要〕 再灌注是急性心肌梗死常用的治療措施,但再灌注常導(dǎo)致心肌舒縮功能障礙、心肌細(xì)胞不可逆損傷加重等并發(fā)癥,引起心肌缺血再灌注損傷(myocardial ischemia reperfusion injury, MIRI)。胱硫醚-γ-裂解酶(cystathionine-γ-lyase, CSE)/硫化氫(hydrogen sulfide, H2S)通路在MIRI發(fā)生發(fā)展中起關(guān)鍵保護(hù)作用,其機(jī)制包括保護(hù)線粒體、抗氧化應(yīng)激、調(diào)節(jié)內(nèi)皮一氧化氮合酶活性等多方面,故本文從CSE/H2S產(chǎn)生的調(diào)節(jié)因素,對(duì)MIRI的保護(hù)機(jī)制及中西醫(yī)臨床應(yīng)用的最新研究進(jìn)展作一闡述。
〔關(guān)鍵詞〕 心肌缺血再灌注損傷;CSE/H2S通路;作用機(jī)制;H2S供體
〔中圖分類號(hào)〕R2;R541? ? ? ?〔文獻(xiàn)標(biāo)志碼〕A? ? ? ?〔文章編號(hào)〕doi:10.3969/j.issn.1674-070X.2021.01.030
〔Abstract〕 Reperfusion is a common treatment in acute myocardial infarction. However, reperfusion can cause myocardial systolic and diastolic dysfunction, and aggravate irreversible damage to myocardial cells and other complications, cause myocardial ischemia reperfusion injury (MIRI). The cystathionine-γ-lyase (CSE) / hydrogen sulfide (H2S) pathway plays an important role in the occurrence and development of MIRI, with protective effects including protection of mitochondria, anti-oxidative stress, regulation of endothelial nitric oxide synthase activity. This paper will review the research advances of the regulatory factors for CSE/H2S production, the protective mechanism of MIRI, and the clinical application.
〔Keywords〕 myocardial ischemia reperfusion injury; CSE/H2S pathway; mechanism of action; H2S donors
隨著溶栓及經(jīng)皮冠狀動(dòng)脈介入再灌注治療的開展,急性心肌梗死致死率顯著下降,但再灌注常導(dǎo)致心律失常、心肌舒縮功能障礙及心肌細(xì)胞不可逆損傷加重等并發(fā)癥,引起心肌缺血再灌注損傷(myocardial ischemia reperfusion injury, MIRI),成為臨床亟待解決的難題。氧自由基爆發(fā)、鈣超載、線粒體損傷、細(xì)胞自噬、細(xì)胞凋亡和壞死、炎癥等是MIRI病理過(guò)程發(fā)生發(fā)展的重要機(jī)制。硫化氫(H2S)是高度擴(kuò)散的氣體信號(hào)分子,參與不同的生理和病理過(guò)程,在心血管系統(tǒng)疾病方面意義顯著,對(duì)MIRI具有重要保護(hù)作用。