王建軍,袁康博,張曉瓊,王瑞豐,高 猛,郭偉國
(1. 太原理工大學(xué)機械與運載工程學(xué)院,山西 太原 030024;2. 西北工業(yè)大學(xué)航空學(xué)院,陜西 西安 710072)
在對金屬材料在很寬溫度、很寬應(yīng)變率范圍內(nèi)的塑性流動行為進行測試時,會發(fā)現(xiàn):在相同的應(yīng)變率下,隨著溫度的升高,流動應(yīng)力應(yīng)變曲線不會出現(xiàn)我們通常認為的下降,而是會整體曲線或較大部分反而上升,如圖1(a)所示,圖中T1、T2和T3分別為三條應(yīng)力應(yīng)變曲線的試驗溫度,表現(xiàn)在對應(yīng)的流動應(yīng)力-溫度曲線上為出現(xiàn)一反常應(yīng)力峰[1-6]。這種金屬材料隨溫度升高出現(xiàn)的強化現(xiàn)象與塑性變形中的Portevin-Le Chatelier(PLC)動態(tài)應(yīng)變時效類似,即應(yīng)變和時效同時發(fā)生,都屬于動態(tài)應(yīng)變時效現(xiàn)象,但是二者的宏觀表現(xiàn)完全不同,PLC 動態(tài)應(yīng)變時效表現(xiàn)為應(yīng)力-應(yīng)變曲線上的鋸齒流動現(xiàn)象[7],如圖1(b)所示。動態(tài)應(yīng)變時效現(xiàn)象的發(fā)現(xiàn)最早可以追溯到Le Chatelier 在1909 年在低碳鋼的高溫變形中首次發(fā)現(xiàn)了鋸齒流動現(xiàn)象,之后Portevin 和Le Chatelier 在“硬鋁”的常溫變形中發(fā)現(xiàn)了相似現(xiàn)象,這種鋸齒流動現(xiàn)象從此被命名為PLC 效應(yīng)[7]。鑒于這種流動應(yīng)力隨溫度變化在曲線上出現(xiàn)的反常應(yīng)力峰現(xiàn)象在形式上有別于靜態(tài)應(yīng)變時效[8-9](見圖1(c))和PLC 動態(tài)應(yīng)變時效,Wang 等[6]在2015 年首次將這一現(xiàn)象命名為“第三型應(yīng)變時效”(third-type strain aging,簡稱3rd SA)。學(xué)者們在研究多種金屬材料的塑性流動行為中均發(fā)現(xiàn)了類似的反常應(yīng)力峰現(xiàn)象,并沿用了第三型應(yīng)變時效這一命名[10-15]。第三型應(yīng)變時效現(xiàn)象的出現(xiàn)具有普遍性,不僅在BCC、FCC 和HCP 多晶金屬中發(fā)現(xiàn)了這一現(xiàn)象[16-20],而且在單晶金屬中也出現(xiàn)了這一現(xiàn)象[21-23]。
圖 1 三種應(yīng)變時效的表現(xiàn)形式Fig. 1 Manifestation of the three kinds of strain aging
第三型應(yīng)變時效現(xiàn)象的發(fā)現(xiàn),使得傳統(tǒng)的金屬材料力學(xué)性能隨溫度升高出現(xiàn)熱軟化及其相關(guān)位錯的熱激活理論不能準(zhǔn)確解釋金屬材料力學(xué)行為隨溫度的變化規(guī)律。常見的經(jīng)驗型本構(gòu)關(guān)系和基于位錯熱激活理論的物理概念本構(gòu)關(guān)系都不能很好地描述金屬的塑性流動行為。為此,本文中從第三型應(yīng)變時效現(xiàn)象的宏觀特征、微觀機理以及考慮第三型應(yīng)變時效的本構(gòu)關(guān)系三個方面來系統(tǒng)介紹第三型應(yīng)變時效。
