張穎君,李婷,竇寶捷,崔學(xué)軍,邵亞薇,韓沁雯
鱗片石墨對(duì)鎂合金表面聚苯胺環(huán)氧涂層防護(hù)性能的影響
張穎君1,2,李婷1,竇寶捷1,崔學(xué)軍1,邵亞薇2,韓沁雯1
(1.四川輕化工大學(xué) 材料科學(xué)與工程學(xué)院,四川 自貢 643000;2.哈爾濱工程大學(xué) 材料化學(xué)與工程學(xué)院,哈爾濱 150001)
針對(duì)聚苯胺環(huán)氧涂層物理屏蔽性能欠佳的問(wèn)題,通過(guò)引入具有片層結(jié)構(gòu)的鱗片石墨,從而進(jìn)一步提高涂層對(duì)鎂合金的腐蝕防護(hù)性能。利用化學(xué)氧化聚合法在鱗片石墨表面合成聚苯胺,通過(guò)X射線衍射儀、掃描電子顯微鏡、傅里葉變換紅外光譜儀,對(duì)所得到的聚苯胺/鱗片石墨復(fù)合粉末進(jìn)行表征。將合成的復(fù)合粉末均勻分散于環(huán)氧樹(shù)脂中后,在AZ91D鎂合金表面制備涂層,通過(guò)電化學(xué)阻抗測(cè)試對(duì)涂層在3.5%氯化鈉溶液中的腐蝕防護(hù)性能進(jìn)行研究。聚苯胺可以在鱗片石墨的表面聚合,鱗片石墨的加入使聚苯胺環(huán)氧涂層的附著力略有降低,涂層硬度、柔韌性及耐沖擊性能沒(méi)有明顯改變,但鱗片石墨的加入明顯提高了聚苯胺環(huán)氧涂層的阻抗值。在浸泡前1488 h,苯胺與鱗片石墨的質(zhì)量比為1∶1時(shí),涂層的阻抗值為1.3×108Ω?cm2,防護(hù)性能最好。但隨著浸泡時(shí)間的延長(zhǎng),苯胺與鱗片石墨的質(zhì)量比為4∶1時(shí),涂層的阻抗值逐漸高于其他涂層,當(dāng)浸泡4008 h后,其阻抗值為1.6×108Ω?cm2,仍具有較優(yōu)異的防護(hù)性能。環(huán)氧涂層中添加聚苯胺/鱗片石墨復(fù)合粉末后,通過(guò)鱗片石墨前期的屏蔽與聚苯胺長(zhǎng)期緩蝕的協(xié)同作用達(dá)到了對(duì)鎂合金較好的防護(hù)效果,而涂層的這一防護(hù)效果和苯胺與鱗片石墨比例有關(guān)。
鎂合金;聚苯胺;鱗片石墨;腐蝕防護(hù)
鎂合金以質(zhì)輕、比強(qiáng)度和比剛度高、易于回收等眾多優(yōu)點(diǎn)成為汽車、航空航天等制造業(yè)輕量化發(fā)展的首選材料[1],但較差的耐蝕性嚴(yán)重限制了其更廣泛的應(yīng)用[2-3]。眾多學(xué)者通過(guò)一些表面處理技術(shù)(如微弧氧化、陽(yáng)極氧化等[4-5])對(duì)鎂合金進(jìn)行處理以提高其耐蝕性能,目前仍不能滿足長(zhǎng)期耐蝕性能的要求。有機(jī)涂層不但工藝簡(jiǎn)單、施工方便,而且有較優(yōu)異的防護(hù)性能,是多數(shù)金屬材料在苛刻環(huán)境下長(zhǎng)期使用時(shí)的首選防護(hù)方法。但關(guān)于鎂合金的有機(jī)涂層的研究和應(yīng)用相對(duì)較少,主要是因?yàn)椋海?)鎂合金的活性較高,有效的防腐填料選擇困難;(2)在多數(shù)環(huán)境下鎂合金的陰極反應(yīng)為析氫反應(yīng),當(dāng)腐蝕介質(zhì)通過(guò)有機(jī)涂層局部缺陷到達(dá)基體時(shí),鎂合金將快速發(fā)生腐蝕反應(yīng)并產(chǎn)生大量的氫氣,致使涂層迅速鼓泡、剝離、失效。
