劉小龍,陳海杰,2,喬旦,馮大鵬,王海忠,孟維晟
氧化石墨烯對(duì)鋰基潤滑脂摩擦學(xué)性能的影響
劉小龍1,陳海杰1,2,喬旦1,馮大鵬1,王海忠1,孟維晟1
(1.中國科學(xué)院蘭州化學(xué)物理研究所 固體潤滑國家重點(diǎn)試驗(yàn)室,蘭州 730000;2.中國科學(xué)院大學(xué),材料與光電研究中心,北京 100049)
研究氧化石墨烯(GO)作為添加劑對(duì)潤滑脂摩擦性能的影響。將鱗片石墨利用經(jīng)典的Hummers氧化法氧化得到GO,并表征了GO,再分別以不同的質(zhì)量分?jǐn)?shù)(0.1%、0.3%、0.5%、1.0%、1.5%)與潤滑脂復(fù)配。同時(shí)增加了空白潤滑脂與石墨粉復(fù)配的潤滑脂作為對(duì)比。利用Optimol SRV型摩擦磨損試驗(yàn)機(jī)評(píng)價(jià)其摩擦學(xué)性能。利用非接觸三維表面輪廓儀、掃描電子顯微鏡(SEM)觀察磨斑表面和深度。通過特征X射線能譜儀(EDS)和X射線光電子能譜儀(XPS),對(duì)磨斑表面的元素化學(xué)狀態(tài)分布進(jìn)行分析。與空白鋰基潤滑脂相比,添加了石墨粉的鋰基潤滑脂在經(jīng)過鋼/鋼摩擦副的摩擦后,其摩擦因數(shù)均有降低,但隨著試驗(yàn)的進(jìn)行,其摩擦因數(shù)均逐漸提高,摩擦副表面出現(xiàn)了潤滑失效的現(xiàn)象,而添加GO的鋰基潤滑脂其摩擦因數(shù)迅速降低至0.13左右,降低了35%,且在試驗(yàn)時(shí)間內(nèi)沒有出現(xiàn)潤滑失效的現(xiàn)象。SEM及三維輪廓圖顯示,在添加GO的潤滑脂潤滑后,其鋼塊磨斑最低,磨痕最淺;EDS顯示其潤滑后的磨痕有較多的氧元素,說明具有含氧官能團(tuán)的GO 能夠牢固地吸附在基體表面,形成潤滑層。XPS證實(shí)了分別添加有石墨和GO的潤滑脂在摩擦試驗(yàn)過程中均與基體發(fā)生了摩擦化學(xué)反應(yīng),由鐵的氧化物形成了一層潤滑薄膜。GO作為潤滑脂添加劑可以有效降低摩擦因數(shù),減少磨損量,延長潤滑時(shí)間,提高潤滑性能。
氧化石墨烯;鋰基潤滑脂;摩擦磨損;潤滑
摩擦磨損是導(dǎo)致機(jī)械設(shè)備失效的主要原因之一。潤滑劑能有效地控制或減少機(jī)械的摩擦磨損,從而提高機(jī)械設(shè)備運(yùn)行的可靠性,延長機(jī)械設(shè)備的使用壽命。碳材料作為添加劑[1-2],可以進(jìn)一步提高潤滑劑的摩擦學(xué)性能,滿足高頻高載等多種工況的苛刻要求。
石墨烯是一種新型的具有晶體結(jié)構(gòu)的二維碳材料,其碳原子之間由sp2雜化結(jié)合而成,結(jié)構(gòu)穩(wěn)定[3-5]。由于石墨烯具有優(yōu)異的機(jī)械、光學(xué)、電學(xué)性能,故而在理論和實(shí)際應(yīng)用方面的研究經(jīng)久不衰,被越來越廣泛地應(yīng)用在諸如光學(xué)、生物傳感器和電子器件等領(lǐng)域[6-8]。此外,石墨烯具有出色的摩擦學(xué)性能,是減少摩擦、粘附和磨損的優(yōu)良候選材料[9]。Wang等[10]在四球摩擦試驗(yàn)中發(fā)現(xiàn)石墨烯作為潤滑添加劑具有優(yōu)異的減摩性能,能顯著降低磨痕直徑,提高潤滑脂的摩擦學(xué)性能。崔等[11]的試驗(yàn)表明,相比于純鋰基潤滑脂,添加了石墨烯的鋰基潤滑脂能提供更好的摩擦學(xué)性能,使其具有更低的摩擦因數(shù)和更少的磨損量,且含有石墨烯的鋰基潤滑脂潤滑后的鋼球表面的磨損量明顯降低。Feng等[12]通過滑動(dòng)摩擦力顯微鏡針尖對(duì)石墨和石墨烯的潤滑性能進(jìn)行了深入研究,他們認(rèn)為石墨烯是更加有效的潤滑劑。