為了直觀地分析第三型應(yīng)變時效現(xiàn)象,將不同溫度下的應(yīng)力應(yīng)變曲線轉(zhuǎn)換為流動應(yīng)力隨溫度變化的曲線,可以發(fā)現(xiàn):在同一應(yīng)變率下,隨著溫度的升高,流動應(yīng)力先減小,當(dāng)溫度達到某一值時,流動應(yīng)力隨著溫度的升高出現(xiàn)了反常的增長,直至達到一峰值應(yīng)力,隨著溫度的繼續(xù)升高,流動應(yīng)力隨溫度的升高而下降。在某一溫度區(qū)域內(nèi),流動應(yīng)力隨溫度變化的曲線上出現(xiàn)了有第三型應(yīng)變時效引起的反常應(yīng)力峰,如圖2[1,24]所示。對于奧氏體和鐵素體不銹鋼,在準(zhǔn)靜態(tài)下應(yīng)力峰出現(xiàn)的溫度范圍約為0.3~0.5 倍的熔點溫度[25],對于雙相不銹鋼,應(yīng)力峰出現(xiàn)的溫度為0.35 倍的熔點溫度[26]。從圖2 中可以看出,應(yīng)力峰出現(xiàn)的溫度隨應(yīng)變率的增大而移向更高溫度。對于Q235B 鋼,在0.001 s-1應(yīng)變率下,應(yīng)力峰出現(xiàn)的溫度為0.31 倍的熔點溫度;在800 s-1應(yīng)變率下,應(yīng)力峰出現(xiàn)的溫度為0.52 倍的熔點溫度;當(dāng)應(yīng)變率為7 000 s-1時,應(yīng)力峰出現(xiàn)的溫度為0.56 倍的熔點溫度[6]。為了定量描述應(yīng)力峰隨應(yīng)變率的變化規(guī)律,Guo 等[3]、Wang 等[6]、孟衛(wèi)華等[27-28]建立了相關(guān)的物理模型。
圖 2 不同應(yīng)變率下流動應(yīng)力隨溫度變化曲線Fig. 2 Variation of flow stress with temperature at different strain rates
第三型應(yīng)變時效的出現(xiàn)往往伴隨著PLC 動態(tài)應(yīng)變時效現(xiàn)象,并且PLC 動態(tài)應(yīng)變時效通常出現(xiàn)在應(yīng)力峰上升部分對應(yīng)的溫度區(qū)域內(nèi)[6,29-31]。根據(jù)PLC 動態(tài)應(yīng)變時效引起的鋸齒形狀特征,通常把鋸齒形狀分為A、B、C 三種類型[32-34]。PLC 動態(tài)應(yīng)變時效同時會引起試樣表面出現(xiàn)局部的變形帶(Luders 帶),隨著應(yīng)力增大,變形帶會沿著試樣移動[34-35]。A 型鋸齒波一般在較小的應(yīng)變和較低的溫度時出現(xiàn),A 型鋸齒波的一個重要特點是:Luders 帶在逐漸升高的外力作用下向前移動;B 型鋸齒波一般出現(xiàn)在較高的溫度或較低的應(yīng)變率下,并且Luders 帶生成后并不擴展;C 型鋸齒波的形狀介于A 型與B 型之間,Luders 帶生成后并不擴展,并且不斷有新的Luders 帶生成[34]。Sakthivel 等[36]通過對高溫合金Hastelloy X 在寬溫域、不同應(yīng)變率下的鋸齒流動行為進行測試,分析了溫度和應(yīng)變率對高溫合金Hastelloy X 鋸齒流動行為的影響。Roy 等[37]對奧氏體高溫合金C-276 在寬溫域、不同應(yīng)變率下的鋸齒流動行為進行了測試和分析,并通過透射電鏡觀察發(fā)現(xiàn):鋸齒流動出現(xiàn)時位錯密度增大。Karabulut 等[38]通過改變中碳鋼中釩的含量來研究釩含量對第三型應(yīng)變時效的影響。