在涂料的制備過(guò)程中加入適宜的防腐填料,可以有效地抑制或減緩金屬的腐蝕反應(yīng),從而改善涂層的防護(hù)性能。自從1984年De Berry[6]發(fā)現(xiàn)聚苯胺(PANI)對(duì)金屬材料有緩蝕作用以來(lái),研究人員對(duì)聚苯胺的合成、防護(hù)性能以及防護(hù)機(jī)理進(jìn)行了大量的研究[7-10]。筆者的研究結(jié)果也表明,在環(huán)氧樹(shù)脂中加入適量的聚苯胺粉末可以大大提高涂層對(duì)鎂合金的防護(hù)性能,而且摻雜態(tài)聚苯胺的防護(hù)性能要優(yōu)于本征態(tài)的[11]。但單一的聚苯胺作為填料在涂層中主要起緩蝕作用,不能有效地阻止腐蝕介質(zhì)的滲入。片狀填料可在涂層中交替排列,產(chǎn)生迷宮效應(yīng),延長(zhǎng)溶液的擴(kuò)散通道,提高涂層的抗?jié)B透作用[12]。目前研究的片層材料除了常規(guī)的玻璃鱗片、云母氧化鐵、蒙脫土等外[13-15],還有近幾年的熱點(diǎn)材料——石墨烯[16-17],但石墨烯在涂層中較差的分散性以及較高的成本限制了其更廣泛的應(yīng)用。鱗片石墨形似魚鱗狀,不但具有良好的化學(xué)穩(wěn)定性和潤(rùn)滑性,同時(shí)還具有良好的片層結(jié)構(gòu),已有研究表明適量的鱗片石墨添加可以改善環(huán)氧涂層的強(qiáng)度和吸水性[18]。而關(guān)于鱗片石墨對(duì)涂層防護(hù)性能的研究相對(duì)較少。因此,本文在已有研究基礎(chǔ)上,將鱗片石墨與聚苯胺制備成復(fù)合粉末后,均勻分散于環(huán)氧樹(shù)脂中,涂覆在鎂合金表面,對(duì)所得到的涂層的防腐性能進(jìn)行研究。
試驗(yàn)材料包括:無(wú)水乙醇、苯胺、過(guò)硫酸銨、鹽酸、氯化鈉均為分析純,環(huán)氧樹(shù)脂為藍(lán)星集團(tuán)E44,水性固化劑為上海綠嘉水性涂料有限公司的水分散性胺固化劑LJ1788。所用金屬基體為AZ91D鎂合金。依次用100目、400目的砂紙對(duì)鎂合金表面打磨后,去離子水、丙酮清洗,吹干備用。
稱取苯胺于三口瓶中,在300 r/min轉(zhuǎn)速下滴加鹽酸,調(diào)制pH到1~1.5為止。分別按不同的質(zhì)量比((苯胺)∶(鱗片石墨)=4∶1、1∶1)加入鱗片石墨,繼續(xù)攪拌分散1 h后,滴加適量的質(zhì)量分?jǐn)?shù)為10%的過(guò)硫酸銨,繼續(xù)反應(yīng)5 h后,用去離子水洗滌、抽濾直至濾液無(wú)色,并將得到的粉末進(jìn)行烘干。同時(shí)以相同的合成條件,不加鱗片石墨制備純聚苯胺粉末作為對(duì)比。
用捷克TESCAN生產(chǎn)的VEGA3SBU掃描電子顯微鏡對(duì)合成粉末的形貌進(jìn)行觀察。利用美國(guó)鉑金埃爾默公司生產(chǎn)的Frontier Near紅外光譜儀,采用溴化鉀壓片法對(duì)合成的粉末進(jìn)行分析。用Bruker-D2型X射線衍射儀進(jìn)行XRD測(cè)試。
將合成的聚苯胺及聚苯胺/鱗片石墨復(fù)合粉末按環(huán)氧樹(shù)脂質(zhì)量的10%加入到環(huán)氧樹(shù)脂中,以2000 r/min的速度高速分散1 h后,按照環(huán)氧樹(shù)脂與固化劑的質(zhì)量比為1∶1.3加入水性固化劑并混合均勻,加入適量的水調(diào)節(jié)好涂料黏度后,涂覆在處理好的鎂合金表面。固化過(guò)程為:室溫48 h,60 ℃×24 h。涂層的厚度為(150±10) μm。
用AMETEK VersaSTAT3F電化學(xué)工作站進(jìn)行阻抗測(cè)試,1 cm2的鉑電極為對(duì)電極,Ag/AgCl(飽和KCl)電極為參比電極,涂覆了不同涂層的鎂合金試樣為工作電極。測(cè)試頻率為10–2~105Hz,擾動(dòng)為30 mV,測(cè)試溶液為3.5%NaCl溶液。
根據(jù)國(guó)標(biāo)要求,分別利用上?,F(xiàn)代環(huán)境工程技術(shù)股份有限公司生產(chǎn)的PPH-1鉛筆硬度計(jì)、QCJ沖擊試驗(yàn)器、QTX漆膜柔韌性測(cè)定器,對(duì)涂層的硬度、耐沖擊性能及柔韌性進(jìn)行測(cè)試。利用廣州標(biāo)格達(dá)試驗(yàn)室儀器用品有限公司生產(chǎn)的BGD500數(shù)顯拉開(kāi)法附著力測(cè)試儀進(jìn)行附著力測(cè)試。