然而,石墨烯作為潤滑脂添加劑也存在著不可忽略的缺點(diǎn),其含有的官能團(tuán)很少,不易與其他物質(zhì)發(fā)生反應(yīng),具有較高的化學(xué)惰性,使之與基體的粘合力也較差[13-14]。此外,石墨烯作為潤滑脂添加劑在提高耐磨壽命和承載能力方面仍存在很大困難,使其在潤滑領(lǐng)域的潛在工程應(yīng)用受到限制[15-17],而且石墨烯的結(jié)構(gòu)和其自身的理化性質(zhì)會(huì)導(dǎo)致其在基礎(chǔ)油中出現(xiàn)團(tuán)聚或不穩(wěn)定的現(xiàn)象,穩(wěn)定性和分散性較差,潤滑效果大打折扣。
氧化石墨烯(GO)作為石墨烯的衍生物,以其獨(dú)特的結(jié)構(gòu)和優(yōu)異的分散性而備受關(guān)注[18-19],GO邊緣和表面修飾有羥基、羧基和環(huán)氧基等多種官能團(tuán),因而具有較高的化學(xué)活性,能有效提高與基體的結(jié)合強(qiáng)度[20-21],使其在摩擦副表面持續(xù)形成一層潤滑薄膜,可在保持潤滑性能的同時(shí)延長潤滑壽命[22-25],從而最終改善潤滑性能。另外,將石墨烯或GO加入到潤滑脂中可避免不穩(wěn)定或分散性較差的問題。然而目前見諸于報(bào)道的多為GO與潤滑油及水基潤滑劑的復(fù)配[26-30],GO與潤滑脂的復(fù)配則較少,研究GO對(duì)潤滑脂摩擦學(xué)性能的影響,對(duì)于拓展GO在潤滑領(lǐng)域的應(yīng)用具有重要意義。
本文選用鋰基潤滑脂,以GO為添加劑,通過改變GO的加入量,考察了不同比例復(fù)配的潤滑脂的潤滑性能,同時(shí)選用石墨粉作為鋰基潤滑脂的添加劑進(jìn)行對(duì)比,并采用表面分析技術(shù)等表征手段討論了其摩擦學(xué)性能。
試驗(yàn)材料包括:H2SO4(質(zhì)量分?jǐn)?shù)98%)、H2O2(質(zhì)量分?jǐn)?shù)30%)、KMnO4、濃HCl等試劑均為市售產(chǎn)品;基礎(chǔ)油選用液體石蠟,為利安隆博華(天津)醫(yī)藥化學(xué)有限公司生產(chǎn);稠化劑選用12-羥基硬脂酸鋰;鱗片石墨購于青島晨陽石墨有限公司;膠體石墨粉劑購自上海膠體化工廠。以86%(質(zhì)量分?jǐn)?shù))的液體石蠟和14%(質(zhì)量分?jǐn)?shù))的12-羥基硬脂酸鋰制得的鋰基潤滑脂的相關(guān)理化性能見表1。
表1 鋰基潤滑脂的基本理化性能指標(biāo)
Tab.1 Basic physical and chemical indexes of lithium-based greases
GO的制備參見文獻(xiàn)[31],具體如下:將盛有70 mL濃H2SO4的燒瓶放入冰水浴中,再將3.0 g鱗片石墨粉邊攪拌邊緩慢加入燒杯,保持?jǐn)嚢?,隨后分幾次加入9.0 g高錳酸鉀,并在此過程中保持溶液溫度低于20 ℃,接著將溫度上調(diào)至40 ℃并攪拌0.5 h,再加入150 mL去離子水,繼續(xù)將溫度升至95 ℃攪拌15 min,之后加入500 mL去離子水,隨即緩慢加入15 mL 30%的H2O2,溶液顏色從深棕色變?yōu)辄S色。合成過程結(jié)束后,用體積比為1∶10的HCl水溶液洗滌混合物,并用透析膜純化一周以除去殘留的金屬離子,將所得GO膠體溶液冷凍干燥48 h,獲得蓬松多孔的GO,最后利用高速行星式球磨機(jī)將其研磨至粉末,干燥保存,備用。
采用傅里葉變換紅外光譜儀(FTIR,Thermo- Fisher-Scientific)和顯微共焦拉曼光譜儀(LabRAM- HR-Evolution,HORIBA,532 nm激光激發(fā))對(duì)凍干GO樣品進(jìn)行分析;利用原子力顯微鏡(AFM,Agilent 5500)觀察GO的表面形貌,并計(jì)算其平均厚度,掃描模式為Tapping模式,掃描面積為2 μm×2 μm,掃描速率為2 Hz。