Gündüz 等[39]研究了不同的熱處理對第三型應(yīng)變時效引起的反常應(yīng)力峰的影響。Ganesan 等[5]研究了316LN 奧氏體不銹鋼中氮含量對動態(tài)應(yīng)變時效行為(包括鋸齒流動出現(xiàn)的溫度和鋸齒流動出現(xiàn)的臨界應(yīng)變)的影響,并認為氮溶質(zhì)原子是引起316LN 奧氏體不銹鋼中出現(xiàn)動態(tài)應(yīng)變時效的原因。Xiao 等[40]通過熱處理來改變DH-36 鋼中自由碳原子的含量,進而分析其對第三型應(yīng)變時效引起的反常應(yīng)力峰宏觀特征的影響。Yuan 等[41]通過測試三種不同熱處理狀態(tài)下的激光金屬沉積Inconel 718 合金在寬溫度和應(yīng)變率范圍內(nèi)的塑性流動行為,發(fā)現(xiàn)時效處理后沉淀強化合金材料的第三型應(yīng)變時效引起的反常應(yīng)力峰明顯降低[41],沉積態(tài)合金的反常應(yīng)力峰也隨著應(yīng)變率的升高而降低[42]。
在金屬的塑性變形過程中,位錯的運動并不是連續(xù)的,它們在運動時將被暫時阻擋在短程障礙物(如溶質(zhì)原子)之前,等待熱激活以克服障礙物,再前進到下一個障礙物[43]。在位錯在障礙前的等待期間,溶質(zhì)原子向位錯擴散,在位錯周圍形成溶質(zhì)原子氣團,對運動位錯“釘扎”,阻礙了位錯的運動(見圖3),在宏觀上表現(xiàn)為金屬流動應(yīng)力增大[44]。目前,對溶質(zhì)原子擴散至運動位錯周圍的方式還存在爭議。Cottrell 等[45]認為變形誘導(dǎo)的空位可以幫助溶質(zhì)原子的擴散;Cuddy 等[46]、Schwarz 等[47]認為溶質(zhì)原子借助林位錯管道擴散至運動位錯周圍,形成溶質(zhì)原子氣團,對運動位錯“釘扎”,而不需要借助于空穴,也就是說管道擴散是引起動態(tài)應(yīng)變時效的主要機制。Picu 等[48]研究發(fā)現(xiàn),如果不借助于空位,管道擴散的速度會太慢。對于鋼,如果不含有足夠的合金元素,如Al、V、Nb、Ti,則碳原子和氮原子不能全部形成碳化物和氮化物,因此,由于自由碳原子和氮原子與位錯的相互作用,合金鋼的塑性流動行為中會出現(xiàn)應(yīng)變時效[6]。通過計算18-8 奧氏體不銹鋼動態(tài)應(yīng)變時效過程的激活能,Peng 等[49]發(fā)現(xiàn):在低溫下,動態(tài)應(yīng)變時效是由C、Ni 溶質(zhì)原子氣團和位錯的相互作用引起的,而在高溫下,動態(tài)應(yīng)變時效則是由C、Cr 溶質(zhì)原子氣團和位錯的相互作用引起的。Cuddy 等[46]發(fā)現(xiàn):對于鐵基合金,置換溶質(zhì)原子(O、Si、Mn、Ni、Ru、Rh、Re、Ir 和Pt)與位錯的相互作用是引起動態(tài)應(yīng)變時效的主要原因。對于鎂合金AZ91,Al 原子被認為是引起動態(tài)應(yīng)變時效的主要溶質(zhì)原子,而Zn 原子被作為Al 原子擴散的催化劑[50]。
圖 3 擴散的溶質(zhì)原子對運動位錯的釘扎引起的第三型應(yīng)變時效的示意圖Fig. 3 Schematic of third-type strain aging caused by dislocation pinning by diffused solute atom