圖1是所合成的聚苯胺及不同比例的苯胺與鱗片石墨合成粉末的紅外測(cè)試結(jié)果。試驗(yàn)所合成的聚苯胺粉末屬于鹽酸摻雜態(tài)。根據(jù)文獻(xiàn)[19-22]可知,在1559 cm–1及1471 cm–1處的特征吸收峰分別對(duì)應(yīng)于醌式結(jié)構(gòu)(N==Q==N)、苯式結(jié)構(gòu)(N—B—N)。在1292 cm–1處的特征吸收峰為芳胺C—N的伸縮振動(dòng)。在1159、790 cm–1處的吸收峰分別屬于醌環(huán)結(jié)構(gòu)的C—H鍵彎曲和伸縮振動(dòng)??梢钥吹?,鱗片石墨的加入對(duì)所合成的聚苯胺特征吸收峰沒(méi)有發(fā)生改變,也沒(méi)有新的特征峰形成,因此所合成的聚苯胺和鱗片石墨沒(méi)有發(fā)生化學(xué)反應(yīng)。
圖1 合成粉末的紅外光譜
從圖2合成粉末的XRD圖譜可以看出,所合成的聚苯胺在2=15°、20°、25°處存在較為寬泛的衍射峰,說(shuō)明聚苯胺的結(jié)晶度相對(duì)較低,同時(shí)鱗片石墨在2=27°處有很強(qiáng)的衍射峰。隨著合成的聚苯胺/鱗片石墨中鱗片含量的增加、聚苯胺含量的減少,鱗片石墨的特征衍射峰強(qiáng)度逐漸增加,而聚苯胺的寬泛衍射峰逐漸減弱。
圖2 所合成粉末的XRD圖譜
圖3是所合成的粉末的形貌照片,可以看出,所合成的純聚苯胺粉末為不規(guī)則顆粒狀。當(dāng)苯胺與鱗片石墨的質(zhì)量比為4∶1時(shí),在合成過(guò)程中,聚苯胺將鱗片石墨完全包覆,所合成的粉末顆粒也明顯增大。當(dāng)苯胺與鱗片石墨的質(zhì)量比為1∶1時(shí),部分鱗片 石墨被聚苯胺所包覆,還有部分只是在鱗片石墨上吸附少量的聚苯胺顆粒。同時(shí)也可以看出,鱗片石墨 的片長(zhǎng)以20~40 μm為主。通過(guò)以上表征,可以推測(cè)出在聚苯胺/鱗片石墨的合成過(guò)程中,在合成條件下部分苯胺單體溶液在鱗片石墨表面吸附,隨著氧化 劑的加入,苯胺發(fā)生聚合反應(yīng)并在鱗片石墨表面沉積包覆。
2.2.1 涂層物理性能分析
圖4是不同涂層的干態(tài)附著力測(cè)試結(jié)果??梢钥闯?,3種涂層的附著力都比較低,這主要與所選用的水性環(huán)氧固化體系有關(guān)。純聚苯胺環(huán)氧涂層的附著力為2.3 MPa,當(dāng)苯胺與鱗片石墨的質(zhì)量比為4∶1和1∶1時(shí),涂層的附著力分別為2.1、2.0 MPa??梢?jiàn)鱗片石墨加入后,聚苯胺環(huán)氧涂層的附著力略有降低。分析其主要原因可能是:本研究所選用的固化劑為水性環(huán)氧固化劑,在涂層制備過(guò)程中會(huì)含有少量的水,同時(shí)由于鎂的活性較高,因此在涂層固化、水分揮發(fā)的過(guò)程中會(huì)導(dǎo)致鎂合金表面發(fā)生腐蝕反應(yīng),對(duì)涂層的附著力產(chǎn)生不利影響。在這一過(guò)程中,涂層中的聚苯胺可以起到一定的緩蝕作用,純聚苯胺涂層中聚苯胺含量高于其他兩種涂層,所以緩蝕效果略好于其他兩種涂層,附著力也略高于其他兩種涂層。
圖3 合成粉末的SEM
圖4 3種涂層的干態(tài)附著力
表1是3種涂層幾種物理性能的測(cè)試結(jié)果??梢钥闯?,3種涂層都具有較好的柔韌性和耐沖擊性能,鱗片石墨的加入對(duì)聚苯胺水性環(huán)氧涂層的硬度、柔韌性及耐沖擊性能沒(méi)有影響。
表1 涂層的物理性能測(cè)試結(jié)果
Tab.1 Test results of physical properties of the coatings
2.2.2 涂層防護(hù)性能分析
