国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

高能重離子碰撞中質(zhì)量偏移對(duì)D介子譜及橢圓流的影響

2021-05-08 06:48張勇丁慧強(qiáng)

張勇 丁慧強(qiáng)

摘? ? 要:通過對(duì)高能重離子碰撞中質(zhì)量偏移對(duì)D介子譜以及橢圓流影響的研究得知:質(zhì)量偏移效應(yīng)會(huì)增加大動(dòng)量區(qū)域的D介子產(chǎn)額,并減小D介子譜的斜率,還會(huì)降低D介子的橢圓流;質(zhì)量偏移效應(yīng)對(duì)D介子譜以及橢圓流的影響隨著偏移質(zhì)量的增加而增加,隨著碰撞能量的升高而減小。

關(guān)鍵詞:高能重離子碰撞;D介子;質(zhì)量偏移;譜;橢圓流

中圖分類號(hào):O41? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A? ? ? ? ? ? ? ?文章編號(hào):2095-7394(2021)02-0041-08

高能重離子碰撞早期所產(chǎn)生的夸克-膠子等離子體(Quark-Gluon Plasma,QGP)的性質(zhì)一直備受學(xué)界關(guān)注。QGP是通過將兩原子核加速到接近光速并實(shí)現(xiàn)碰撞,從而在極短時(shí)間、極小尺度范圍內(nèi)產(chǎn)生的極端高溫、極端高密度、極端高壓力的物質(zhì)形態(tài)。因?yàn)榕鲎布把莼臅r(shí)空尺度極小(時(shí)間尺度約為10-24秒量級(jí),空間尺度約為10-15米量級(jí)),所以人們無法直接探測(cè)QGP的性質(zhì),而只能通過分析實(shí)驗(yàn)觀測(cè)到的末態(tài)粒子的信息,還原碰撞后產(chǎn)生的新系統(tǒng)的演化情況及演化各階段系統(tǒng)的物理性質(zhì)?;瘜W(xué)凍出(chemical freeze-out)前的粒子與QGP有過相互作用,攜帶有QGP的信息;化學(xué)凍出后的粒子還將繼續(xù)與強(qiáng)子介質(zhì)相互作用,直到動(dòng)力學(xué)凍出(kinetic freeze-out)后被探測(cè)器探測(cè)到。與強(qiáng)子介質(zhì)的相互作用會(huì)影響末態(tài)粒子的觀測(cè)量,從而影響人們對(duì)QGP性質(zhì)的分析。因此,粒子與強(qiáng)子介質(zhì)的相互作用一直是研究人員關(guān)注的熱點(diǎn)[1-8]。

重夸克產(chǎn)生在QGP的形成之前[9-10],經(jīng)歷了QGP的形成及整個(gè)演化過程,所以重夸克介子是研究QGP性質(zhì)的重要探針之一。近年來,人們?cè)谙鄬?duì)論對(duì)撞機(jī)(Relativistic Heavy Ion Collider,RHIC)和大型強(qiáng)子對(duì)撞機(jī)(Large Hadron Collider,LHC)上對(duì)質(zhì)量較大的D介子展開了研究[9,11-15]。關(guān)于D介子與強(qiáng)子介質(zhì)相互作用的強(qiáng)弱問題,目前人們還沒有一致的結(jié)論[5-8,9,16],因而有必要對(duì)D介子與強(qiáng)子介質(zhì)的相互作用作進(jìn)一步的研究。

在高能重離子碰撞中,粒子譜及橢圓流是十分重要的實(shí)驗(yàn)觀測(cè)量。粒子譜可以反饋出碰撞中產(chǎn)生的粒子發(fā)射源的熱化及膨脹信息[17-21],橢圓流可以反饋出碰撞產(chǎn)生的源早期的各向異性信息[22-28]。最近,筆者所在團(tuán)隊(duì)研究發(fā)現(xiàn),質(zhì)量偏移效應(yīng)會(huì)影響介子的粒子譜以及橢圓流[29],而且處于強(qiáng)子介質(zhì)中的D介子的質(zhì)量會(huì)比處于真空時(shí)的小[4,30-31],因此,有必要研究質(zhì)量偏移對(duì)D介子的粒子譜以及橢圓流的影響。

1? ? 基本公式及研究方法

1.1? 基本公式

真空中粒子的動(dòng)量譜可表示為[32]:

