孟君晟,李成碩,弭德振,王鈾,2
TC4合金表面熔覆石墨烯增強鈦基復(fù)合涂層的組織及性能
孟君晟1,李成碩1,弭德振1,王鈾1,2
(1.山東交通學(xué)院 船舶與港口工程學(xué)院,山東 威海 264200;2.哈爾濱工業(yè)大學(xué) 材料科學(xué)與工程學(xué)院,哈爾濱 150001)
通過氬弧熔覆技術(shù)在TC4合金表面制備石墨烯增強鈦基復(fù)合涂層,以改善其耐磨性能。將鈦粉和石墨烯在球磨機中充分混合。將混合后的粉末涂覆于TC4合金表面,采用氬弧熔覆技術(shù)將預(yù)涂覆粉末熔化,制備出陶瓷顆粒增強鈦基熔覆層。采用X射線衍射分析儀分析涂層的物相,利用光學(xué)顯微鏡、掃描電子顯微鏡分析熔覆層中顆粒相的組成及分布。采用顯微維氏硬度儀和摩擦磨損試驗機,測試熔覆層的顯微硬度和磨損性能。熔覆層厚度可達1 mm,且表面及橫截面沒有氣孔、裂紋等缺陷產(chǎn)生,物相主要包括TiC和α-Ti。熔覆層中不同區(qū)域的組織存在差別,涂層的中上部組織主要為樹枝晶,底部組織中樹枝晶逐漸減少。熔覆層與基體呈冶金結(jié)合,組織致密。增強相TiC以顆粒狀和花瓣狀形式存在。石墨烯增強鈦基復(fù)合涂層的顯微硬度高達845.4HV。在相同磨損條件下,TC4合金基體與熔覆層的磨損量分別是0.153 g和0.0123 g,熔覆層的磨損量明顯降低。涂層的磨損機制主要是磨粒磨損。與TC4合金基體對比,熔覆層的顯微硬度提高約2.5倍,耐磨性提高12倍。氬弧熔覆原位自生TiC陶瓷顆粒增強鈦基熔覆層可顯著提高TC4合金表面的耐磨性。
TC4合金;氬弧熔覆;石墨烯;顯微硬度;耐磨性
TC4合金材料由于具有優(yōu)良的機械性能而廣泛應(yīng)用于航空航天、醫(yī)療和軍事工業(yè)等關(guān)鍵零部件,如采用鈦合金構(gòu)件代替?zhèn)鹘y(tǒng)的鋼構(gòu)件,可以極大地降低飛機的質(zhì)量,從而提升飛機的性能。然而,TC4合金的應(yīng)用和發(fā)展因其顯微硬度低和耐磨性差而受到限制[1-4]。近幾十年來,表面改性技術(shù)成為解決這一問題的有效方式,在TC4合金表面添加或原位反應(yīng)生成陶瓷顆粒可以極大地提高耐磨性能,如氣相沉積[5-6]、等離子熔覆[7]、微弧氧化[8]、激光熔覆[9]和氬弧熔覆[10-12]等。目前已經(jīng)利用熔覆技術(shù)修復(fù)燃氣渦輪發(fā)動機零件等,并獲得了性能優(yōu)異的涂層,提高了零件抗微動磨損的能力。在這些鈦合金表面改性技術(shù)中,氬弧熔覆技術(shù)由于具有操作簡單、能量穩(wěn)定、綠色安全、無氧化等優(yōu)點[13-14],已成為鈦合金表面高質(zhì)量熔覆層制備的重要方式之一。
石墨烯(Graphene,Gr)具有優(yōu)異的性能(如導(dǎo)電性、力學(xué)性能等),在材料科學(xué)、機械、能源和生物醫(yī)學(xué)等領(lǐng)域有著廣泛的應(yīng)用[15-16]。石墨烯由于其獨特的二維層狀結(jié)構(gòu),比石墨、碳納米管等傳統(tǒng)材料具有更大的比表面積,與基體材料具有更高的接觸面積,從而提高結(jié)合強度。近年來,石墨烯已應(yīng)用在金屬基復(fù)合材料涂層中,使涂層具有優(yōu)良的導(dǎo)電性和導(dǎo)熱性、高強度和韌性、較好的耐磨性和耐腐蝕性等,石墨烯已被認(rèn)為是金屬基復(fù)合材料涂層最有前途的增強體[17-18]。研究表明,石墨烯可以顯著改善純鈦復(fù)合材料的強度和耐磨性[19],如Zhang等人[20]利用激光熔覆技術(shù)制備了石墨烯增強Ti6Al4V復(fù)合涂層,石墨烯與鈦原位合成羽毛狀的TiC。通過上述分析可知,石墨烯作為一種新的復(fù)合材料,與熔覆技術(shù)結(jié)合起來制備涂層,具有廣闊的應(yīng)用前景,但目前僅限于激光熔覆技術(shù),使得制備成本提高。為了進一步降低涂層制備的成本及拓寬石墨烯在熔覆技術(shù)中的應(yīng)用,文中采用氬弧熔覆技術(shù)制備出石墨烯增強鈦基復(fù)合涂層,探討了石墨烯的加入對涂層的組織及力學(xué)性能的影響,本研究對石墨烯在工程領(lǐng)域的應(yīng)用具有一定的指導(dǎo)意義。
