趙 斌 王 剛*② 宋婧妍② 劉雅琳
①(中國科學(xué)院空天信息創(chuàng)新研究院高功率微波源與技術(shù)重點(diǎn)實(shí)驗(yàn)室 北京 100190)
②(中國科學(xué)院大學(xué) 北京 100039)
空間行波管放大器(Traveling-Wave Tube Amplifier, TWTA)廣泛應(yīng)用于雷達(dá)、電子對(duì)抗以及衛(wèi)星導(dǎo)航等應(yīng)用中,起到微波功率放大的作用[1]。空間行波管放大器由兩部分構(gòu)成:電子功率調(diào)節(jié)器和空間行波管。電子功率調(diào)節(jié)器為空間行波管的正常工作提供合適的高電壓[2],因此,電子功率調(diào)節(jié)器的效率將直接影響整個(gè)空間行波管放大器的效率[3,4]。提高電子功率調(diào)節(jié)器的效率,對(duì)于降低衛(wèi)星上太陽能電池板的數(shù)量,降低發(fā)射重量,具有重要的意義。
當(dāng)前,如圖1所示,電子功率調(diào)節(jié)器普遍采用2級(jí)結(jié)構(gòu):第1級(jí)為Buck變換器[5],第2級(jí)為LCLC諧振變換器[6]。目前,由于Buck變換器已經(jīng)得到了廣泛的研究,因此,本文主要研究LCLC諧振變換器[7,8]。第2級(jí)LCLC諧振變換器,將Buck變換器的輸出電壓,升壓為行波管所需要的高電壓,并提供電氣隔離的功能。然而,如圖1所示,LCLC諧振變換器具有4個(gè)諧振參數(shù),Lr為變壓器漏感;Cs為串聯(lián)諧振電容;Lm為變壓器勵(lì)磁電感;Cp為并聯(lián)諧振電容(即變壓器寄生電容),增加了LCLC諧振變換器總損耗優(yōu)化的難度。因此,當(dāng)前,LCLC諧振變換器的設(shè)計(jì)主要依賴經(jīng)驗(yàn),無法對(duì)LCLC諧振變換器的總損耗進(jìn)行優(yōu)化。
近年來,粒子群優(yōu)化設(shè)計(jì)算法在功率變換優(yōu)化設(shè)計(jì)中得到了廣泛的應(yīng)用[9]。粒子群優(yōu)化算法從隨機(jī)解出發(fā),通過適應(yīng)度評(píng)價(jià)解的品質(zhì),并通過多次迭代搜索最優(yōu)值求得最優(yōu)解[10,11],具有精度高優(yōu)化以及收斂快等優(yōu)點(diǎn)[12,13]。本文將粒子群優(yōu)化設(shè)計(jì)算法應(yīng)用到LCLC諧振變換器中,提出了一種基于粒子群優(yōu)化設(shè)計(jì)算法的LCLC諧振變換器優(yōu)化設(shè)計(jì)方法。該優(yōu)化設(shè)計(jì)方法以LCLC諧振變換器的總損耗為優(yōu)化設(shè)計(jì)的目標(biāo)函數(shù),通過粒子群優(yōu)化算法,求得總損耗最低時(shí)的LCLC諧振變換器的諧振參數(shù)(Lr, Cs, Lm和Cp)。基于總損耗最低時(shí)的諧振參數(shù),搭建LCLC諧振變換器,最終實(shí)現(xiàn)LCLC諧振變換器的高效率。
本文按照如下的思路展開:第2節(jié)通過對(duì)LCLC諧振變換器工作原理的分析,推導(dǎo)了LCLC諧振變換器總損耗的公式;第3節(jié)基于LCLC諧振變換器的總損耗公式,提出了基于粒子群優(yōu)化算法的LCLC諧振變換器優(yōu)化設(shè)計(jì)方法,并給出了例子;第4節(jié)基于第3節(jié)中的例子,搭建了優(yōu)化設(shè)計(jì)的LCLC諧振變換器,并進(jìn)行了一系列實(shí)驗(yàn),用于驗(yàn)證本文提出的優(yōu)化設(shè)計(jì)方法;第5節(jié)對(duì)本文進(jìn)行了總結(jié)。
在本節(jié)中,基于LCLC諧振變換器的工作原理[14],對(duì)LCLC諧振變換器的總損耗進(jìn)行了計(jì)算。在空間行波管放大器的應(yīng)用中,由于LCLC諧振變換器工作在零電流、零電壓條件下,因此,開關(guān)管無開通和關(guān)斷損耗。LCLC諧振變換器的損耗包含開關(guān)管驅(qū)動(dòng)損耗、開關(guān)管的導(dǎo)通損耗、串聯(lián)諧振電容損耗、變壓器銅損、變壓器鐵損、變壓器介質(zhì)損耗以及整流二極管損耗。下面將分別對(duì)各部分損耗進(jìn)行計(jì)算,并推導(dǎo)得到LCLC諧振變換器的總損耗公式。