1.2? 研究方法

本文運(yùn)用2+1維相對(duì)論流體力學(xué)[40]模擬達(dá)到局域平衡后至粒子動(dòng)力學(xué)凍出,這段過程中系統(tǒng)的演化。對(duì)于系統(tǒng)的初始狀態(tài)(初始能量密度分布),本文擬采用高斯型初始條件,初始能量密度設(shè)置為:

相對(duì)論流體力學(xué)可以描述碰撞所產(chǎn)生系統(tǒng)的演化,但何時(shí)動(dòng)力學(xué)凍出粒子則需要由凍出溫度決定。本文選取D介子的動(dòng)力學(xué)凍出溫度為150 MeV[30-31],真空中D介子的質(zhì)量為1 865 MeV[45]。凍出溫度給定后,流體力學(xué)會(huì)給出凍出點(diǎn)的凍出時(shí)刻、流速以及凍出曲面的相關(guān)信息。根據(jù)以上信息,可運(yùn)用公式(12)得出粒子譜及橢圓流。

2? ? 結(jié)果

2.1 質(zhì)量偏移對(duì)D介子粒子譜的影響

圖1展示了質(zhì)量偏移對(duì)D介子橫動(dòng)量譜的影響,圖中橫坐標(biāo)[kT]為橫向動(dòng)量。圖1(a)、圖1(b)展示了初始能量密度[ε0]為9 GeV/fm3和45 GeV/fm3時(shí),不同質(zhì)量偏移情況下歸一化后的D介子的橫動(dòng)量譜。其中,黑色實(shí)線表示的是沒有質(zhì)量偏移時(shí)的結(jié)果,彩色虛線表示有質(zhì)量偏移時(shí)的結(jié)果,[δm=m?-m]。圖1(c)、圖1(d)為有質(zhì)量偏移時(shí)的橫動(dòng)量譜與沒有質(zhì)量偏移時(shí)的橫動(dòng)量譜的比值。D介子處于強(qiáng)子介質(zhì)中的質(zhì)量被認(rèn)為會(huì)減小3~5 MeV[30-31],因此,本文選取了3個(gè)質(zhì)量偏移參數(shù),分別為-3 MeV、-4 MeV和-5 MeV。從圖1可以看出,質(zhì)量偏移會(huì)提高大橫動(dòng)量區(qū)的粒子產(chǎn)額,并使譜隨橫動(dòng)量變化的斜率變小,這種效應(yīng)隨著偏移質(zhì)量的增加而增加,隨著初始能量密度的增加而減小。

利用公式(13)和(16),可以將公式(12)改寫成:

由于D介子的質(zhì)量偏移很小,因此,公式(18)中的[n′k]近似等于公式(9)中的[n0k]。可見,系數(shù)“[F2]”是研究質(zhì)量偏移對(duì)粒子譜影響的關(guān)鍵因素。

圖2為系數(shù)[F2]的平均值[F2]以及[F2]對(duì)[n′k]的比值,這里的“—”表示的是對(duì)所有的動(dòng)力學(xué)凍出點(diǎn)取平均。從圖2(a)、圖2(b)可以看出,系數(shù)[F2]的平均值[F2]是一個(gè)很小的量,并且從公式(19)可以看出[F2]是大于零的。公式(19)中的[F1]近似等于1,因此,公式(18)可以近似地寫成:

2.2? 質(zhì)量偏移對(duì)D介子橢圓流的影響

圖3(a)、圖3(b)表示的是兩種初始能量密度情況下,不同質(zhì)量偏移時(shí)D介子的橢圓流[v2]??梢姡?dāng)沒有質(zhì)量偏移時(shí)([δm=0]),[ε0]=45 GeV/fm3時(shí)的橢圓流比[ε0]=9 GeV/fm3時(shí)的大。圖3(c)、圖3(d)所示為有質(zhì)量偏移時(shí)的橢圓流與質(zhì)量偏移為0時(shí)的橢圓流的比值??梢姡|(zhì)量偏移會(huì)極大地壓低大橫動(dòng)量區(qū)域的橢圓流,并且在初始能量密度為9 GeV/fm3時(shí)壓低效應(yīng)比45 GeV/fm3時(shí)稍大。

為了解釋質(zhì)量偏移對(duì)橢圓流的影響,可將公式(20)寫成如下形式:

3? ? 總結(jié)