圖5是聚苯胺涂層以及苯胺與鱗片石墨質(zhì)量比為4∶1、1∶1時(shí)涂層的原始電化學(xué)阻抗譜的Nyquist和Bode圖。可見(jiàn),3種涂層的Nyquist圖都由容抗弧組成,而且容抗弧半徑整體上呈現(xiàn)了相同的變化趨勢(shì),即隨著浸泡時(shí)間的延長(zhǎng),容抗弧減小,但發(fā)生變化的浸泡時(shí)間明顯不同。涂層的低頻阻抗模值可以用來(lái)表征涂層的防護(hù)性能[23-24],在本研究中取頻率為0.01 Hz時(shí)涂層的阻抗值,結(jié)果如圖6所示??梢钥闯?,聚苯胺涂層、苯胺與鱗片石墨的質(zhì)量比為4∶1時(shí)涂層的低頻阻抗值都呈現(xiàn)先降低后逐漸增加的趨勢(shì),而當(dāng)苯胺與鱗片石墨質(zhì)量比為1∶1時(shí),涂層的低頻阻抗值呈現(xiàn)先降低、后增加、再次降低的趨勢(shì)。此外,從圖6還可以看出,鱗片石墨的加入可以提高聚苯胺環(huán)氧涂層的阻抗值,增加了涂層的防護(hù)性能。在浸泡2208 h前,苯胺與鱗片石墨質(zhì)量比為1∶1時(shí),涂層的防護(hù)性能最好,但隨著浸泡時(shí)間的延長(zhǎng),苯胺與鱗片石墨的質(zhì)量比為4∶1時(shí)涂層的阻抗值逐漸高于其他兩種涂層。
選用圖7的等效電路對(duì)所得到的數(shù)據(jù)進(jìn)行擬合。其中s為溶液電阻,coating和coating分別為涂層電容和涂層電阻,dl和t分別為涂層下鎂合金基體腐蝕反應(yīng)的雙電層電容和鎂合金腐蝕反應(yīng)的電荷轉(zhuǎn)移電阻。擬合曲線如圖5中紅色實(shí)線所示。擬合所得到的參數(shù)如表2—4所示。
圖5 3種涂層的EIS譜圖
圖6 3種涂層的低頻阻抗值隨時(shí)間的變化
圖7 等效電路
表2 聚苯胺涂層的EIS擬合結(jié)果
Tab.2 EIS fitting results of the PANI coating
表3 苯胺與鱗片石墨質(zhì)量比為4∶1時(shí)涂層的EIS擬合結(jié)果
Tab.3 EIS fitting results of the coating when m(aniline)∶m(flake graphite)= 4∶1
表4 苯胺與鱗片石墨質(zhì)量比為1∶1時(shí)涂層的EIS擬合結(jié)果
Tab.4 EIS fitting results of the coating when m(aniline)∶m(flake graphite)=1∶1
續(xù)表4
有機(jī)涂層的主要防護(hù)機(jī)理一般有3種,包括屏蔽作用、緩蝕作用、犧牲陽(yáng)極的陰極保護(hù)作用。本研究體系的防護(hù)機(jī)理主要為涂層的屏蔽作用及緩蝕作用。關(guān)于聚苯胺的緩蝕機(jī)理已經(jīng)進(jìn)行了大量的研究,提出的理論包括鈍化作用、電場(chǎng)作用、腐蝕界面轉(zhuǎn)移等[25-28]。筆者前期研究結(jié)果表明,聚苯胺可以使鎂合金表面生成一層致密的腐蝕產(chǎn)物膜,從而提高了環(huán)氧涂層的防護(hù)性能。
圖8是3種涂層的涂層電阻(coating)隨浸泡時(shí)間的變化曲線,涂層的電阻值越高,表明涂層的屏蔽性能越好[29]??梢钥闯觯谡麄€(gè)測(cè)試過(guò)程中,鱗片石墨的加入明顯提高了涂層的屏蔽性能,主要是因?yàn)楹铣傻木郾桨窞椴灰?guī)則顆粒狀(圖1a),而聚苯胺/鱗片石墨粉末部分為片層結(jié)構(gòu),添加在涂層中可以產(chǎn)生迷宮效應(yīng),延長(zhǎng)涂層的擴(kuò)散通道,提高涂層的屏蔽性能。聚苯胺涂層以及苯胺與鱗片石墨質(zhì)量比為4∶1時(shí)的阻抗值隨浸泡時(shí)間的增加整體呈現(xiàn)先逐漸降低后增加的趨勢(shì)。阻抗值的降低主要是在浸泡前期溶液不斷滲入到涂層中,而隨后的增加可能是由于腐蝕產(chǎn)物的產(chǎn)生或是聚苯胺的緩蝕作用所致。但當(dāng)苯胺與鱗片石墨的質(zhì)量比為1∶1時(shí),涂層在浸泡前1488 h的涂層電阻值高于其他兩種涂層,隨著浸泡時(shí)間的增加,涂層電阻值總體變化較小。這主要是因?yàn)橥繉又绪[片石墨的含量相對(duì)較高,所以在前期對(duì)溶液有較好的屏蔽作用,但隨著浸泡時(shí)間的增加,溶液不斷擴(kuò)散滲透后,涂層阻抗值逐漸降低,而涂層中聚苯胺的含量相對(duì)較少,所以聚苯胺的緩蝕作用相對(duì)較小,浸泡后期沒(méi)有出現(xiàn)涂層電阻值明顯增加的現(xiàn)象。