將上述制得的鋰基潤滑脂分別與GO和石墨按不同的比例進(jìn)行復(fù)配,利用研磨機(jī)充分混勻。表2列出了2種添加劑在鋰基潤滑脂中所占比例及命名,不同比例的GO與鋰基潤滑脂復(fù)配分別以GG-1—GG-5命名,不同比例的石墨粉與鋰基潤滑脂復(fù)配分別以CG-1—CG-5命名,另外將不含添加劑的鋰基潤滑脂命名為Li-G。
表2 潤滑脂中GO、石墨的比例
Tab.2 The concentration ratio of the GO and graphite in greases
利用Optimol SRV-Ⅳ摩擦磨損試驗(yàn)機(jī)測(cè)定分別添加有石墨、GO及空白鋰基潤滑脂的摩擦性能。SRV 摩擦副的接觸形式為球-盤點(diǎn)接觸,試球?yàn)镚Cr15鋼球,直徑為10 mm,下試盤為GCr15鋼塊,尺寸為24.0 mm×7.9 mm,其中載荷為100 N,頻率為25 Hz,壓頭運(yùn)動(dòng)行程為1000 μm,時(shí)間為30 min,溫度為25 ℃。試驗(yàn)之前,將所用鋼球與鋼塊在石油醚中超聲清洗3次,然后固定試樣并將適量潤滑脂涂覆在球-盤接觸區(qū)域開始試驗(yàn)。
利用JSM-5600 LV 型掃描電子顯微鏡(SEM)觀察磨斑表面形貌,并利用EDS和XPS(XPS,PHI-5702)對(duì)磨斑表面含有的元素及其分布進(jìn)行分析,選用 Al-Kα 激發(fā)源,通過能量為29.35 eV,結(jié)合能測(cè)量精度為±0.3 eV,以污染碳的C1s結(jié)合能284.8 eV作為內(nèi)標(biāo)。
由GO的FT-IR圖(圖1a)可知,1730 cm–1處的振動(dòng)歸屬于羧基(—COOH)的C==O伸縮振動(dòng)峰,1628 cm–1處為sp2雜化的碳碳雙鍵(C==C)的面內(nèi)伸縮振動(dòng),1365 cm–1則是由碳所連的羥基(C—OH)的振動(dòng)所致,1082 cm–1處為GO的環(huán)氧基團(tuán)的特征振動(dòng)峰,大約在3431 cm–1處的較強(qiáng)較寬的振動(dòng)峰則是—OH的伸縮振動(dòng)峰[23],由此可見此GO至少具有—COOH、C==C、C—OH和C—O—C等4種官能團(tuán)。圖1b的拉曼光譜在1356 cm–1和1593 cm–1處有2個(gè)較明顯的振動(dòng)吸收峰,其分別為GO中無序結(jié)構(gòu)誘導(dǎo)的D峰和歸屬于石墨的本征拉曼模式的G峰[31]。通常單層GO的厚度約為1 nm[32],AFM圖(圖1d)所測(cè)GO的平均厚度為1.1 nm,說明該合成的GO為單層結(jié)構(gòu),從圖1c可以看出,GO為無序的片層狀結(jié)構(gòu),圖2為上述GO的結(jié)構(gòu)示意圖。
圖1 GO的FT-IR、Raman譜圖以及AFM圖和相應(yīng)的厚度
圖2 GO的分子結(jié)構(gòu)示意圖
摩擦因數(shù)能直觀地反映潤滑脂的減摩性能。試驗(yàn)考查了Li-G與CG和GG系列潤滑脂在100 N、25 Hz、25 ℃、30 min條件下對(duì)鋼/鋼摩擦副的摩擦學(xué)性能。試驗(yàn)結(jié)果如圖3所示,Li-G的摩擦因數(shù)在130 s內(nèi)迅速增加到0.23,隨后緩慢降低,在0.2左右達(dá)到穩(wěn)定,直至試驗(yàn)結(jié)束,說明在該試驗(yàn)條件下空白潤滑脂的減摩性能較差。CG-1—CG-5初期的摩擦因數(shù)均較低,而且保持潤滑的時(shí)間隨著石墨含量的增加而延長,但隨著試驗(yàn)的進(jìn)行,其摩擦因數(shù)均出現(xiàn)不同程度的升高,在試驗(yàn)時(shí)間內(nèi)CG-1—CG-5均出現(xiàn)了潤滑失效現(xiàn)象,這是因?yàn)槭康脑黾邮蛊湓谀Σ帘砻娓仔纬蛇B續(xù)而完整的潤滑膜,避免了摩擦副的直接接觸,降低了摩擦因數(shù),但是石墨成膜容易分離破裂,加之其與基體的附著力較差,很容易在對(duì)磨過程中帶著潤滑脂滑移擠出,最終使?jié)櫥33],這與試驗(yàn)結(jié)果相一致。