由于熱量可以為點缺陷的運動提供能量,因此,溫度可以影響溶質(zhì)原子和空位的運動,而應(yīng)變率可以影響位錯的數(shù)量和運動[51]。當(dāng)溫度和應(yīng)變率達到某種關(guān)系時,在位錯周圍會形成溶質(zhì)原子氣團,“釘扎”位錯,阻礙其運動[43,52]。在低溫高應(yīng)變率下,溶質(zhì)原子的擴散速度低于對應(yīng)的位錯運動速度,第三型應(yīng)變時效不會發(fā)生。在高溫低應(yīng)變率下,溶質(zhì)原子氣團隨著位錯運動,溶質(zhì)原子的擴散速度高于對應(yīng)的位錯的運動速度,溶質(zhì)原子氣團不會對位錯“釘扎”,第三型應(yīng)變時效同樣不會發(fā)生[45,53]。
早在19 世紀(jì),人們就發(fā)現(xiàn),在機械加工過程中,當(dāng)?shù)吞间摫患訜岬奖砻孀兯{時會變得很脆,這一現(xiàn)象被稱為“藍脆”,原因在于,材料在塑性變形過程中,擴散的溶質(zhì)原子對位錯的釘扎,造成了材料變形阻力的增加。隨著變形阻力的增加,材料內(nèi)的應(yīng)力水平也會更高,引起微裂紋的形成和增殖,最終導(dǎo)致材料韌性降低[25,54-55]。伴隨著第三型應(yīng)變時效引起的反常應(yīng)力峰,材料的韌性也通常隨溫度升高而降低,即出現(xiàn)藍脆現(xiàn)象,在該溫度區(qū)域內(nèi),韌性隨溫度變化呈現(xiàn)一低谷[17,31,56]。對于BCC 鐵,在出現(xiàn)藍脆溫度區(qū)域內(nèi),動態(tài)應(yīng)變時效是由運動位錯和碳或氮溶質(zhì)原子的相互作用引起的[57]。Koyama 等[58]研究了不同碳含量對Fe-Mn-C 奧氏體不銹鋼力學(xué)行為中表現(xiàn)出來的動態(tài)應(yīng)變時效引起的藍脆現(xiàn)象的影響規(guī)律。與應(yīng)變率對第三型應(yīng)變時效現(xiàn)象的影響相似,隨著應(yīng)變率的增大,藍脆現(xiàn)象出現(xiàn)的溫度區(qū)域移向更高的溫度區(qū)域[31]。PLC 效應(yīng)、第三型應(yīng)變時效和藍脆現(xiàn)象都是由運動位錯與擴散的溶質(zhì)原子的相互作用引起的,被認為是動態(tài)應(yīng)變時效的三種表現(xiàn)形式[6]。
在動態(tài)應(yīng)變時效的溫度區(qū)域內(nèi),多種金屬材料的內(nèi)耗隨溫度變化曲線出現(xiàn)了Snoek 內(nèi)耗峰[59]。Schwink 等[60]認為金屬內(nèi)耗峰產(chǎn)生的機理可用來解釋PLC 效應(yīng)。并且已有的研究結(jié)果表明,對于鐵碳合金,當(dāng)振動頻率為1 Hz 時,內(nèi)耗峰出現(xiàn)在470~590 K 的溫度范圍內(nèi)[61-64],該溫度范圍與準(zhǔn)靜態(tài)下動態(tài)應(yīng)變時效出現(xiàn)的溫度范圍接近。隨著頻率增大,內(nèi)耗峰會移向更高的溫度[63,65-66]。Wang 等[6]和郭偉國等[67]通過研究發(fā)現(xiàn),內(nèi)耗峰出現(xiàn)的溫度隨頻率的變化規(guī)律與第三型應(yīng)變時效出現(xiàn)的溫度隨應(yīng)變率的變化規(guī)律相同。內(nèi)耗峰和金屬塑性變形中出現(xiàn)的第三型應(yīng)變時效都是由相同的微觀機理引起的,并且二者有著相似的宏觀特征。因此,第三型應(yīng)變時效被認為是機械波譜的另一種表現(xiàn)形式。彭開萍等[68]對3004 鋁合金在“反?!变忼X屈服的溫度區(qū)域進行了內(nèi)耗試驗,并結(jié)合激活能的計算、內(nèi)耗研究、微觀組織觀察和能譜分析,探討“反?!