圖8 涂層電阻隨浸泡時(shí)間的變化曲線
圖9是涂層下鎂合金的電荷轉(zhuǎn)移電阻(t)隨浸泡時(shí)間的變化曲線。t值越高,涂層下的鎂合金越難發(fā)生腐蝕反應(yīng)[30]??梢悦黠@看出,鱗片石墨加入后可以降低涂層下鎂合金的腐蝕速度。純聚苯胺涂層下,鎂合金的t隨時(shí)間的增加呈現(xiàn)先降低后略有增加的趨勢(shì),這是由于聚苯胺的緩蝕作用導(dǎo)致的。當(dāng)苯胺與鱗片石墨的質(zhì)量比為1∶1時(shí),涂層在浸泡前期有較高的t,隨著浸泡時(shí)間的增加,t值短期增加后又逐漸降低。這主要是因?yàn)榍捌谕繉佑休^高的屏蔽性能,所以涂層的滲透擴(kuò)散速度較慢,涂層下鎂合金的腐蝕速度較低,但隨著時(shí)間的增加,擴(kuò)散通道形成,鎂合金的腐蝕速度增加,而涂層中聚苯胺的含量相對(duì)較少,導(dǎo)致涂層的緩蝕效果不夠理想,t值沒(méi)有較明顯的增加。當(dāng)苯胺與鱗片石墨的質(zhì)量比為4∶1時(shí),由于前期鱗片石墨的屏蔽低于與苯胺與鱗片石墨的質(zhì)量比為1∶1時(shí)的,所以t值也略低,但后期在聚苯胺的緩蝕作用下,t值不斷增加,2208 h后,呈現(xiàn)最高的t值。
圖9 涂層下鎂合金的電荷轉(zhuǎn)移電阻隨浸泡時(shí)間的變化曲線
將聚苯胺/鱗片石墨復(fù)合粉末分散到涂層后,通過(guò)鱗片石墨片層結(jié)構(gòu)所產(chǎn)生的迷宮效應(yīng)與聚苯胺緩蝕的協(xié)同作用,可實(shí)現(xiàn)對(duì)鎂合金較好的防護(hù)。從以上研究結(jié)果可以看到,在浸泡前期過(guò)程,涂層中鱗片石墨的增加可以有效提高涂層的屏蔽性能,使涂層有較好的防護(hù)性能,起主要作用。而隨著浸泡時(shí)間的增加,溶液會(huì)逐漸形成擴(kuò)散通道,此時(shí)聚苯胺的緩蝕作用可以有效減緩?fù)繉酉陆饘俚母g速度,從而發(fā)揮主要作用,防護(hù)機(jī)理如圖10所示。因此,通過(guò)調(diào)節(jié)涂層中聚苯胺與鱗片石墨的質(zhì)量比來(lái)實(shí)現(xiàn)環(huán)氧涂層不同的腐蝕防護(hù)性能。
圖10 涂層的防護(hù)機(jī)理示意圖
1)通過(guò)化學(xué)氧化法實(shí)現(xiàn)了聚苯胺在鱗片石墨表面聚合,當(dāng)苯胺與鱗片石墨的質(zhì)量比不同時(shí),對(duì)聚苯胺涂層物理性能的影響較小,但對(duì)腐蝕防護(hù)性能有不同的影響。
2)在3.5wt%氯化鈉溶液中的測(cè)試結(jié)果表明: (1)鱗片石墨的加入可以提高聚苯胺環(huán)氧涂層對(duì)鎂合金的防護(hù)性能。(2)當(dāng)苯胺與鱗片石墨的質(zhì)量比為1∶1時(shí),涂層在短時(shí)間內(nèi)有較好的腐蝕防護(hù)效果;當(dāng)苯胺與鱗片石墨的質(zhì)量比為4∶1時(shí),涂層在長(zhǎng)時(shí)間浸泡時(shí)有較好的腐蝕防護(hù)效果。
[1] 丁文江, 付彭懷, 彭立明, 等. 先進(jìn)鎂合金材料及其在航空航天領(lǐng)域中的應(yīng)用[J]. 航天器環(huán)境工程, 2011, 28(2): 103-109. DING Wen-jiang, FU Peng-huai, PENG Li-ming, et al. Advanced magnesium alloys and their applications in aerospace[J]. Spacecraft environment engineering, 2011, 28(2): 103-109.