GG-1—GG-5則表現(xiàn)出了優(yōu)異的減摩性能,其摩擦因數(shù)均為0.13左右,相比于Li-G降低了35%,而且相比于CG系列潤滑脂,其在保持摩擦因數(shù)更低的同時(shí),表現(xiàn)出了更長的潤滑壽命,在試驗(yàn)時(shí)間范圍內(nèi),均沒有出現(xiàn)摩擦副的潤滑失效現(xiàn)象。這是由于在2個(gè)摩擦表面之間滑動(dòng)過程中,由于高接觸壓力產(chǎn)生的牽引/壓縮應(yīng)力,GO層間產(chǎn)生滑動(dòng),與潤滑脂共同在金屬基底上形成一層薄薄的物理潤滑膜,避免了摩擦副直接接觸,降低了摩擦因數(shù)[22];另一方面,GO表面豐富的極性官能團(tuán)增大了其與基體的附著力,使之在此試驗(yàn)條件下的脫附失效變得困難,從而延長了潤滑時(shí)間。此外,GO與潤滑脂的協(xié)同潤滑作用[33]也是其具有長效潤滑的原因之一。
圖3 CG及GG與鋰基潤滑脂的摩擦因數(shù)變化曲線(100 N、25 Hz、25 ℃、30 min)
同時(shí),從GG-1—GG-5的摩擦因數(shù)曲線可以看出,GO添加量為0.5%的潤滑脂(GG-3)的摩擦因數(shù)最低,而GO添加量為1.5%的潤滑脂(GG-5)的摩擦因數(shù)反而升高,潤滑效果變差,這說明潤滑脂中GO含量的增加并不與其摩擦因數(shù)的降低呈線性關(guān)系,而是有一個(gè)最佳值。這可能是由于添加劑濃度增大,導(dǎo)致所形成的潤滑膜厚度增大,層間剪切力增大;另一方面可能是由于過大的濃度會(huì)影響到潤滑脂結(jié)構(gòu)的穩(wěn)定性,影響其向接觸區(qū)輸送GO并對(duì)磨損界面進(jìn)行修復(fù),減弱其潤滑效果[34]。
磨損體積是潤滑脂抗磨性能好壞的直接體現(xiàn)[35]。為了對(duì)比Li-G與CG及GG系列潤滑脂的抗磨效果,圖4、圖5和圖6分別給出了在25 ℃、100 N、25 Hz條件下,經(jīng)30 min摩擦試驗(yàn)后,Li-G、CG-4和GG-4的磨斑表面形貌、三維輪廓以及磨損體積,其中磨損體積取3次測(cè)量的平均值。從圖4可以看出,Li-G潤滑下的磨痕較深,表面粗糙不平,并且表面材料被大塊剝落而形成了凹坑,布滿了平行的細(xì)長犁溝和腐蝕點(diǎn)坑,試樣表面的磨損形式主要有剝落、切削和犁溝、孔洞,形成的犁溝和流線狀條紋與零件相對(duì)運(yùn)動(dòng)方向一致,表明材料的表層和亞表層已被磨損,潤滑薄膜在該試驗(yàn)條件下被完全破壞,此磨損形式主要有粘著磨損和磨粒磨損。添加了1.0%石墨粉(CG-4)后,其磨斑變大,磨痕變淺。這可能是因?yàn)檩^高濃度的石墨粉在表面形成的膜較厚,在摩擦過程中形成了較寬的磨痕,相比于Li-G,CG-4潤滑后的鋼塊表面的腐蝕點(diǎn)坑明顯減少,幾乎不存在大塊剝落后形成的凹坑,形成的犁溝也較淺,說明此磨損形式主要為磨粒磨損且更輕微,證明石墨粉作為潤滑脂添加劑確實(shí)具有抗磨減摩效果。相對(duì)于Li-G和CG-4,添加了1.0% GO的潤滑脂(GG-4)潤滑下的磨斑明顯減小,凹坑和腐蝕點(diǎn)坑更少,形成的犁溝更淺,說明此潤滑薄膜的抗磨性能更優(yōu)異,因?yàn)镚O與基底更強(qiáng)的結(jié)合力使其在鋼球表面形成了一層持續(xù)潤滑薄膜,在試驗(yàn)時(shí)間內(nèi)避免了摩擦副直接接觸,使鋼球?qū)δズ笮纬傻哪ズ鄹?xì)小,犁溝更淺。
圖4 Li-G、CG-4及GG-4潤滑后鋼塊表面磨損的SEM圖
圖5 Li-G、CG和GG潤滑后鋼塊表面磨損的三維輪廓圖
圖6 Li-G、CG和GG潤滑后鋼塊表面的磨損體積(100 N、25 Hz、25 ℃、30 min)
三維表面形貌顯示了磨損表面的更多細(xì)節(jié),圖5的結(jié)果表明,CG-1—CG-5潤滑下的磨痕均小于Li-G的磨痕,同時(shí)CG-1—CG-5潤滑下的磨痕表面均有一層被刮起的潤滑膜,潤滑脂的滑移擠出會(huì)更快地導(dǎo)致潤滑失效,這也與圖3中CG系列潤滑脂很快顯示出潤滑失效這一現(xiàn)象一致。相較于Li-G和CG系列潤滑脂潤滑下的磨痕,GG系列潤滑脂潤滑下的磨斑更小,磨痕更淺,顯示出了更加優(yōu)異的抗磨性能。