在高能重離子的碰撞中,處于強(qiáng)子介質(zhì)中的D介子會(huì)發(fā)生質(zhì)量偏移。本文利用相對(duì)論流體力學(xué)研究了質(zhì)量偏移對(duì)D介子譜以及橢圓流的影響。研究表明:質(zhì)量偏移效應(yīng)會(huì)增加大動(dòng)量區(qū)域的D介子產(chǎn)額并減小D介子譜的斜率,還會(huì)降低D介子的橢圓流;質(zhì)量偏移效應(yīng)對(duì)D介子譜以及橢圓流的影響隨著偏移質(zhì)量的增加而增加,隨著系統(tǒng)初始能量密度的升高而減小;系統(tǒng)初始能量密度隨著碰撞能量的增加而增加,因此,質(zhì)量偏移效應(yīng)對(duì)D介子譜以及橢圓流的影響隨著碰撞能量的升高而減小。

文獻(xiàn)[32]認(rèn)為,介子處于強(qiáng)子介質(zhì)中的質(zhì)量偏移被認(rèn)為隨著動(dòng)量的增加而減小,表明D介子處于介質(zhì)中的質(zhì)量偏移對(duì)動(dòng)量具有一定的依賴關(guān)系。本文為了便于模擬計(jì)算,將D介子處于強(qiáng)子介質(zhì)中的質(zhì)量偏移作為參數(shù)對(duì)待。因此,在將來的研究中,有必要進(jìn)一步深入研究D介子的質(zhì)量偏移對(duì)動(dòng)量的依賴關(guān)系。

參考文獻(xiàn):

[1] KO C M,L?VAI P,QIU X J,et al. Phi meson in dense matter[J]. Physical Review C,1992,45(3):1400-1402. DOI:10.1103/PhysRevC.45.1400.

[2] ASAKAWAM,KO C M. Phimeson mass in hot and dense matter[J]. Nuclear Physics A,1994,572(3/4):732-748.DOI:10.1016/0375-9474(94)90408-1.

[3] MARTEMYANOV B V,F(xiàn)AESSLER A,F(xiàn)UCHS C,et al.Medium modifications of Kaons in pion matter[J]. Physical Rreview Letters,2004,93(5):2301-2304.DOI:10.1103/PhysRevLett.93.052301.

[4] FUCHS C,MARTEMYANOV B V,F(xiàn)ASSLER A,et al. D-mesons and charmonium states in hot pion matter [J]. Physical Review C,2006,73(3):5204-5208.DOI:10.1103/PhysRevC.73.035204.

[5] HE M,F(xiàn)RIES R J,RAPP R. Thermal relaxation of charm in hadronic matter[J]. Physics Letters B,2011,701(4):445-450.DOI:10.1016/j.physletb.2011.06.019.

[6] HE M,F(xiàn)RIES R J,RAPP R. Ds Meson as a quantitative probe of diffusion and hadronization in nuclear collisions[J].Physical Review Letters,2013,110(11):2301-2305.DOI:10.1103/PhysRevLett.110.112301.

[7] HE M,F(xiàn)RIES R J,RAPP R. Heavy flavor at the large hadron collider in a strong coupling approach[J]. Physics Letters B,2014,735:445-450.DOI:10.1016/j.physletb.2014.05.050.

[8] CAO S S,QIN G Y,BASS A. Energy loss,hadronization,and hadronic interactions of heavy flavors in relativistic heavy-ion collisions[J]. Physical Review C,2015,92(2):4907-4918.DOI:10.1103/PhysRevC.92.024907.

[9] ADAM J,ADAM D,ADAMOV M M,et al.Transverse momentum dependence of D-meson production in Pb-Pb collisions at[SNN] =2.76 TeV[J]. Journal of High Energy Physics,2016(3):1-43.DOI:10.1007/JHEP03(2016)081.

[10] LIU F M,LIU S X. Quark-gluon plasma formation time and direct photons from heavy ion collisions[J]. Physical Review C,2014,89(3):4906-4910. DOI:10.1103/PhysRevC.89.034906.

[11] ADAMCZYK L,ADKINS J K,AGAKISHIEV G. et al. Observation of D0 Meson Nuclear Modifications in Au+Au Collisions at[SNN] =200GeV[J]. Physical Review Letters,2014,113(14):2301-2307.DOI:10.1103/PhysRevLett.113.142301.

[12] MICHAEL L. Measurement of D -meson azimuthal anisotropy in Au + Au 200 GeV collisions at RHIC [J].? Nucl. Phys. A,2016,956:256-259. DOI:10.1016/j.nuclphysa.2016.04.027.

[13] ABELEV B,ADAM J,ADAMOV\'A D,et al. D meson elliptic flow in noncentral Pb-Pb collisions at sqrt [SNN]=2.76 Tev[J]. Physical Review Letters,2013,111(10):102301.DOI:10.1103/PhysRevLett.111.102301.