胱硫醚-γ-裂解酶(cystathionine gamma-lyase, CSE)是一種主要的H2S產(chǎn)生酶,經(jīng)CSE合成的內(nèi)源性H2S可有抗細(xì)胞凋亡、細(xì)胞炎癥、氧化應(yīng)激等生物活性,對(duì)內(nèi)質(zhì)網(wǎng)、線粒體和核轉(zhuǎn)錄因子等具有強(qiáng)大的調(diào)節(jié)作用[1]。內(nèi)源性H2S對(duì)缺血再灌注損傷的作用研究為未來(lái)H2S醫(yī)學(xué)臨床應(yīng)用奠定了基礎(chǔ),但CSE/H2S通路具體怎么保護(hù)MIRI,目前尚未明確,相關(guān)機(jī)制和臨床研究仍需進(jìn)一步加強(qiáng)。因此,本文就CSE/H2S通路表達(dá)的影響因素,對(duì)MIRI保護(hù)作用機(jī)制,以及中西醫(yī)臨床應(yīng)用情況的最新研究進(jìn)展作一闡述。
1 H2S的性質(zhì)及合成
H2S是一種無(wú)色、臭雞蛋氣味且易燃的水溶性小分子氣體,具有持續(xù)產(chǎn)生、彌散迅速和作用廣泛等特點(diǎn),其水溶液具有弱酸性的pH。在pH值為7.4的水溶液中(體液和組織勻漿中),非解離形式的H2S少于H2S總量的1/5,其余解離為H+、HS-以及少量的S2-,它具有親脂性,因此,可以通過(guò)細(xì)胞膜自由擴(kuò)散[2]。內(nèi)源性H2S從體內(nèi)L-半胱氨酸,D-半胱氨酸和L-高半胱氨酸產(chǎn)生,其合成至少涉及4種酶:胱硫醚-β-合酶(cystathionine β synthase, CBS)、胱硫醚-γ-裂解酶(cystathionine gamma-lyase, CSE)、巰基丙酮酸硫轉(zhuǎn)移酶(3-mercaptopyruvate sulfurtransferase, 3-MST)和半胱氨酸氨基轉(zhuǎn)移酶(cysteine aminotransferase, CAT)。
2 CSE/H2S通路的活化及其影響因素
在哺乳動(dòng)物中,酶的分布具有組織特異性,CSE的活動(dòng)主要集中在心臟、血管、肝臟、腎臟、大腦、小腸、胃、子宮、胰腺和胰島,在心血管系統(tǒng)中,CSE是控制內(nèi)源性H2S生成主要的酶[3]。經(jīng)CSE/H2S通路的生物合成途徑有:通過(guò)CSE將由兩個(gè)L-半胱氨酸分子合成的L-胱氨酸二聚體轉(zhuǎn)化為丙酮酸、NH3和硫代半胱氨酸,然后通過(guò)非酶途徑,將硫代半胱氨酸轉(zhuǎn)化為L(zhǎng)-半胱氨酸,并伴隨H2S釋放;相反,在含有巰基(R-SH)的化合物(如谷胱甘肽或半胱氨酸)中,CSE則催化硫代半胱氨酸轉(zhuǎn)化為H2S和cysSR[4],CSE也可以利用高半胱氨酸為底物生成H2S。 CSE的活性和表達(dá)以及H2S的產(chǎn)生受許多輔助因子的調(diào)節(jié),如Ca2+、Sp1轉(zhuǎn)錄因子、miRNA、核因子κB(nuclear factor κB,NF-κB)等。H2S生成受細(xì)胞內(nèi)Ca2+濃度的調(diào)節(jié),但Ca2+的精確濃度至關(guān)重要,在較低Ca2+濃度(0~1×10-4 mmol/L)下可有效產(chǎn)生H2S,當(dāng)Ca2+濃度達(dá)到3×10-4 mmol/L,甚至高達(dá)3×10-3 mmol/L時(shí),產(chǎn)量明顯下降;CSE是磷酸吡哆醛(pyridoxal phosphate, PLP)依賴性酶,缺乏PLP時(shí),即使在穩(wěn)定較低Ca2+濃度時(shí),H2S的產(chǎn)量也會(huì)降低,說(shuō)明CSE/H2S通路表達(dá)的產(chǎn)量很大程度取決于PLP,其與Ca2+可能促進(jìn)半胱氨酸與PLP之間的鍵形成,從而提高H2S的產(chǎn)生有關(guān),當(dāng)細(xì)胞內(nèi)Ca2+濃度超載時(shí),鍵的形成受到抑制[5]。另外,Ca2+還可通過(guò)增強(qiáng)鈣調(diào)蛋白(calmodulin, CaM)的活性促進(jìn)CSE表達(dá)[6]。特異性蛋白1(specific protein 1, SP1)可直接結(jié)合到CSE的啟動(dòng)子區(qū)而上調(diào)CSE的轉(zhuǎn)錄[7]。CSE的基因表達(dá)亦與