圖6為Li-G、CG和GG系列潤滑脂在100 N、25 Hz、25 ℃下經(jīng)30 min摩擦試驗(yàn)后,鋼/鋼摩擦副摩擦后的磨損體積,與SEM圖相對(duì)應(yīng),Li-G潤滑下的磨斑表現(xiàn)出了最高的磨損體積。隨著石墨粉和GO加入量的增大,其磨損體積逐漸減小,對(duì)于CG系列潤滑脂,在試驗(yàn)時(shí)間內(nèi),潤滑時(shí)效保持的時(shí)間越長,其磨損越輕微,磨損體積越小。從圖3可以看出,CG-1—CG-5隨著石墨粉加入量的增加,其摩擦因數(shù)突變點(diǎn)出現(xiàn)的越晚,即潤滑壽命越長,對(duì)應(yīng)于圖6中其磨損體積越??;另一方面,也可以看到隨著GO加入量的增加,GG-1—GG-5潤滑下鋼球的磨損體積逐漸減小,而且GG系列潤滑脂總體表現(xiàn)出了更小的磨損體積。
根據(jù)以上結(jié)果得知,石墨粉加入量的增加會(huì)延長潤滑脂的潤滑壽命,減少鋼球的磨損體積,潤滑脂中GO加入比例越多,潤滑后鋼球的磨損體積越小,且小于同等比例的CG系列潤滑脂。這是因?yàn)槭墼谀Σ吝^程中易滑移擠出,使?jié)櫥?,GO加入后會(huì)形成致密均一的邊界保護(hù)膜,避免了摩擦副直接接觸,從而減小了磨損,使其在鋼/鋼摩擦系統(tǒng)中表現(xiàn)出優(yōu)于Li-G和CG系列潤滑脂的減摩抗磨性能。
圖7顯示了分別在Li-G、CG-4和GG-4潤滑及100 N、25 Hz、25 ℃條件下,經(jīng)30 min摩擦試驗(yàn)后鋼塊磨斑中C、O和Fe元素的分布。由圖7可知,3種潤滑脂潤滑后的磨痕表面的Fe元素幾乎沒有明顯的區(qū)別。與Li-G相比,CG-4和GG-4潤滑后的磨痕表面的C元素含量均有所增加,此為鋼塊上粘附的含有烷烴的潤滑脂膜薄所致。相比于Li-G和CG-4,GG-4潤滑后的磨痕表面的O元素含量明顯增多,這歸因于GO中的含氧基團(tuán),說明在潤滑脂中添加的含有含氧官能團(tuán)的片狀GO會(huì)在對(duì)磨過程中通過極性官能團(tuán)逐漸吸附在鋼球表面,較強(qiáng)的吸附力不會(huì)使其容易地從鋼球表面剝落。而且,GO層間較低的滑移系數(shù)有利于摩擦因數(shù)的降低,同時(shí)XPS顯示(圖8)在經(jīng)CG-4和GG-4潤滑后,其磨痕表面均檢測(cè)出了FeO、Fe2O3、Fe3O4等鐵的氧化物[36-38],說明摩擦過程中在對(duì)磨表面產(chǎn)生了摩擦化學(xué)反應(yīng),鋼塊中的Fe元素與空氣以及GO中的氧反應(yīng)生成了鐵氧化物,這些鐵氧化物會(huì)在對(duì)磨表面形成一層邊界保護(hù)膜,從而實(shí)現(xiàn)較長久的潤滑效果。
圖7 Li-G、CG-4和GG-4潤滑后鋼塊表面元素分布圖
圖8 CG-4和GG-4潤滑后鋼塊磨損表面的C1s、O1s及Fe2p的XPS譜圖
1)在鋰基潤滑脂中添加石墨粉能降低摩擦因數(shù),減少磨損體積。
2)在鋰基潤滑脂中添加GO的潤滑效果要優(yōu)于添加同等比例石墨粉的潤滑效果。
3)GO 質(zhì)量分?jǐn)?shù)的增加并不與摩擦因數(shù)的降低呈線性變化,而是存在一個(gè)最佳值,故適量GO能夠提高潤滑脂的減摩抗磨性能。
[1] ZHANG Z C, CAI Z B, PENG J F, et al. Comparison of the tribology performance of nano-diesel soot and graphite particles as lubricant additives[J]. Journal of physics D: Applied physics, 2016, 49(4): 45304.