[2] 王福會(huì), 杜克勤, 張偉. 鎂合金的腐蝕與防護(hù)研究進(jìn)展[J]. 中國(guó)材料進(jìn)展, 2011, 30(2): 29-32. WANG Fu-hui, DU Ke-qin, ZHANG Wei. Progress in research of corrosion and protection of magnesium alloys [J]. Materials China, 2011, 30(2): 29-32.
[3] 陶軍, 龍思遠(yuǎn), 劉榆, 等. 鎂合金有機(jī)涂層體系研究現(xiàn)狀及發(fā)展趨勢(shì)[J]. 材料熱處理技術(shù), 2011, 40(24): 156- 159. TAO Jun, LONG Si-yuan, LIU Yu, et al. Present status and development trend of research on organic coating system for Mg alloy[J]. Hot working technology, 2011, 40(24): 156-159.
[4] 陳宏, 王成成, 康亞斌, 等. 鎂合金微弧氧化的研究現(xiàn)狀[J]. 表面技術(shù), 2019, 48(7): 49-60. CHEN Hong, WANG Cheng-cheng, KANG Ya-bin, et al. Research status of microarc oxidation of magnesium alloy[J]. Surface technology, 2019, 48(7): 49-60.
[5] 林銳, 劉朝輝, 王飛, 等. 鎂合金表面改性技術(shù)現(xiàn)狀研究[J]. 表面技術(shù), 2016, 45(4): 124-130. LIN Rui, LIU Zhao-hui, WANG Fei, et al. Development of corrosion surface modification technology for magne-sium alloys[J]. Surface technology, 2016, 45(4): 124-130.
[6] DEBERRY D W. Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating[J]. Journal of Electrochemical Society, 1985, 132(5): 1022-1026.
[7] WESSLING B, POSDORFER J. Corrosion prevention with an organic metal (polyaniline): Corrosion test results [J]. Electrochemical acta, 1999, 44: 2139-2147.
[8] 景遐斌, 王利祥, 王獻(xiàn)紅, 等. 導(dǎo)電聚苯胺的合成、結(jié)構(gòu)、性能和應(yīng)用[J]. 高分子學(xué)報(bào), 2005(5): 655-663. JING Xia-bin, WANG Li-xiang, WANG Xian-hong, et al. Synthesis structure properties and applications of conduc-ting polyaniline[J]. Acta polymerica sinica, 2005(5): 655- 663.
[9] POSDORFER J, WESSLING B. Corrosion protection by the organic metal polyaniline: Results of immersion, volta potential and impedance studies[J]. Fresenius journal of analytical chemistry, 2000, 367: 343-345.
[10] WESSLING B. Passivation of metals by coating with polyaniline: Corrosion potential shift and morphological changes[J]. Advanced materials, 1994, 6: 226-228.
[11] ZHANG Ying-jun, SHAO Ya-wei, ZHANG Tao, et al. The effect of epoxy coating containing emeraldine base and hydro?uoric acid doped polyaniline on the corrosion protection of AZ91D magnesium alloy[J]. Corrosion science, 2011, 53: 3747-3755.
[12] COMPTON O C, KIM S, PIERRE C, et al. Crumpled graphene nanosheets as highly effective barrier property enhancers[J]. Advanced materials, 2010, 22(42): 4759- 4763.