miRNA-21、miRNA-22以及miRNA-30 3種miRNA調(diào)控有關(guān),其中miRNA-21和miRNA-22通過(guò)抑制SP1,從而抑制CSE的表達(dá);miRNA30則通過(guò)直接抑制CSE的表達(dá)來(lái)減少H2S的合成[8]。雌激素也通過(guò)直接上調(diào)SP1促進(jìn)CSE的轉(zhuǎn)錄,并且抑制內(nèi)質(zhì)網(wǎng)介導(dǎo)的miRNA-22,減少miRNA-22對(duì)SP1的抑制,間接促進(jìn)CSE/H2S通路的表達(dá);但同時(shí),miRNA-22對(duì)雌激素也有抑制作用[7]。NF-κB是體內(nèi)非常關(guān)鍵的轉(zhuǎn)錄調(diào)節(jié)因子,具有參與炎癥反應(yīng)和抗凋亡等作用,可與巨噬細(xì)胞中的啟動(dòng)子區(qū)域結(jié)合來(lái)調(diào)節(jié)CSE/H2S通路的表達(dá)[9]。通過(guò)CSE/H2S通路也可以上調(diào)NF-κB的DNA結(jié)合活性,使NF-κB p65亞基巰基化,促進(jìn)其與活化的核糖體蛋白S3(ribosomal protein S3, RPS3)結(jié)合,從而觸發(fā)了抗凋亡基因的轉(zhuǎn)錄[10]。
3 CSE/H2S通路在MIRI中的保護(hù)作用機(jī)制
內(nèi)源性CSE/H2S通路的表達(dá)已被證明是缺血期和再灌注期引起梗塞限制效應(yīng)的關(guān)鍵步驟 [11],適當(dāng)增強(qiáng)CSE/H2S通路的表達(dá)可以保護(hù)心肌功能,其機(jī)制與H2S促進(jìn)NO的利用、促使蛋白質(zhì)S-巰基化、保護(hù)線粒體功能等有關(guān)。
3.1? 促進(jìn)NO的生物利用
NO對(duì)調(diào)節(jié)心血管系統(tǒng)的生理作用及對(duì)損傷的反應(yīng)至關(guān)重要,H2S在心血管系統(tǒng)中的許多有益作用依賴NO。富含脯氨酸的酪氨酸激酶2(proline-rich tyrosine kinase 2, PYK2)可直接抑制內(nèi)皮型一氧化氮合酶(endothelial nitric oxide synthase, eNOS)活性,而內(nèi)源性CSE/H2S通路的表達(dá)減輕了PYK2對(duì)eNOS的抑制作用,使后者產(chǎn)生更多的NO,增加NO的生物利用度,促進(jìn)心肌細(xì)胞存活[12];King等[13]報(bào)道,相對(duì)于正常組,缺乏CSE的小鼠在eNOS活性位點(diǎn)eNOSS1177上具有明顯較低的磷酸化,而在抑制位點(diǎn)eNOST495上具有較高的磷酸化,顯示eNOS功能受損,H2S治療又可恢復(fù)eNOS功能,H2S介導(dǎo)的MIRI保護(hù)作用很大程度上取決于eNOS的激活和NO的產(chǎn)生。此外,NO也可直接作用于CSE使某些自由的巰基亞硝基化,以及增加環(huán)鳥苷酸依賴的蛋白激酶活性而促進(jìn)CSE/H2S通路的表達(dá)。
3.2? 促進(jìn)蛋白質(zhì)硫巰基化修飾