[2] MOHAMED S, ALA A, KHALI L. Tribological properties of dispersed carbon nanotubes in lubricant[J]. Fullerenes, nanotubes and carbon nanostructures, 2016, 24(7): 479-485.
[3] BERMAN D, ERDEMIR A, SUMANT A. Graphene: A new emerging lubricant[J]. Materials today, 2014, 17(1): 31-42.
[4] ZHENG J, ZHOU Z R, ZHANG J, et al. On the friction and wear behaviour of human tooth enamel and dentin[J]. Wear, 2003, 255(7): 967-974.
[5] DEMIRCI M T, DüZCüKO?LU H. Wear behaviors of polytetrafluoroethylene and glass fiber reinforced polya-mide 66 journal bearings[J]. Materials & design, 2014, 57: 560-567.
[6] HAMBLIN P C, KRISTEN U, CHASAN D. Ashless antioxidants, copper deactivators and corrosion inhibitors: Their use in lubricating oils[J]. Lubrication science, 2010, 2(4): 287-318.
[7] SAVAN A, PFLüGER E, VOUMARD P, et al. Modern solid lubrication: Recent developments and applications of MoS2[J]. Lubrication science, 2000, 12(2): 185-203.
[8] XIAO H, KIM S, HE X, et al. Friction pair evaluation of cartilage-diamond for partial joint repair[J]. Carbon, 2014, 80: 551-559.
[9] BROWN S, MUSFELDT J L, MIHUT I, et al. Bulk vs nanoscale WS2:? Finite size effects and solid-state lubrica-tion[J]. Nano letters, 2007, 7(8): 2365-2369.
[10] WANG J, GUO X C, HE Y, et al. Tribological charac-teristics of graphene as lithium grease additive[J]. China petroleum processing and petrochemical technology, 2017, 1(1): 49-57.
[11] 崔玲玲, 王瑩, 顧正鵬, 等. 石墨烯增強(qiáng)鋰基脂的摩擦學(xué)性能[J]. 材料科學(xué)與工程學(xué)報(bào), 2019, 37(4): 553-559. CUI Ling-ling, WANG Ying, GU Zheng-peng, et al. Tribological behavior of graphene strengthened lithium grease[J]. Journal of materials science and engineering, 2019, 37(4): 553-559.
[12] FENG X, KWON S, PARK J Y, et al. Superlubric sliding of graphene nanoflakes on graphene[J]. ACS nano, 2013, 7(2): 1718-1724.
[13] RAMPRABHU T, VARMA V K, VEDANTAM S. Effect of SiC volume fraction and size on dry sliding wear of Fe/SiC/graphite hybrid composites for high sliding speed applications[J]. Wear, 2014, 309(1): 1-10.
[14] SCHRIVER M, REGAN W, GANNETT W J, et al. Graphene as a long-term metal oxidation barrier: Worse than nothing[J]. ACS nano, 2013, 7(7): 5763-5768.
[15] CHEN F X, MAI Y J, XIAO Q N, et al. Three-dimen-sional graphene nanosheet films towards high performancesolid lubricants[J]. Applied surface science, 2019, 467-468: 30-36.