变忼X屈服的機理與物理本質(zhì)。Lee 等[69]通過內(nèi)耗試驗分析了孿晶誘導(dǎo)塑性鋼(Fe-18%Mn-0.6% C 和Fe-18% Mn-1.5% Al-0.6% C)在常溫下出現(xiàn)PLC 鋸齒流動的原因。Karlsen 等[70]通過對AISI 316 NG 奧氏體不銹鋼進行不同溫度下預(yù)應(yīng)變后的內(nèi)耗試驗發(fā)現(xiàn):在動態(tài)應(yīng)變時效溫度區(qū)域內(nèi)預(yù)應(yīng)變后的Snoek 內(nèi)耗峰的高度顯著增大。Ivanchenko 等[71]對退火后的鎳基高溫合金Inconel 600 進行了內(nèi)耗試驗,在620~670 K 溫度范圍內(nèi)出現(xiàn)了碳原子引起的Snoek 內(nèi)耗峰,而當(dāng)對鎳基高溫合金Inconel 600 在動態(tài)應(yīng)變時效出現(xiàn)的溫度(423 K)下首先進行預(yù)拉伸,而后進行內(nèi)耗試驗時,發(fā)現(xiàn)其內(nèi)耗峰明顯增大。
綜上所述,第三型應(yīng)變時效、PLC 效應(yīng)和藍脆現(xiàn)象都是由運動位錯與擴散的溶質(zhì)原子的相互作用引起的,被認為是動態(tài)應(yīng)變時效的三種表現(xiàn)形式。
常見的描述金屬塑性流動行為的熱黏塑性本構(gòu)模型可分為經(jīng)驗型/唯象本構(gòu)模型和物理概念本構(gòu)模型。經(jīng)驗型本構(gòu)模型最常見的有Johnson-Cook 本構(gòu)模型(J-C 模型)[72-74],J-C 模型是一種純經(jīng)驗型或者半經(jīng)驗型本構(gòu)模型,由于其形式簡單而被廣泛應(yīng)用于工程實踐中,并被嵌入到ANSYS、ABAQUS 等有限元軟件中。物理概念本構(gòu)模型主要包括Zerilli-Armstrong 模型(Z-A 模型)[75]、力閾值應(yīng)力本構(gòu)模型(MTS 模型)[76]、Bonder-Partom 模型(B-P 模型)[77]、Nemat-Nasser 物理概念本構(gòu)模型[1-2,78-79]以及其他具有物理意義的本構(gòu)模型[73,80],這些本構(gòu)模型都已被認可和廣泛應(yīng)用。Z-A 模型是基于位錯動力學(xué)的概念提出的、分別針對FCC 和BCC 金屬的塑性流動本構(gòu)模型,模型中考慮晶粒尺寸的影響。MTS 模型是基于位錯的熱激活運動理論建立的,它將流動應(yīng)力和力閾值應(yīng)力作為內(nèi)狀態(tài)變量與應(yīng)變和應(yīng)變率相關(guān)聯(lián)。B-P 模型是基于連續(xù)介質(zhì)力學(xué)和唯象學(xué)的基本概念建立起來的。Nemat-Nasser 物理概念本構(gòu)模型是基于位錯的動力學(xué)基本理論建立起來的,其將塑性流動應(yīng)力分為熱激活部分和非熱部分。近幾年,Gao 等[81]研究了FCC 金屬在高應(yīng)變率下運動位錯密度的演化,并建立了相關(guān)的本構(gòu)模型。Khan 等[82]建立了可以描述2024-T351 鋁合金的依賴于溫度和應(yīng)變率的唯象本構(gòu)模型。