H2S將靶蛋白半胱氨酸的巰基(-SH)轉(zhuǎn)變?yōu)榱驇€基(-SSH),從而調(diào)節(jié)靶蛋白的結(jié)構(gòu)和功能,這被稱為蛋白質(zhì)的硫巰基化修飾(S-sulfhydration,S-巰基化),可以介導(dǎo)H2S引發(fā)的大多數(shù)MIRI保護(hù)作用[14]。H2S誘導(dǎo)的S-巰基化可修飾內(nèi)流性K+通道亞基Kir6.1上的半胱氨酸殘基,被修飾后的半胱氨酸殘基可促進(jìn)其與磷脂酰肌醇-4,5-二磷酸結(jié)合,從而保持K+通道的開放構(gòu)象,調(diào)控MIRI損傷中的血管舒張,有降壓和心臟保護(hù)作用[15]。H2S誘導(dǎo)NFκB p65亞基上Cys38的S-巰基化修飾,刺激NFκB與RPS3的結(jié)合,從而增加了抗凋亡基因的轉(zhuǎn)錄[16]。
3.3? 保護(hù)線粒體功能
在心肌再灌注期間,再灌注過(guò)程中氧含量的顯著增加可防止嚴(yán)重的心臟損害,但也會(huì)產(chǎn)生過(guò)量的ROS,與肌膜網(wǎng)狀蛋白相互作用誘導(dǎo)細(xì)胞內(nèi)線粒體Ca2+超載,此事件導(dǎo)致線粒體通透性過(guò)渡孔(mitochondrial permeability transition pore, MPTP)開放,使細(xì)胞色素c和其他促凋亡介質(zhì)的釋放導(dǎo)致細(xì)胞死亡[17]。增強(qiáng)的H2S水平可通過(guò)限制線粒體ROS的產(chǎn)生和抑制MPTP的開放,維持膜完整性,保持線粒體功能,預(yù)防心肌梗死。此外,心肌線粒體ATP敏感性鉀通道(mitochondrial ATP-sensitive potassium channel, mitoKATP)的開放對(duì)MIRI的心臟保護(hù)起著關(guān)鍵作用[18],用CSE抑制劑抑制H2S產(chǎn)生和用5-羥基癸酸鹽阻斷mitoKATP的開放均可逆轉(zhuǎn)心臟保護(hù)作用,表明激活mitoKATP通道可能是H2S的另一MIRI保護(hù)機(jī)制[19]。
4 H2S供體的臨床應(yīng)用研究
H2S供體是指能夠釋放H2S的一類化合物。迄今為止,已報(bào)道了多種類型的H2S供體,可以通過(guò)不同機(jī)制來(lái)影響MIRI。
4.1? 無(wú)機(jī)H2S供體
無(wú)機(jī)硫化物鹽NaHS和Na2S是最初用于研究H2S對(duì)心肌梗死保護(hù)作用的H2S供體,但臨床使用困難,如出現(xiàn)H2S濃度突然升高、脫靶等毒性作用。Benjamin E等[20]首次發(fā)現(xiàn)H2S緩釋劑GYY4137可模擬CSE合成內(nèi)源性H2S過(guò)程,對(duì)MIRI展現(xiàn)保護(hù)作用,其機(jī)制與PI3K/Akt/eNOS/GSK-3β通路的激活有關(guān)。GYY4137緩釋劑作為較穩(wěn)定、毒副作用相對(duì)低的H2S供體,用于研究H2S的細(xì)胞功能調(diào)節(jié)和急性心血管調(diào)節(jié)病理生理作用機(jī)制,現(xiàn)僅適用于急性動(dòng)物實(shí)驗(yàn)[21]。H2S緩釋劑八硫烷(SG1002)在預(yù)防、治療缺血性心力衰竭中具有潛力,該藥物在大鼠治療壓力超負(fù)荷引起心力衰竭的發(fā)展過(guò)程中,具有保持線粒體功能、降低氧化應(yīng)激的特性,從而防止心臟代償失調(diào)[22]。在臨床研究中,發(fā)現(xiàn)SG1002可提高心力衰竭患者的血液H2S水平和增加NO生物利用度,改善心室功能等[23]。
4.2? 有機(jī)H2S供體