[13] 顏晨曦, 王勝榮, 張?zhí)煲? 等. 海洋大氣環(huán)境下玻璃鱗片/環(huán)氧復(fù)合涂層制備及其耐蝕性評(píng)價(jià)[J]. 腐蝕科學(xué)與防護(hù)技術(shù), 2019, 31(6): 597-602. YAN Chen-xi, WANG Sheng-rong, ZHANG Tian-yi, et al. Preparation and corrosion resistance of glass flake/epoxy composite coatings in marine atmosphere[J]. Corrosion science and protection technology, 2019, 31(6): 597-602.
[14] 陳宇, 潘正凱, 陳均. 水性聚苯胺/蒙脫土/丙烯酸乳液復(fù)合防腐蝕涂層研究[J]. 化工新型材料, 2017, 45(11): 83-86. CHEN Yu, PAN Zheng-kai, CHEN Jun. Study on water-borne polyaniline/montmorillonite/acrylic emulsion com-posite anti-corrosive coating[J]. New chemical materials, 2017, 45(11): 83-86.
[15] 劉鴻銘, 費(fèi)逸偉, 馬軍, 等. 鱗片防腐涂料機(jī)理與其應(yīng)用研究[J]. 化工時(shí)刊, 2016, 30(7): 35-41. LIU Hong-ming, FEI Yi-wei, MA Jun, et al. Mechanism and application of scale anti-corrosion coatings[J]. Che-mical industry times, 2016, 30(7): 35-41.
[16] 蔣興家, 崔新安. 石墨烯在防腐蝕領(lǐng)域的應(yīng)用研究進(jìn)展[J]. 石油化工腐蝕與防護(hù), 2019, 36(5): 1-4. JIANG Xing-jia, CUI Xin-an. Research progress on application of graphene in anti-corrosion[J]. Corrosion & protection in petrochemical industry, 2019, 36(5): 1-4.
[17] 李澤民, 王勝民, 趙曉軍, 等. 石墨烯在涂鍍層防腐領(lǐng)域的應(yīng)用研究及進(jìn)展[J]. 表面技術(shù), 2020, 49(1): 154- 162. LI Ze-min, WANG Sheng-min, ZHAO Xiao-jun, et al. Application and development of graphene in the field of coating-plating corrosion protection[J]. Surface techno-logy, 2020, 49(1): 154-162.
[18] 楊德容, 鄭小玲, 張露露, 等. 鱗片石墨對(duì)環(huán)氧涂層強(qiáng)度和吸水性能的影[J]. 電鍍與涂飾, 2006, 25(4): 27-29. YANG De-rong, ZHENG Xiao-ling, ZHANG Lu-lu, et al. Influence of graphite flake on the strength and water abso-rption of epoxy coating[J]. Electroplating & finishing, 2006, 25(4): 27-29.
[19] TANG Jin-song, JING Xia-bin, WANG Bao-chen, et al. Infrared-spectra of soluble polyaniline[J]. Synthetic metal, 1988, 24: 231-238.
[20] PARSA A, GHANI S A. The improvement of free-radical scavenging capacity of the phosphate medium electrosy-nthesized polyaniline[J]. Electrochemical acta, 2009, 54: 2856-2860.
[21] MORAES S R, HUERTA-VILCA D, MOTHEO A J. Characteristics of polyaniline synthesized in phosphate buffer solution[J]. Europe polymer journal, 2004, 40: 2033- 2041.
[22] ?EDENKOVA I, TRCHOVA M, BLINOVA N V, et al. In-situ polymerized polyaniline films, preparation in solutions of hydrochloric, sulfuric, or phosphoric acid[J]. Thin solid films, 2006, 515: 1640-1646.
[23] GRAY L G S, APPLEMAN B R. EIS electrochemical impedance spectroscopy—A tool to predict remaining coating life[J]. Journal of protective coatings and linings, 2003, 20: 66-74.
[24] LOVEDAY D, PETERSON P, RODGERS B. Evaluation of organic coatings with electrochemical impedance spec-troscopy[J]. Journal of coating technology, 2005, 2: 22-27.
[25] SPINKS G M, DOMINIS A J, WALLACE G G, et al. Electroactive conducting polymers for corrosion control [J]. Journal of solid state chemistry, 2002, 6: 85-100.
[26] 王建雄, 郭清萍, 郭有軍. 聚苯胺防腐蝕涂料的研究現(xiàn)狀[J]. 腐蝕與防護(hù), 2008, 29(4): 213-214. WANG Jian-xiong, GUO Qing-ping, GUO You-jun. Rese-arch status of polyaniline anticorrosion coatings[J]. Cor-rosion & protection, 2008, 29(4): 213-214.