研究表明,以上金屬熱黏塑性本構(gòu)模型可以很好地描述金屬材料在不同溫度、不同應(yīng)變率下的塑性流動行為,并且這些本構(gòu)模型在工程中均得到了廣泛的應(yīng)用。但是,這些模型都沒有考慮金屬塑性流動行為中出現(xiàn)的第三型應(yīng)變時效現(xiàn)象,也就是說,金屬塑性流動行為出現(xiàn)的第三型應(yīng)變時效現(xiàn)象使得現(xiàn)有金屬熱黏塑性本構(gòu)模型均不再適用。為了能描述金屬塑性流動行為中普遍存在的第三型應(yīng)變時效現(xiàn)象,學(xué)者們基于運動位錯與溶質(zhì)原子的相互作用建立了可以描述該行為的物理概念本構(gòu)模型[24,83],但是由于第三型應(yīng)變時效過程較為復(fù)雜,使得建立的這類模型極為復(fù)雜。通常,這類模型會包含大量的參數(shù),使得擬合過程也極為困難。為了能描述第三型應(yīng)變時效對金屬材料塑性流動行為的影響,唯象第三型應(yīng)變時效模型被廣泛采用[3,6,27-28,84-87]。Lee 等[86]建立了半經(jīng)驗型的第三型應(yīng)變時效模型,但該模型并未考慮應(yīng)變率對第三型應(yīng)變時效的影響。Lee 等[85]和Guo 等[3]、孟衛(wèi)華等[27-28]、Su 等[87]在Nemat-Nasser 物理概念本構(gòu)模型的基礎(chǔ)上,考慮了第三型應(yīng)變時效的影響以及第三型應(yīng)變時效隨應(yīng)變率的變化規(guī)律,建立了可以描述金屬塑性流動行為中出現(xiàn)的反常應(yīng)力峰現(xiàn)象的塑性流動本構(gòu)模型,初步完善了金屬熱黏塑性本構(gòu)模型。Shen 等[88]利用唯象第三型應(yīng)變時效模型建立了可以描述金屬各向異性、熱軟化和第三型應(yīng)變時效現(xiàn)象的金屬熱黏塑性本構(gòu)模型,如圖4 所示。Wang 等[6]結(jié)合第三型應(yīng)變時效發(fā)生的機理(即運動位錯與溶質(zhì)原子的相互作用)及其宏觀特征,建立了包含第三型應(yīng)變時效現(xiàn)象的金屬塑性流動本構(gòu)模型。圖5 所示為本構(gòu)模型預(yù)測得到的Q235B 鋼的流動應(yīng)力隨溫度和應(yīng)變率變化的情況,從圖中可以看出,第三型應(yīng)變時效引起的應(yīng)力峰如同“山脊”出現(xiàn)在時效溫度區(qū)域內(nèi),并且隨著應(yīng)變率增大,應(yīng)力峰高度降低,其出現(xiàn)的溫度區(qū)域移向了更高的溫度區(qū)域。郭揚波等[89]考慮位錯與位錯芯內(nèi)的溶質(zhì)原子(位錯芯氣團)的相互作用,在Z-A 熱黏塑性本構(gòu)模型的基礎(chǔ)上,加入位錯和位錯芯氣團的相互作用的影響,建立了一種可定量描述第三型應(yīng)變時效現(xiàn)象的本構(gòu)模型。Song 等[10]利用Wang 等[6]建立的第三型應(yīng)變時效模型建立了包含第三型應(yīng)變時效的金屬熱黏塑性本構(gòu)模型。Song 等[11]、Voyiadjis 等[90-91]基于修正的Voyiadjis-Abed 模型建立了包含第三型應(yīng)變時效的熱黏塑性本構(gòu)模型。Li 等[18]通過機器學(xué)習(xí)的方法確定了修正的J-C 本構(gòu)模型,模型可以描述DP800 鋼在不同溫度和應(yīng)變率下的塑性流動行為,但是文中所研究的溫度范圍為20~300 ℃,DP800 鋼塑性流動行為并沒有表現(xiàn)出完整的第三型應(yīng)變時效,如圖6 所示。Yuan 等[41]針對三種不同熱處理狀態(tài)下激光沉積Inconel 718 合金,將Wang 等[6]建立的第三型應(yīng)變時效模型引入考慮熱處理引起的微觀結(jié)構(gòu)演化的物理本構(gòu)模型。