相對(duì)于無(wú)機(jī)硫化物鹽的不可控性,有機(jī)H2S供體更加穩(wěn)定可控,類似于持續(xù)產(chǎn)生內(nèi)源性H2S,是減輕MIRI的新穎有效的輔助干預(yù)措施。線粒體靶向H2S供體AP39能使H2S供體直接選擇性遞送至線粒體中,增加線粒體中的H2S濃度,通過(guò)親環(huán)蛋白D非依賴性機(jī)制,抑制MPTP的開放,保護(hù)心肌細(xì)胞[24-25]。硫代氨基酸以較慢的速率釋放H2S,硫代纈氨酸和硫代甘氨酸可增強(qiáng)cGMP的形成并促進(jìn)小鼠主動(dòng)脈環(huán)的血管舒張、降低動(dòng)脈血壓、減少氧化應(yīng)激,其機(jī)制可能涉及Akt的激活[26]。N-(苯甲酰硫基)苯甲酰胺化合物亦可呈時(shí)間依賴性地釋放H2S,其中化合物NSHD-1、NSHD-2、NSHD-6在氧化損傷的細(xì)胞模型中有顯著的細(xì)胞保護(hù)作用,NSHD-1和NSHD-2則在小鼠MIRI模型中表現(xiàn)出保護(hù)作用[27]。H2S供體4-羧基苯基異硫氰酸酯(4-carboxyphenyl isothiocyanate, PhNCS-COOH)可激活mitoKATP通道和減輕氧化應(yīng)激,促進(jìn)針對(duì)MIRI的保護(hù)作用[28-29]。
4.3? H2S載體結(jié)合物
H2S供體分子與載體結(jié)合是H2S供體成藥開發(fā)的另一熱點(diǎn),利用載體的特點(diǎn),可以達(dá)到長(zhǎng)效、緩控式釋放H2S的目的,也可將材料制成支架或傷口敷料等,在局部發(fā)揮作用,具有廣泛的應(yīng)用前景。比如GYY4137與絲素蛋白支架結(jié)合,其H2S的釋放動(dòng)力學(xué)取決于GYY4137的量,可實(shí)現(xiàn)H2S持久釋放,且無(wú)細(xì)胞毒性[30]。二烯丙基三硫醚(diallyl trisulfide,DATs)與多孔二氧化硅納米顆粒結(jié)合,通過(guò)GSH激活,可以緩慢可控地釋放H2S,對(duì)心肌以及移植內(nèi)皮組織的缺血再灌注損傷具有保護(hù)作用[31]。另有研究發(fā)現(xiàn),將APTC(一種小分子H2S供體)接合到藻酸鹽(alginate, ALG-CHO)上,可模擬內(nèi)源性H2S緩慢和連續(xù)的釋放過(guò)程,然后引入四苯胺(一種導(dǎo)電低聚物)和脂肪干細(xì)胞(adipose-derived stem cells, ADSCs),通過(guò)ALG-CHO和凝膠的席夫堿反應(yīng),形成一種載有干細(xì)胞的導(dǎo)電性H2S釋放水凝膠,心臟局部注射該水凝膠后,顯示出大鼠心肌中的H2S濃度升高和ADSCs的存活期更長(zhǎng),伴隨心臟相關(guān)miRNA(Cx43,α-SMA和cTnT)和血管生成因子(VEGFA、Ang-1)的上調(diào),炎癥因子(TNF-α)的下調(diào),有效改善了心肌梗死區(qū)的微環(huán)境[32]。
4.4? H2S對(duì)MIRI保護(hù)作用的量效關(guān)系
有研究表明,H2S的心臟生物效應(yīng)在其組織濃度上有所不同,其中低濃度的H2S通過(guò)電子轉(zhuǎn)移刺激線粒體電子傳輸鏈增加細(xì)胞內(nèi)ATP水平,增強(qiáng)抗氧化、抗炎作用,刺激血管舒張和血管生成;然而, H2S濃度突然的激增則抑制線粒體呼吸,降低細(xì)胞內(nèi)ATP水平,促進(jìn)MPTP的開放,具有促細(xì)胞壞死或凋亡的作用,加重心肌再灌注損傷[33]。另有研究[34]發(fā)現(xiàn),長(zhǎng)期使用NaSH的劑量為0.56和1.6 mg/kg,不低于0.28 mg/kg或更高(如2.8、5.6 mg/kg)的劑量對(duì)MIRI具有保護(hù)作用,但高于5.6 mg/kg時(shí),對(duì)心肌反而有損傷作用。并且不同H2S供體的心臟保護(hù)劑量因不同的動(dòng)物模型而異,例如GYY4137的心臟保護(hù)劑量在小鼠模型的劑量為26.6 umol/kg,而在大鼠中為小鼠的10倍[35]。以上均表明H2S供體的心臟保護(hù)劑量需要進(jìn)一步研究。
5 中醫(yī)藥與內(nèi)源性H2S