[16] RAMAN R K, TIWARI A. Graphene: The thinnest known coating for corrosion protection[J]. Journal of the Minerals, Metals & Materials Society, 2014, 66(4): 637-642.
[17] COLEMAN J N, LOTYA M, O'NEILL A, et al. Two- dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571.
[18] HE X, XIAO H, CHOI H, et al. α-zirconium phosphate nanoplatelets as lubricant additives[J]. Colloids and sur-faces A: Physicochemical and engineering aspects, 2014, 452: 32-38.
[19] WATANABE S, NOSHIRO J, MIYAKE S. Tribological characteristics of WS2/MoS2solid lubricating multilayer films[J]. Surface and coatings technology, 2004, 183(2): 347-351.
[20] CARVALHO O, BUCIUMEANU M, MADEIRA S, et al. Optimization of AlSi-CNTs functionally graded material composites for engine piston rings[J]. Materials & design, 2015, 80: 163-173.
[21] 何停霞, 戴慶文, 黃巍, 等. 離子液體基氧化石墨烯膠體分散穩(wěn)定性研究[J]. 表面技術(shù), 2019, 48(8): 129-135. HE Ting-xia, DAI Qing-wen, HUANG Wei, et al. Disper-sion stability of ionic liquid-based graphene oxide[J]. Surface technology, 2019, 48(8): 129-135.
[22] SONG H J, JIA X H, LI N, et al. Synthesis of α-Fe2O3nanorod/graphene oxide composites and their tribological properties[J].Journal of materials chemistry, 2012, 22(3): 895-900.
[23] OU J, WANG J, LIU S, et al. Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly[J]. Langmuir, 2010, 26(20): 15830- 15836.
[24] OU J, WANG Y, WANG J, et al. Self-assembly of octa-decyltrichlorosilane on graphene oxide and the tribolo-gical performances of the resultant film[J]. The journal of physical chemistry C, 2011, 115(20): 10080-10086.
[25] ZHE C, LIU Y, LUO J. Tribological properties of few- layer graphene oxide sheets as oil-based lubricant addi-tives[J]. Chinese journal of mechanical engineering, 2016, 29(2): 439-444.
[26] HIROSHI K, YUTA N, AIDIL A, et al. Tribological properties of monolayer graphene oxide sheets as water- based lubricant additives[J]. Carbon, 2014, 66(1): 720-723.
[27] LI Y, ZHAO J, CHENG T, et al. Highly exfoliated reduced graphite oxide powders as efficient lubricant oil additives[J]. Advanced materials interfaces, 2016, 3(22): 1600700.
[28] LIANG S, SHEN Z, YI M, et al. In-situ exfoliated graphene for high-performance water-based lubricants[J]. Carbon, 2016, 96: 1181-1190.
[29] LIU Y H, WANG X K, PAN G S, et al. A comparative study between graphene oxide and diamond nanoparticles as water-based lubricating additives[J]. Science China technological sciences, 2013, 1: 152-157.
[30] MUNGSE H P, GUPTA K, SINGH R, et al. Alkylated graphene oxide and reduced graphene oxide: Grafting density, dispersion stability to enhancement of lubrication properties[J]. Colloid and interface science, 2019, 541: 150-162.
[31] CHEN H, BA Z, QIAO D, et al. Study on the tribological properties of graphene oxide composite films by self- assembly[J]. Tribology international, 2020, 151: 106533- 106546.
[32] JUNG I, DIKIN D A, PINER R D, et al. Tunable electrical conductivity of individual graphene oxide sheets reduced at “l(fā)ow” temperatures[J]. Nano letters, 2008, 8(12): 4283-4287.
[33] 申澤慧, 孫榮祿. 自潤滑復(fù)合材料中不同組分之間的協(xié)同作用[J]. 熱加工工藝, 2015, 44(4): 25-30. SHEN Ze-hui, SUN Rong-lu. Synergy of different com-ponents in solid self-lubricating material[J]. Hot working technology, 2015, 44(4): 25-30.
[34] 徐楠, 李維民, 趙改青, 等. 納米碳酸鈣作為潤滑脂添加劑的摩擦學(xué)性能及流變行為研究[J]. 摩擦學(xué)學(xué)報(bào), 2014, 34(2): 203-210. XU Nan, LI Wei-min, ZHAO Gai-qing, et al. Tribological properties and rheological behaviors of calcium carbonate nanoparticle as grease additive[J]. Tribology, 2014, 34(2): 203-210.
[35] ILANKO A K, VIJAYARAGHAVAN S. Wear behavior of asbestos-free eco-friendly composites for automobile brake materials[J]. Friction, 2016, 4(2): 144-152.