[14] ABELEV B,ADAM J,ADAMOV\'A D,et al. Azimuthal anisotropy of D-meson production in Pb-Pb collisions at [SNN]=2.76 TeV[J]. Physical Review C,2014, 90(3):034904. DOI:10.1103/PhysRevC.90.034904.

[15] ACHARYA S,ADAMOV\'A D,ADOLFSSON J,et al. D-Meson Azimuthal Anisotropy in Midcentral Pb-Pb Collisions at[SNN]=5.02 TeV[J]. Physical Review Letters,2018, 120(10):102301.? DOI:10.1103/PhysRevLett.120.102301.

[16] CAO S S,QIN G Y,BASS S A. Modeling of heavy-flavor pair correlations in Au-Au collisions at 200A GeV at the BNL Relativistic Heavy Ion Collider[J]. Physical Review C,2015, 92(5):054909.DOI:10.1103/PhysRevC.92.054909.

[17] ADAMS J,ADLER C,AGGARWAL M M,et al. Identified Particle Distributions in pp and Au+Au Collisions at[SNN] =200GeV[J]. Physical Review Letters,2004,92(11):112301. DOI:10.1103/PhysRevLett.92.112301.

[18] ADLER S S,AFANASIEV S,AIDALA C,et al. Identified charged particle spectra and yields in Au+Au collisions at [SNN]=200 GeV[J]. Physical Review C,2004, 69(3):034909. DOI:10.1103/PhysRevC.69.034909.

[19] BACK B B,BAKER M D,BALLINTIJN M,et al. Identified hadron transverse momentum spectra in Au+Au collisions at [SNN]=62.4 GeV[J]. Physical Review C,2007, 75(2):024910.? DOI:10.1103/PhysRevC.75.024910.

[20] ABELEV B,ADAM J,ADAMOV\'A D,et al. Pion,Kaon,and Proton Production in Central Pb -Pb Collisions at [SNN]=2.76 TeV[J]. Physical Review Letters,2012, 109(25):252301.DOI:10.1103/PhysRevLett.109.252301.

[21] ABELEV B,ADAM J,ADAMOV\'A D,et al. Centrality dependence of π,K,and p production in Pb-Pb collisions at? [SNN]=2.76 TeV[J]. Physical Review C,2013,88(4):044910. DOI:10.1103/PhysRevC.88.044910.

[22] ADAMS J,AGGARWAL M M,AHAMMED Z,et al. Azimuthal anisotropy in Au+Au collisions at [SNN] =200 GeV[J]. Physical Review C,2005,72(1):014904. DOI:10.1103/PhysRevC.72.014904.

[23] AFANASIEV S,AIDALA C,AJITANAND N N,et al. Systematic studies of elliptic flow measurements in Au+Au collisions at [SNN]=200 GeV[J]. Physical Review C,2009, 80(2):024909. DOI:10.1103/PhysRevC.80.024909.

[24] ABELEV B,ADAM J,ADAMOV\'A D,et al. Elliptic flow of identified hadrons in Pb-Pb collisions at [SNN]=2.76 TeV[J]. Journal of High Energy Physics,2015,190(6):1-41.DOI:10.1007/JHEP06(2015)190.

[25] HEINZ U. Early collective expansion:relativistic hydrodynamics and the transport properties of QCD matter[M]// STOCK R. Relativistic Heavy Ion Physic.Berlin & Heidelberg:Springer-Verlag.2010. DOI:10.1007/978-3-642-01539-7_9.

[26] OLLITRAULT J Y. Anisotropy as a signature of transverse collective flow[J]. Physical Review D,1992, 46(1):229 -245. DOI:10.1103/PhysRevD.46.229.

[27] SCHENKE B. Flow in heavy-ion collisions-Theory Perspective[J]. Journal of Physics G:Nuclear and Particle Physics,2011,38(12):124009. DOI:10.1088/0954-3899/38/12/124009.

[28] SNELLINGS R. Collective expansion at the LHC:selected ALICE anisotropic flow measurements[J]. Journal of Physics G:Nuclear and Particle Physics,2014, 41(12):124007. DOI:10.1088/0954-3899/41/12/124007.

[29] ZHANG Y,YANG? J,WU W H. Effect of in-medium mass-shift on transverse-momentum spectrum and elliptic anisotropy on phi meson[J]. International Journal of Modern Physics E,2020, 29(7):2050047.DOI: 10.1142/S0218301320500470.