中醫(yī)學(xué)認(rèn)為MIRI屬“胸痹”范疇,“心脈閉阻”為其基本病機(jī),臨床多以活血化瘀法治療,化瘀又多以益氣、行氣為主。內(nèi)源性H2S有可能是中醫(yī)“氣”概念中的一個(gè)基礎(chǔ)物質(zhì),其生理功能是氣化的表達(dá)形式。中醫(yī)藥可以從整體觀調(diào)節(jié)MIRI時(shí)組織內(nèi)H2S的含量,通過(guò)改善心臟的微循環(huán)功能,在MIRI中發(fā)揮重要作用。研究顯示[36]加味丹參飲亦可以上調(diào)CSE,促進(jìn)內(nèi)源性H2S生成等以保護(hù)MIRI模型小鼠的心肌組織細(xì)胞結(jié)構(gòu)。大蒜為傳統(tǒng)中藥,來(lái)源于大蒜中的有機(jī)多硫化合物DATS在GSH催化下緩釋內(nèi)源性H2S,激活eNOS/NO信號(hào)通路,增加NO生物利用度以及改善再灌注后線粒體的呼吸和耦合保護(hù)MIRI[37]。
6 結(jié)語(yǔ)與展望
綜上所述,內(nèi)源性H2S的生物學(xué)特征及病理生理學(xué)作用均揭示了其在MIRI中對(duì)心肌的保護(hù)作用,為臨床上心肌保護(hù)工作的開展與應(yīng)用提供了新思路和實(shí)驗(yàn)依據(jù)。目前,關(guān)于H2S對(duì)MIRI的作用研究多為大鼠、兔等嚙齒類動(dòng)物的實(shí)驗(yàn)研究,而高等哺乳動(dòng)物研究不多。在臨床試驗(yàn)中,隨機(jī)招募的絕大多數(shù)患者具有共病和/或風(fēng)險(xiǎn)因素,包括糖尿病、心衰、高脂血癥和高血壓等,這些也給臨床試驗(yàn)帶來(lái)干擾。盡管大多數(shù)患者使用標(biāo)準(zhǔn)藥物,但在試驗(yàn)過(guò)程中,使用到的其他背景藥物對(duì)心臟保護(hù)療效的影響常被忽略。今后,在探討內(nèi)源性H2S與MIRI的關(guān)系時(shí),不僅要加深對(duì)其單一作用及靶點(diǎn)的認(rèn)識(shí),還更應(yīng)注重整體把握,特別是發(fā)揮中醫(yī)藥綜合多靶點(diǎn)、全方位的優(yōu)勢(shì),系統(tǒng)地將各種影響因素有機(jī)結(jié)合。與此同時(shí),干預(yù)過(guò)程中尤其應(yīng)注重各種H2S供體相關(guān)藥物的差異化以及相關(guān)的合理濃度,盡量減少甚至避免H2S帶來(lái)的傷害,發(fā)揮其心血管保護(hù)作用。
參考文獻(xiàn)
[1] 金紅芳,杜軍保,唐朝樞.內(nèi)源性硫化氫在心血管疾病中的研究進(jìn)展[J].中華醫(yī)學(xué)雜志,2011,91(43):3090-3092.
[2] BRODEK P, OLAS B. Biochemistry and therapeutic potential of hydrogen sulfide-reality or fantasy?[J]. Postepy Higieny i Medycyny Doswiadczalnej (Online), 2016, 70: 820-829.
[3] CHEN Y Q, ZHANG F, YIN J Y, et al. Protective mechanisms of hydrogen sulfide in myocardial ischemia[J]. Journal of Cellular Physiology, 2020, 235(12): 9059-9070.
[4] CITI V, PIRAGINE E, TESTAI L, et al. The role of hydrogen sulfide and H2S-donors in myocardial protection against ischemia/reperfusion injury[J]. Current Medicinal Chemistry, 2018, 25(34): 4380-4401.