[27] KINLEN P J, MENON V, DING Y. A mechanistic investigation of polyaniline corrosion protection using the scanning reference electrode technique[J]. Journal of the Electrochemical Society, 1999, 146: 3690-3695.
[28] 孫毅, 鐘發(fā)春, 舒遠(yuǎn)杰, 等. 聚苯胺的腐蝕防護(hù)機(jī)理及其在金屬防腐中的應(yīng)用[J]. 材料導(dǎo)報(bào), 2009, 23(7): 65-66. SUN Yi, ZHONG Fa-chun, SHU Yuan-jie, et al. Mecha-nism and application of polyaniline on anti-corrosion protection of metals[J]. Materials review, 2009, 23(7): 65-66.
[29] LIU Xu-wen, XIONG Jin-ping, LYU Yong-wu, et al. Study on corrosion electrochemical behavior of several different coating systems by EIS[J]. Progress in organic coatings, 2009, 64: 497-503.
[30] HASSAN H H, ABDELGHANI E, AMIN M A. Inhibition of mild steel corrosion in hydrochloric acid solution by triazole derivatives: Polarization and EIS studies[J]. Electrochimical acta, 2007, 52: 6359-6366.
Effect of Flake Graphite on Protection Performance of Epoxy Coating Containing Polyaniline on the Magnesium Alloy Surface
1,2,1,1,1,2,1
(1.College of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China; 2.Materials Science & Chemical Engineering College, Harbin Engineering University, Harbin 150001, China)
Targeting at the poor physical shielding performance of the epoxy coating containing polyaniline, this paper aims to further improve the corrosion protection performance of epoxy coating containing polyaniline (PANI) on magnesium alloys by adding the flake graphite with lamellar structure into the coating. Firstly, PANI was synthesized on the surface of flake graphite via chemical oxidation polymerization. The synthetic PANI/flake graphite composite powder was characterized by X-ray diffractometer, scanning electron microscope and Fourier transform infrared spectrometer. Then different coatings were prepared on the surface of AZ91D magnesium alloy after the composite powder was dispersed evenly in epoxy resin. At last, the corrosion performances of different coatings in 3.5wt% sodium chloride solution was studied by electrochemical impedance test. The results indicate that PANI can be polymerized successfully on the surface of flake graphite, the adhesion of the epoxy coating containing polyaniline was slightly reduced with the addition of flake graphite, and there is no apparent effect on the hardness, flexibility and impact resistance of the coating, but the addition of flake graphite significantly increased the impedance value of the epoxy coating containing polyaniline. When the ratio of aniline to flake graphite was 1∶1, the impedance value of coating was 1.3×108Ω·cm2after being soaked in the solution for 1488 hours, and the coating had an excellent protection performance. However, with the extension of the soaking time, the impedance value of the coating was gradually higher than that of the other coatings when the ratio of aniline to flake graphite was 4∶1. After being soaked for 4008 hours, its impedance value was 1.6×108Ω·cm2, and the coating still had a good protection performance. Therefore, it can be concluded that, after the addition of PANI/flake graphite composite powder in the epoxy coating, a better protection effect on magnesium alloy is achieved through the mechanism of the synergy between shield effect of flake graphite in the early stage and the long-term corrosion inhibition effect of PANI, and that the protection effect of this coating is related to the ratio of polyaniline to flake graphite.
magnesium alloy; polyaniline; flake graphite; corrosion protection
2020-01-04;
2020-05-26
ZHANG Ying-jun (1984—), Female, Doctor, Associate professor, Research focus: anti-corrosion coating. E-mail: zhangyingjun@ hrbeu.edu.cn
張穎君, 李婷, 竇寶捷, 等. 鱗片石墨對(duì)鎂合金表面聚苯胺環(huán)氧涂層防護(hù)性能的影響[J]. 表面技術(shù), 2021, 50(4): 304-312.
TG174.4
A
1001-3660(2021)04-0304-09
10.16490/j.cnki.issn.1001-3660.2021.04.031
2020-01-04;
2020-05-26
國(guó)家重點(diǎn)研發(fā)項(xiàng)目(2016YFB0300604);國(guó)家自然科學(xué)基金(51801131)
Fund:Supported by the National Key Research and Development Program (2016YFB0300604); the National Natural Science Foundation of China (51801131)
張穎君(1984—),女,博士,副教授,主要研究方向?yàn)榉栏g涂料。郵箱:zhangyingjun@hrbeu.edu.cn
ZHANG Ying-jun, LI Ting, DOU Bao-jie, et al. Effect of flake graphite on protection performance of epoxy coating containing polyaniline on the magnesium alloy surface[J]. Surface technology, 2021, 50(4): 304-312.