選用TC4合金為基體材料,其化學(xué)成分(以質(zhì)量分?jǐn)?shù)計)為:6.05%Al,3.72%V,0.10%C,0.30%Fe,Ti余量。將其加工成尺寸為800 mm×20 mm×10 mm的長方體,采用水磨砂紙打磨表面,利用無水乙醇進行超聲波清洗。選用鈦粉和石墨烯粉作為熔覆材料,其中鈦粉純度為99.5%,粒徑為10~20 μm;石墨烯粉純度為99.5%,如圖1所示。鈦粉和石墨烯粉的總質(zhì)量為20 g,石墨烯粉的質(zhì)量占總質(zhì)量的0.5%。采用BS-224S分析天平稱量粉體,在氬氣(99.99%Ar)氣氛保護作用下,在行星式球磨機中混合240 min,球磨后的粉體SEM照片及XRD圖譜如圖2所示。利用膠水作為黏結(jié)劑將混合后的粉末調(diào)勻,涂覆于經(jīng)處理后的TC4合金表面,厚度控制在1.0 mm。利用RX841Y型電熱鼓風(fēng)干燥箱,將涂覆后的試樣在120 ℃下烘烤120 min。熔覆設(shè)備選用國產(chǎn)DXT-400型逆變直流氬弧焊機,具體熔覆工藝參數(shù)如表1所示。
圖1 鈦粉和石墨烯粉的SEM照片
圖2 混合粉末的SEM照片及XRD譜圖
表1 氬弧熔覆工藝參數(shù)
Tab.1 Process parameters of argon arc cladding
采用型號為Bruker D8 Advance的X射線衍射儀對打磨后的涂層表面進行微觀組織結(jié)構(gòu)表征。采用400#—1200#水砂紙對復(fù)合涂層的橫截面進行金相試樣的制備,之后采用Cr2O3的懸浮液進行拋光處理,使用硝酸、氫氟酸和水的混合液(HCl∶HF∶H2O=3∶5∶10)對拋光后的熔覆層橫截面進行腐蝕,時間為8~10 s,之后采用FEI SIRION型掃描電子顯微鏡分析顯微組織。利用MHV2000型顯微維氏硬度計對熔覆試樣進行顯微硬度測試,施加載荷為1.92 N,加載時間為10 s,從復(fù)合涂層表面進行測試,之后沿復(fù)合涂層的橫截面每隔0.2 mm測試1點,直至基體。采用國產(chǎn)MVF-2A型多功能摩擦磨損試驗機測試TC4合金基體和熔覆層室溫下的耐磨性能,轉(zhuǎn)速為200 r/min,施加載荷為200 N,時間為60 min,摩擦副采用平均硬度為59HRC的GCr15鋼。使用分析天平稱量基體及涂層磨損前后的質(zhì)量,計算得出磨損量,并觀察磨損形貌。
圖3為熔覆涂層的X射線衍射圖譜。分析表明,熔覆涂層中主要由TiC和α-Ti組成,說明石墨烯與鈦發(fā)生了原位反應(yīng)。氬弧熔覆涂層的橫截面形貌OM圖像如圖4所示。熔覆層由表面至界面的深度約為1 mm,截面較平滑,由于具有較好的保護,使得涂層中未見氣孔缺陷。熔覆層的形狀取決于涂層對基體的潤濕性,較好的潤濕性使表面呈凹陷狀[21]?;w與涂層之間存在明顯的白亮帶,說明熔覆涂層和基體形成良好的冶金結(jié)合[11]。同時,在熔覆層中形成了非常細小的枝晶結(jié)構(gòu)。
圖3 熔覆涂層X射線衍射圖譜
圖4 氬弧熔覆涂層橫截面的OM圖像