擬合出流動應(yīng)力的動態(tài)應(yīng)變時效分量的本構(gòu)參數(shù),結(jié)合微觀組織分析認為,沉淀強化金屬材料中不同尺寸的沉淀相對第三型應(yīng)變時效具有不同的影響機制。當(dāng)運動位錯切過尺寸較小的強化相時,強化相與釘扎原子的共同作用使第三型應(yīng)變時效現(xiàn)象更為明顯;而當(dāng)運動位錯繞過尺寸交大的強化相時,部分釘扎原子被保留在圍繞強化相的位錯環(huán)內(nèi),導(dǎo)致運動位錯上釘扎原子濃度降低,從而減弱了第三型應(yīng)變時效現(xiàn)象。
圖 4 API X70 管線鋼塑性流動行為中出現(xiàn)的第三型應(yīng)變時效現(xiàn)象及本構(gòu)模型預(yù)測結(jié)果[88]Fig. 4 Third type strain aging phenomenon in the plastic flow behavior of API X70 pipeline steel and prediction results of constitutive model[88]
圖 5 本構(gòu)模型預(yù)測得到的Q235B 鋼在應(yīng)變?yōu)?.1 下的流動應(yīng)力隨溫度和應(yīng)變率變化的情況[6]Fig. 5 Constitutive model predicted variation of flow stress at the strain of 0.1 with temperature and strain rate for Q235B steel[6]
圖 6 通過機器學(xué)習(xí)得到的DP800 鋼的流動應(yīng)力隨溫度和等效應(yīng)變率變化的情況[18]Fig. 6 Variation of flow stress with temperature and strain rate obtained with machine learning for DP 800 steel[18]
隨著金屬材料的發(fā)展以及對晶體位錯理論的不斷認識,傳統(tǒng)的金屬材料力學(xué)性能隨溫度升高出現(xiàn)的熱軟化及其相關(guān)的位錯的熱激活理論并不能完全反映金屬材料力學(xué)行為隨溫度的變化規(guī)律。通常認為金屬材料的流動應(yīng)力隨著溫度的升高而降低,但在金屬材料的實際應(yīng)用中或?qū)饘俨牧狭W(xué)行為進行試驗測試時會發(fā)現(xiàn),在某一溫度范圍內(nèi),其流動應(yīng)力隨溫度變化的曲線上會出現(xiàn)一反常應(yīng)力峰,即第三型應(yīng)變時效現(xiàn)象。第三型應(yīng)變時效被認為是由運動位錯與擴散溶質(zhì)原子的相互作用引起的,而溶質(zhì)原子的擴散需要借助于空位或/和林位錯管道。第三型應(yīng)變時效、PLC 動態(tài)應(yīng)變時效和藍脆現(xiàn)象都是由運動位錯與擴散的溶質(zhì)原子的相互作用引起的,是動態(tài)應(yīng)變時效的三種表現(xiàn)形式,并且第三型應(yīng)變時效被認為是機械波譜的另一種表現(xiàn)形式。第三型應(yīng)變時效現(xiàn)象的出現(xiàn)使得常見的本構(gòu)模型不能描述金屬的塑性流動行為,具有物理概念的包含第三型應(yīng)變時效的本構(gòu)模型由于形式過于復(fù)雜而并未得到廣泛應(yīng)用,而近幾年基于第三型應(yīng)變時效的機理和宏觀特征建立的半經(jīng)驗型的包含第三型應(yīng)變時效的本構(gòu)模型受到了廣泛重視。