[5] MIKAMI Y, SHIBUYA N, OGASAWARA Y, et al. Hydrogen sulfide is produced by cystathionine γ-lyase at the steady-state low intracellular Ca2+ concentrations[J]. Biochemical and Biophysical Research Communications, 2013, 431(2): 131-135.
[6] TONG F, CHAI R K, JIANG H Y, et al. In vitro /vivo drug release and anti-diabetic cardiomyopathy properties of curcumin/PBLG-PEG-PBLG nanoparticles[J]. International Journal of Nanomedicine, 2018, 13: 1945-1962.
[7] WANG L, TANG Z P, ZHAO W, et al. MiR-22/sp-1 links estrogens with the up-regulation of cystathionine γ-lyase in myocardium, which contributes to estrogenic cardioprotection against oxidative stress[J]. Endocrinology, 2015, 156(6): 2124-2137.
[8] TOLDO S, DAS A, MEZZAROMA E, et al. Induction of microRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice[J]. Circulation. Cardiovascular Genetics, 2014, 7(3): 311-320.
[9] WANG M X, GUO Z Y, WANG S L. The binding site for the transcription factor, NF-κB, on the cystathionine γ-lyase promoter is critical for LPS-induced cystathionine γ-lyase expression[J]. International Journal of Molecular Medicine, 2014, 34(2): 639-645.
[10] KAKINOHANA M, MARUTANI E, TOKUDA K, et al. Breathing hydrogen sulfide prevents delayed paraplegia in mice[J]. Free Radical Biology & Medicine, 2019, 131: 243-250.
[11] SUN Y G, WANG X Y, CHEN X, et al. Hydrogen sulfide improves cardiomyocytes electrical remodeling post ischemia/reperfusion injury in rats[J]. International Journal of Clinical and Experimental Pathology, 2015, 8(1): 474-481.
[12] BIBLI S I, SZABO C, CHATZIANASTASIOU A, et al. Hydrogen sulfide preserves endothelial nitric oxide synthase function by inhibiting proline-rich kinase 2: Implications for cardiomyocyte survival and cardioprotection[J]. Molecular Pharmacology, 2017, 92(6): 718-730.
[13] KING A L, POLHEMUS D J, BHUSHAN S, et al. Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): 3182-3187.
[14] JU Y, FU M, STOKES E, et al. H2S-mediated protein S-sulfhydration: A prediction for its formation and regulation[J]. Molecules, 2017, 22(8): 1334.
[15] MUSTAFA A K, GADALLA M M, SEN N, et al. H2S signals through protein S-sulfhydration[J]. Science Signaling, 2009, 2(96): 72.
[16] 梅玉東,金欣欣,黃麗琴.硫巰基化:一種新的蛋白質(zhì)翻譯后修飾[J].中國(guó)生物化學(xué)與分子生物學(xué)報(bào),2018,34(9):911-920.
[17] CITI V, PIRAGINE E, TESTAI L, et al. The role of hydrogen sulfide and H2S-donors in myocardial protection against ischemia/reperfusion injury[J]. Current Medicinal Chemistry, 2018, 25(34): 4380-4401.
[18] SUN Y G, WANG X Y, CHEN X, et al. Hydrogen sulfide improves cardiomyocytes electrical remodeling post ischemia/reperfusion injury in rats[J]. International Journal of Clinical and Experimental Pathology, 2015, 8(1): 474-481.
[19] NANDI S, RAVINDRAN S, KURIAN G A. Role of endogenous hydrogen sulfide in cardiac mitochondrial preservation during ischemia reperfusion injury[J]. Biomedecine & Pharmacotherapie, 2018, 97: 271-279.
[20] ALEXANDER B E, COLES S J, KHAN T F, et al. Investigating the generation of hydrogen sulphide from the phosphinodithioate slow-release donor GYY4137: Novel products and experimental tools[J]. Nitric Oxide, 2015, 47:52-53.
[21] KANG B, LI W, XI W, et al. Hydrogen sulfide protects cardiomyocytes against apoptosis in ischemia/reperfusion through MiR-1-regulated histone deacetylase 4 pathway[J]. Cellular Physiology and Biochemistry, 2017, 41(1): 10-21.