圖5為熔覆層橫截面不同區(qū)域的SEM圖像,區(qū)域分別為熔覆層的表面、中部(深度400 μm)和底部(深度900 μm)。通過對比發(fā)現(xiàn),熔覆層不同部位的微觀結(jié)構(gòu)存在差別。從圖5a可以看出,細小的顆粒相組成了枝晶組織,也有一些顆粒分布在枝晶周圍,原位形成的顆粒尺寸比較小。對于深度為400 μm的涂層(圖5b),熔覆層的顯微組織主要以細枝晶、顆粒狀等形式存在,且直徑減小。從圖5c可以看出,在接近基體界面時,樹枝晶逐漸減少,主要以顆粒狀分布在黑色的基體中,且形成的顆粒相比頂部和中部區(qū)域小得多,分布比較均勻,在界面處形成了良好的冶金結(jié)合。很明顯,熔覆層中枝晶的大小隨深度的增加而減小。
圖6為熔覆層典型的組織形貌。可以發(fā)現(xiàn),熔覆層中樹枝晶主要由棒狀結(jié)構(gòu)及周圍的細小顆粒狀相構(gòu)成(圖6a)。如圖6b所示,顯微組織主要由花瓣狀結(jié)構(gòu)構(gòu)成。對不同部位進行EDS分析,結(jié)果見表2。從表2中的元素及其含量,可以分析出顆粒狀相、魚骨狀組織和花瓣狀組織的元素主要是Ti和C,結(jié)合XRD分析可以確定是TiC相。位置2主要含有Ti、Al和V,因此可以推斷是基體α-Ti相。熔覆層中TiC以顆粒相結(jié)構(gòu)為主,且顆粒相尺寸十分細小,為0.3~1.0 μm,枝晶中的魚骨狀組織尺寸約為4 μm×0.5 μm。石墨烯粉和鈦粉在氬弧熱作用下,原位反應(yīng)生成了大量均勻分布且細小的TiC顆粒,這些尺寸細小的TiC顆粒將有助于提高TC4合金的力學(xué)性能。
圖5 氬弧熔覆涂層橫截面不同區(qū)域SEM形貌
圖6 熔覆涂層SEM高倍形貌及能譜分析
表2 圖6不同位置的能譜分析
Tab.2 Energy dispersive spectrometer of different regions in Fig.6
圖7顯示了熔覆層的顯微硬度。從圖7中可以看出,熔覆層具有較高的顯微硬度。從顯微硬度曲線的分布來看,存在3個區(qū)域:熔覆層區(qū)域、熱影響區(qū)和基體。熔覆層的顯微硬度由表面到基體逐漸減少,熔覆層的平均顯微硬度可達845.4HV,且硬度分布比較均勻,曲線波動較小,熔覆層的硬度約為基體硬度的2.5倍。這主要是由于在熔覆層中,石墨烯與鈦原位反應(yīng)生成了細小的第二相(TiC),且生成的第二相分布均勻,具有較高的硬度(TiC硬度可達3400HV);根據(jù)第二相強化理論,這些細小且在涂層中均勻分布的第二相會阻礙位錯的運動,從而顯著增強位錯的穩(wěn)定性,提高涂層的強度和硬度。
圖7 熔覆涂層截面的硬度分布
圖8為熔覆層與TC4合金基體摩擦因數(shù)隨時間的變化曲線。從圖8中可以看出,在穩(wěn)定階段,TC4合金基體表面的平均摩擦因數(shù)達到0.69,而石墨烯增強鈦基涂層的摩擦因數(shù)較基體合金要小得多,平均摩擦因數(shù)僅為0.28,說明熔覆層的抗磨性能優(yōu)于TC4合金。在復(fù)合材料/涂層中若生成的增強顆粒分布均勻且與基體有良好的結(jié)合時,可有效地降低復(fù)合材料/涂層的摩擦因數(shù)[22]。通過氬弧熔覆制備的石墨烯增強鈦基熔覆層,原位生成的第二相顆粒與基體具有良好的結(jié)合,且彌散分布,因此熔覆層的摩擦因數(shù)大幅度降低。
圖8 TC4合金表面與熔覆層摩擦系數(shù)曲線
圖9為熔覆層與TC4合金基體的磨損量及其耐磨性示意圖。在相同磨損條件下,TC4合金基體的磨損量為0.153 g,熔覆層的磨損量僅為0.0123 g,相對耐磨性表明熔覆層的耐磨性較基體提高了12倍,熔覆層的耐磨性得到了極大的提高,這與氬弧熔覆條件下形成的組織有關(guān)。由于石墨烯的加入,熔覆層組織中獲得了大量的第二相,使得涂層具有較高的硬度,在磨損過程中,硬質(zhì)顆粒相與α-Ti基體達到一種強韌性配合,進一步提高涂層的耐磨性。