[36] SUN Y, HU L, XUE Q. Tribological properties and action mechanism of N,N-dialkyl dithiocarbamate-derived S- hydroxyethyl borate esters as additives in rapeseed oil[J]. Wear, 2009, 266(9): 917-924.
[37] QU J, MEYER H M, CAI Z, et al. Characterization of ZDDP and ionic liquid tribofilms on non-metallic coatings providing insights of tribofilm formation mechanisms[J]. Wear, 2015, 332-333: 1273-1285.
[38] GUO Y, LIU G, LI G, et al. Solvent-free ionic silica nanofluids: Smart lubrication materials exhibiting remark-able responsiveness to weak electrical stimuli[J]. Chemical engineering journal, 2019, 383: 123202.
The Influence of Graphene Oxide on the Tribological Properties of Lithium-based Grease
1,1,2,1,1,1,1
(1.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2.Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)
The effect of graphene oxide (GO) as an additive on the friction properties of greases was studied. The flake graphite was oxidized by the classic Hummers oxidation method to obtain GO, and GO was characterized, and then mixed with grease in different proportions (0.1wt%, 0.3wt%, 0.5wt%, 1.0wt%, 1.5wt%), meanwhile, and we also added the blank grease and the grease compounded with graphite powder as a comparison. The tribological performance was measured by Optimol SRV friction and wear tester, and the 3D profiler and scanning electron microscope (SEM) were used to observe the surface and depth of the worn surface. The chemical state distribution of the elements on the worn surface was analyzed by X-ray energy spectrometer (EDS) and X-rayphotoelectron spectra (XPS). The results indicate that compared with the blank lithium grease, the friction coefficient of the graphite powder-added lithium grease reduced after the friction of the steel/steel friction pair, but as the experiment progressed, the friction coefficient gradually increased, and a wear-out on the surface of the friction pair occurred. While the friction coefficient of the lithium-based grease added with GO was rapidly reduced to about 0.13, which is reduced by 35%, and there was no wear-out on the surface of the friction pair during the experiment time. The SEM and 3D profiler shows the lowest and shallowest wear scar after lubrication with GO grease. At the same time, the EDS shows that the wear scar has more oxygen elements, indicating that GO with oxygen-containing functional groups can be firmly adsorbed on the substrate surface to form a lubricating layer. The XPS confirms that the grease added with graphite and GO has a tribo-chemical reaction with the matrix during the friction test, forming a lubricating film formed by iron oxide. GO as a grease additive can effectively reduce the friction coefficient and the amount of wear, as well as extend the lubrication time and improve the lubricating performance.
graphene oxide; lithium-baesd grease; friction and wear; lubrication
2021-02-09;
2021-03-17
LIU Xiao-long (1991—), Male, Master, Assistant engineer, Research focus: design, preparation and tribochemistry research of high-performance lubricant.
喬旦(1987—),女,博士,副研究員,主要研究方向?yàn)樘胤N潤滑油、潤滑脂、添加劑摩擦化學(xué)。郵箱:ddqiao@licp.cas.cn
Corresponding author:QIAO Dan (1987—), Female, Doctor, Associate researcher, Research focus: the tribochemistry of special lubricants, greases and additives. E-mail: ddqiao@licp.cas.cn
通訊作者:王海忠(1979—),男,博士,副研究員,主要研究方向?yàn)樘胤N潤滑油脂的制備。郵箱:whzhlsl@licp.cas.cn
Corresponding author:WANG Hai-zhong (1979—), Male, Doctor, Associate researcher, Research focus: preparation of special lubricating grease. E-mail: whzhlsl@licp.cas.cn
劉小龍, 陳海杰, 喬旦, 等. 氧化石墨烯對(duì)鋰基潤滑脂摩擦學(xué)性能的影響[J]. 表面技術(shù), 2021, 50(4): 70-78.
TH117
A
1001-3660(2021)04-0070-09
10.16490/j.cnki.issn.1001-3660.2021.04.006
2021-02-09;
2021-03-17
甘肅省自然科學(xué)基金(20JR5RA568)
Fund:Supported by the Natural Science Foundation of Gansu Province (20JR5RA568)
劉小龍(1991—),男,碩士,助理工程師,主要研究方向?yàn)楦咝阅軡櫥牧系脑O(shè)計(jì)制備與摩擦化學(xué)研究。
LIU Xiao-long, CHEN Hai-jie, QIAO Dan, et al. The influence of graphene oxide on the tribological properties of lithium-based grease[J]. Surface technology, 2021, 50(4): 70-78.