[30] YANG A G,ZHANG Y,CHENG L,et al. Squeezed Back-to-Back Correlation of D0-antiD0 in Relativistic Heavy-Ion Collisions[J]. Chinese Physics Letters,2018,35(5):052501.DOI:10.1088/0256-307X/35/5/052501.

[31] XU P Z,ZHANG W N,ZHANG Y. Squeezed back-to-back correlation between bosons and antibosons with different in-medium masses in high-energy heavy-ion collisions[J]. Physical Review C,2019,99(1):011902(R). DOI:10.1103/PhysRevC.99.011902.

[32] ASAKAWA M,CSORGO T,GYULASSY M. Squeezed Correlations and Spectra for Mass-Shifted Bosons[J]. Physic Review Letters,1999,83(20):4013. DOI:10.1103/PhysRevLett.83.4013.

[33] PADULA S S,KREIN G,CSORGO T,et al. Back-to-back correlations for finite expanding fireballs [J]. Physical Review C,2006,73(4):044906. DOI:10.1103/PhysRevC.73.044906.

[34] BJORKEN J D. Highly relativistic nucleus-nucleus collisions:The central rapidity region[J]. Physical Review D,1983,27(1):140. DOI:10.1103/PhysRevD.27.140.

[35] KOLB P F,SOLLFRANK J,HEINZ U. Anisotropic transverse flow and the quark-hadron phase transition[J]. Physical Review C,2000,62(5):054909. DOI:10.1103/PhysRevC.62.054909.

[36] KOLB P F,RAPP R. Transverse flow and hadrochemistry in Au+Au collisions at [SNN]=200GeV[J]. Physical Review C,2003,67(4):044903. DOI:10.1103/PhysRevC.67.044903.

[37] SHEN C,HEINZ U,HUOVINEN P,et al. Systematic parameter study of hadron spectra and elliptic flow from viscous hydrodynamic simulations of Au+Au collisions at [SNN]=200 GeV[J]. Physical Review C,2010,82(5):054904. DOI:10.1103/PhysRevC.82.054904.

[38] EFAAF M J,ZHANG W N,KHALILIASR M,et al. Pion Interferometry for Cylindrical Quark-Gluon Plasma Evolution Sources[J]. Chinese Physics C,2005,29(5):467. DOI:10.3321/j.issn:0254-3052.2005.05.007.

[39] COOPER F,F(xiàn)RYE G. Single-particle distribution in the hydrodynamic and statistical thermodynamic models of multiparticle production[J]. Physical Review D,1974,10(1):186. DOI:10.1103/PhysRevD.10.186.

[40] ZHANG Y,YANG J,ZHANG W N. Squeezed correlations of φ meson pairs for hydrodynamic sources in high-energy heavy-ion collisions[J]. Physical Review C,2015,92(2):024906.DOI: 10.1103/PhysRevC.92.024906.

[41] BACK B B,BAKER M D,BARTON D S,et al. Centrality dependence of the charged particle multiplicity near midrapidity in Au+Au collisions at [SNN]=130 and 200 GeV[J]. Physical Review C,2002,65(6):061901(R). DOI:10.1103/PhysRevC.65.061901.

[42] ALVER B,BACK B B,BAKER M D,et al. Charged-particle multiplicity and pseudorapidity distributions measured with the PHOBOS detector in Au+Au,Cu+Cu,d+Au,and p+p collisions at ultrarelativistic energies[J]. Physical Review C,2011,83(2):024913. DOI:10.1103/PhysRevC.83.024913.

[43] AAMODT K,ABELEV B,QUINTANA A A ,et al.? Charged-Particle Multiplicity Density at Midrapidity in Central Pb-Pb Collisions at [SNN]= 2.76TeV[J]. Physical Review Letters, 2010,105(25):252301. DOI:10.1103/PhysRevLett.105.252301.

[44] AAMODT K,QUINTANA A A,ADAMOVA D,et al. Centrality Dependence of the Charged-Particle Multiplicity Density at Midrapidity in Pb-Pb Collisions at [SNN]=2.76TeV[J]. Physical Review Letters,2011,106(3):032301. DOI:10.1103/PhysRevLett.106.032301.

[45] ZYLA P A,BARNETT R M,BERINGER J,et al. 2020 Review of Particle Physics[J]. Progress of Theoretical and Experimental Physics,2020(8):083C01. DOI:10.1093/ptep/ptaa104.

責(zé)任編輯? ? 王繼國(guó)