[22] EVANI, OM A .A Novel, Orally Active Hydrogen Sulfide-Releasing Compound, SG1002, Improves Left Ventricular Function with an Associated Induction of Angiogenesis in a Murine Model of Ischemia/Reperfusion[D]. Virginia: Virginia Commonwealth University ,2018:78-86.
[23] POLHEMUS D J, LI Z, PATTILLO C B, et al. A novel hydrogen sulfide prodrug, SG1002, promotes hydrogen sulfide and nitric oxide bioavailability in heart failure patients[J]. Cardiovascular Therapeutics, 2015, 33(4): 216-226.
[24] KARWI Q G, BORNBAUM J, BOENGLER K, et al. AP39, a mitochondria-targeting hydrogen sulfide (H2S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling[J]. British Journal of Pharmacology, 2017, 174(4): 287-301.
[25] SZCZESNY B, MóDIS K, YANAGI K, et al. AP39, a novel
mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro[J]. Nitric Oxide: Biology and Chemistry, 2014, 41: 120-130.
[26] BIBLI S I, ANDREADOU I, CHATZIANASTASIOU A, et al. P21 Thioglycine induces pharmacological post-conditioning in rabbits[J]. Nitric Oxide, 2013, 31: 43-44.
[27] ZHAO Y, BHUSHAN S, YANG C T, et al. Controllable hydrogen sulfide donors and their activity against myocardial ischemia-reperfusion injury[J]. ACS Chemical Biology, 2013, 8(6): 1283-1290.
[28] MARTELLI A, TESTAI L, CITI V, et al. Pharmacological characterization of the vascular effects of aryl isothiocyanates: Is hydrogen sulfide the real player?[J]. Vascular Pharmacology, 2014, 60(1): 32-41.
[29] TESTAI L, MARINO A, PIANO I, et al. The novel H2S-donor 4-carboxyphenyl isothiocyanate promotes cardioprotective effects against ischemia/reperfusion injury through activation of mitoKATP channels and reduction of oxidative stress[J]. Pharmacological Research, 2016, 113(PtA): 290-299.
[30] RAGGIO R, BONANI W, CALLONE E, et al. Silk fibroin porous scaffolds loaded with a slow-releasing hydrogen sulfide agent (GYY4137) for applications of tissue engineering[J]. ACS Biomaterials Science & Engineering, 2018, 4(8): 2956-2966.
[31] SUN X T, WANG W S, DAI J, et al. A long-term and slow-releasing hydrogen sulfide donor protects against myocardial ischemia/reperfusion injury[J]. Scientific Reports, 2017, 7(1): 3541.
[32] LIANG W, CHEN J R, LI L Y, et al. Conductive hydrogen sulfide-releasing hydrogel encapsulating ADSCs for myocardial infarction treatment[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14619-14629.
[33] HALESTRAP A P. A pore way to die: The role of mitochondria in reperfusion injury and cardioprotection[J]. Biochemical Society Transactions, 2010, 38(4): 841-860.
[34] JEDDI S, GHEIBI S, KASHFI K, et al. Protective effect of intermediate doses of hydrogen sulfide against myocardial ischemia-reperfusion injury in obese type 2 diabetic rats[J]. Life Sciences, 2020, 256: 117855.
[35] KARWI Q G, WHITEMAN M, WOOD M E, et al. Pharmacological postconditioning against myocardial infarction with a slow-releasing hydrogen sulfide donor, GYY4137[J]. Pharmacological Research, 2016, 111: 442-451.
[36] 陳? 聰,成細(xì)華,任? 婷,等.加味丹參飲作用內(nèi)源性H2S合成途徑保護(hù)心肌缺血/再灌注損傷的實(shí)驗(yàn)研究[J].湖南中醫(yī)藥大學(xué)學(xué)報(bào),2019, 39(10): 1183-1188.
[37] 任麗麗,許? 娟,劉? 雷,等.大蒜素防治心腦缺血及缺血-再灌注損傷研究進(jìn)展[J].中國(guó)誤診學(xué)雜志,2010,10(30):7326-7327.