TC4合金基體和熔覆層的磨損形貌如圖10所示。圖10a所示的TC4合金基體表面有相當(dāng)多的磨屑堆積,在磨損表面同時存在犁槽,通過對區(qū)域A進行放大(圖10b所示),發(fā)現(xiàn)在表面發(fā)生了撕脫現(xiàn)象,表明TC4合金基體受到嚴(yán)重的粘著磨損和磨粒磨損。熔覆層磨損表面比較光滑,通過對區(qū)域B進行放大(圖10d所示),發(fā)現(xiàn)熔覆層磨損表面的犁溝深度較淺,只是輕微劃傷,沒有發(fā)現(xiàn)嚴(yán)重的粘著痕跡,說明熔覆層的磨損程度要低于TC4合金基體,熔覆層的磨損機理僅是磨粒磨損。這是由于在熔覆層內(nèi)均勻分布的第二相可以分擔(dān)載荷,使得摩擦副表面微凸體難以壓入表面,減少粘著現(xiàn)象的發(fā)生,提高涂層的耐磨性。此外,尚未發(fā)現(xiàn)由石墨烯在摩擦過程中產(chǎn)生的潤滑膜,這說明石墨烯在涂層中的添加量較低,無法形成大面積的潤滑膜。
1)采用氬弧熔覆技術(shù),以石墨烯粉和Ti粉為原料,在氬氣氣氛下制備了石墨烯增強鈦基熔覆層,熔覆層與基體呈現(xiàn)冶金結(jié)合,表面無飛濺,內(nèi)部無缺陷。
2)熔覆層的物相主要由TiC和α-Ti組成。熔覆層中的組織主要以顆粒狀和棒狀構(gòu)成的樹枝晶以及花瓣狀組成,石墨烯的加入使得生成的第二相顆粒尺寸更為細小,且彌散分布于熔覆層中。熔覆層不同區(qū)域的組織存在差別,沿表面至涂層界面樹枝晶逐漸減少,顆粒相增多。
3)石墨烯增強鈦基熔覆層具有優(yōu)異的摩擦磨損性能,熔覆層的平均顯微硬度可達854.4HV,摩擦因數(shù)(~0.28)低且波動小,在高載荷長時間摩擦磨損作用下仍可以表現(xiàn)出較好的耐磨性能。
[1] LU Xiao-long, LIU Xu-bo, YU Peng-cheng, et al. Synthesis and characterization of Ni60-hBN high temperature self- lubricating anti-wear composite coatings on Ti6Al4V alloyby laser cladding[J]. Optics & laser technology, 2016, 78(5): 87-94.
[2] LYU Y H, LI J, TAO Y F, et al. Oxidation behaviors of the TiNi/Ti2Ni matrix composite coatings with different con-tents of TaC addition fabricated on Ti6Al4V by laser clad-ding[J]. Applied surface science, 2016, 679: 202-212.
[3] WENG Fei, YU Hui-jun, LIU Jian-li, et al. Microstructure and wear property of the Ti5Si3/TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V[J]. Optics & laser technology, 2017, 92: 156-162.
[4] WANG Han, YAO Zheng-jun, TAO Xue-wei, et al. Role of trace boron in the microstructure modification and the anisotropy of mechanical and wear properties of the Ti6Al4V alloy produced by electron beam freeform fabrication[J]. Vacuum, 2020, 172: 109053.
[5] BAI Yan-yun, XI Ye-ting, GAO Ke-wei, et al. Brittle coa-t-ing effects on fatigue cracks behavior in Ti alloys[J]. Inter--national journal of fatigue, 2019, 125: 432-439.
[6] CSARNOVICS I, HAJDU P, BIRI S, et al. Preliminary studies of creation of gold nanoparticles on titanium surface towards biomedical applications[J]. Vacuum, 2016, 126: 55-58.
[7] VLCAK P. Evidence of a defect structure in high fluence nitrogen ion implanted titanium and its effect on corro-sion[J]. Results in physics, 2018, 11: 274-277.
[8] XIE Riu-zhen, LIN Nai-ming, ZHOU Peng, et al. Surface damage mitigation of TC4 alloy via micro arc oxidation for oil and gas exploitation application: characterizations of microstructure and evaluations on surface performance[J]. Applied surface science, 2017, 436: 467-476.
[9] OBADELE B A, ANDREWS A, MATHEW M T, et al. Improving the tribocorrosion resistance of Ti6Al4V surface by laser surface cladding with TiNiZrO2composite coat-ing[J]. Applied surface science, 2015, 345: 99-108.
[10] AN Qi, HUANG Lu-jun, JIANG Shan, et al. Microstruc-ture evolution and mechanical properties of TIG cladded TiB reinforced composite coating on Ti-6Al-4V alloy[J]. Vacuum, 2017, 145: 312-319.
[11] 孟君晟, 金國, 史曉萍, 等. Ti6Al4V表面氬弧熔覆Ti+BN復(fù)合涂層組織及耐磨性[J]. 表面技術(shù), 2020, 49(12): 184-190. MENG Jun-sheng, JIN Guo, SHI Xiao-ping, et al. Micro-structure and wear resistance of Ti+BN composite coating on Ti6Al4V alloy by argon arc cladding[J]. Surface tech-nology, 2020, 49(12): 184-190.
[12] 孟君晟, 史曉萍, 王振廷, 等. TC4合金表面氬弧熔覆TiCp/Ti基復(fù)合涂層組織及耐磨性[J]. 稀有金屬材料與工程, 2012, 41(7): 1259-1262.MENG Jun-sheng, SHI Xiao-ping, WANG Zhen-ting, et al. Microstructure and wear resistance of TiCp/Ti composite coating on TC4 alloy by argon arc cladding[J]. Rare metal materials and engineering, 2012, 41(7): 1259-1262.
[13] OLIVEIRA V M C A, SILVA M C L, PINTO C G, et al. Short-term creep properties of Ti-6Al-4V alloy subjected to surface plasma carburizing process[J]. Journal of mate-rials research and technology, 2015, 4(4): 359-366.
[14] NOURI S, SAHMANI S, ASAYESH M, et al. Study on the oxidation resistance of γ-TiAl intermetallic alloy coatedvia different diffusion coating processes[J]. Materials resear-cher express, 2019, 6(10): 1-20.
[15] WANG Pei, ZHANG Bai-cheng, TAN Cheng-cheh, et al. Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel 625 parts fabrica-ted by selective laser melting[J]. Materials & design, 2016, 112: 290-299.
[16] LIN Dong, LIU C R, CHENG G J. Single-layer graphene oxide reinforced metal matrix composites by laser sintering: Microstructure and mechanical property enhancement[J]. Acta materialia, 2014, 80: 183-193.
[17] SALUR E, ASLAN A, KUNTOGLU M, et al. Experimentalstudy and analysis of machinability characteristics of metal matrix composites during drilling[J]. Composites part B: Engineering, 2019, 166: 401-413.
[18] ZHANG Dan, CUI Xiu-fang, JIN Guo, et al. Effect of in-situ synthesis of multilayer graphene on the microstructure and tribological performance of laser cladded Ni-based coatings[J]. Applied surface science, 2019, 495: 143581.
[19] MU X N, CAI H N, ZHANG H M, et al. Interface evo-lution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite[J]. Materials & design, 2018, 140: 431-441.
[20] ZHANG Li-zheng, ZHAO Zhan-yong, BAI Pei-kang, et al. In-situ synthesis of TiC/graphene/Ti6Al4V composite coa-ting by laser cladding[J]. Materials letters, 2020, 270: 127711.
[21] ZHANG Ke-min, ZOU Jian-xin, LI Jun, et al. Synthesis of Y2O3particle enhanced Ni/TiC composite on TC4 Ti alloy by laser cladding[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(8): 1817-1823.
[22] HORLOCK A J, MCCARTNEY D G, SHIPWAY P H, et al. Thermally sprayed Ni(Cr)-TiB2coatings using powder produced by self-propagating high temperature synthesis: Microstructure and abrasive wear behaviour[J]. Materials science and engineering, 2002, 336(1): 88-98.
Structure and Properties of Graphene Reinforced Ti-based Composite Coatings on TC4 Alloy
1,1,1,1,2
(1.Naval Architecture and Port Engineering Colloge, Shandong Jiaotong University, Weihai 264200, China; 2.School of Materials Science and Engineering, Harbin Insitute of Technology, Harbin 150001, China)
The work aims to study the graphene reinforced titanium-based composite coating is prepared on the surface of TC4 alloy by argon arc cladding technology to improve its wear resistance. In this work, the Graphene power and Ti powder are ball-milled and mixed. The mixed powder was coated on the surface of TC4 alloy, and the ceramic particle-reinforced titanium-based cladding coating is prepared by alloy melting the precoated powder by argon arc cladding technology. The phase of the cladding coating was analyzed by X-ray diffraction analyzer. The composition and distribution of ceramic particles in cladding coating was analyzed by optical microscope and scanning electron microscope and optical microscope. Microhardness and wear properties of the cladding coating was measured by vickers hardness tester and universal friction and wear tester. The thickness of cladding coating of this paper is 1.0 mm, without obvious defects like pores, cracks on the surface and cross section.The phases of the cladding coating mainly include α-Ti and TiC. However,the results show that the microstructure of different areas in the coating is different. The dendrite structure is mainly distributed in the middle and upper part of the coating, while the dendrites in the bottom part decrease gradually. The cladding coating and the substrate are metallurgically bonded, and the structure is dense. The enhanced phase is granular and petal. The microhardness of the coating is as high as 845.4HV, the wear loss of, the pure copper matrix and the cladding layer is 0.153 g and 0.0123 g under the same wear conditions, respectively. and the wear amount of the cladding layer is significantly reduced; there is no adhesion mark on the wear of the cladding coating, and the wear mechanism is abrasive wear. Compared with the pure copper matrix, the microhardness of the cladding layer is increased by about 2.5 times, and the wear resistance increased by 12 times. The TiC ceramic particle cladding coating can significantly improve the wear resistance of theTC4 alloy surface.
TC4 alloy; argon arc cladding; graphene; microhardness; wear resistance
2021-01-25;
2021-04-07
MENG Jun-sheng (1982—), Male, Doctor, Associate professor, Research focus: toughening of metallic materials and its surface modification.
王鈾(1954—),男,博士,教授,主要研究方向為納米表面工程及納米材料改性。郵箱: wangyou@hit.edu.cn
Corresponding author:WANG You (1954—), Male, Doctor, Professer, Research focus: nano surface engineering and nano modified materials. E-mail: wangyou@hit.edu.cn
孟君晟, 李成碩, 弭德振, 等. TC4合金表面熔覆石墨烯增強鈦基復(fù)合涂層的組織及性能[J]. 表面技術(shù), 2021, 50(4): 79-85.
TG174.44;TH117
A
1001-3660(2021)04-0079-07
10.16490/j.cnki.issn.1001-3660.2021.04.007
2021-01-25;
2021-04-07
山東省自然科學(xué)基金項目(ZR2019MEE107);大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃項目(S202011510012);山東交通學(xué)院博士基金項目(BS2018005)
Fund:Supported by the Natural Science Foundation of Shandong Province (ZR2019MEE107), the Innovation and Entrepreneurship Training Program for College Students (S202011510012), Ph. D. Scienti?c Research Foundation of Shandong Jiaotong University (BS2018005)
孟君晟(1982—),男,博士,副教授,主要研究方向為金屬材料強化及表面改性。
MENG Jun-sheng, LI Cheng-shuo, MI De-zhen, et al. Structure and properties of graphene reinforced Ti-based composite coatings on TC4 alloy[J]. Surface technology, 2021, 50(4): 79-85.