在LCLC諧振變換器中,為降低整流二極管損耗,采用碳化硅二極管,因此,反向恢復(fù)損耗可以忽略。高壓整流二極管的損耗為導(dǎo)通損耗,即
其中,PD為高壓整流二極管損耗,Vo為LCLC諧振變換器的輸出電壓,VD為高壓整流二極管的管壓降,Ro為變換器負(fù)載。
主開關(guān)管的驅(qū)動(dòng)損耗為
其中,Qg為門極驅(qū)動(dòng)電荷,Vdr為開關(guān)管的驅(qū)動(dòng)電壓,fs為LCLC諧振變換器的諧振頻率。
由于在空間行波管放大器應(yīng)用中,主開關(guān)管實(shí)現(xiàn)了零電壓、零電流導(dǎo)通和關(guān)斷,導(dǎo)通損耗和關(guān)斷損耗降為0。導(dǎo)通損耗為
其中,Irms為諧振電流有效值,Ron為主開關(guān)管的導(dǎo)通電阻。
結(jié)合諧振電流有效值的計(jì)算公式[14],主開關(guān)管的導(dǎo)通損耗為
其中,Vo為LCLC諧振變換器輸出電壓,Ts為開關(guān)周期,Trs為Lr和Cs的諧振周期,Ro為負(fù)載,a為變壓器變比。
由于LCLC諧振變換器工作在高頻條件下,引起變壓器繞組的鄰近效應(yīng)和趨膚效應(yīng),從而加劇了變壓器的銅損。變壓器的銅損為
圖1 電子功率調(diào)節(jié)器的兩級(jí)結(jié)構(gòu)
其中,Rac為變壓器的交流電阻。
在空間行波管放大器的應(yīng)用中,輸出電壓從數(shù)千伏到一萬多伏不等;此外,LCLC諧振變換器工作在高頻條件下,變壓器的寄生電容在每個(gè)開關(guān)周期都要進(jìn)行充放電,從而引起介質(zhì)損耗。主變壓器的介質(zhì)損耗為[13]
其中,δ為介質(zhì)的損耗角,Trp為Lm和Cp的諧振周期,Td為死區(qū)時(shí)間,φ 為一常數(shù)。
變壓器在工作中,除具有銅損和介質(zhì)損耗之外,磁芯也將產(chǎn)生損耗。在LCLC諧振變換器中,磁芯損耗為
其中,kc,α,β為磁芯材料損耗參數(shù),Ve為磁芯體積。
結(jié)合式(1)—式(7),得到變換器的總損耗為
在接下來的優(yōu)化設(shè)計(jì)中,將式(8)作為優(yōu)化目標(biāo),進(jìn)行LCLC諧振變換器的優(yōu)化設(shè)計(jì)。
由于在LCLC諧振變換器中具有4個(gè)諧振參數(shù),即漏感、串聯(lián)諧振電容、變壓器勵(lì)磁電感以及變壓器寄生電容,因此,LCLC諧振變換器的優(yōu)化設(shè)計(jì)比較困難。本文結(jié)合當(dāng)前的人工智能算法和粒子群優(yōu)化算法,提出了基于粒子群優(yōu)化算法的LCLC變換器優(yōu)化設(shè)計(jì)方法。
基于粒子群優(yōu)化算法的LCLC變換器優(yōu)化設(shè)計(jì)方法的流程圖如圖2所示。優(yōu)化設(shè)計(jì)算法分為以下幾步:
圖2 基于粒子群優(yōu)化算法的LCLC諧振變換器優(yōu)化設(shè)計(jì)
步驟 1 在LCLC變換器優(yōu)化設(shè)計(jì)開始之前,根據(jù)LCLC諧振變換器的輸入電壓、輸出電壓、工作頻率,確定主開關(guān)管、整流二極管型號(hào),并選定磁芯形狀和材料。并根據(jù)主開關(guān)管的參數(shù)、整流二極管參數(shù)、磁芯的參數(shù),代入變換器總損耗公式中。
步驟 2 采用粒子群優(yōu)化設(shè)計(jì)算法,對(duì)LCLC諧振變換器的總損耗進(jìn)行優(yōu)化,計(jì)算得到優(yōu)化的諧振參數(shù)以及優(yōu)化的總損耗。粒子群優(yōu)化算法將在3.2節(jié)中詳細(xì)闡述。
步驟 3 基于步驟2中的優(yōu)化的寄生參數(shù),搭建LCLC諧振變換器。
步驟 4 對(duì)LCLC諧振變換器進(jìn)行測(cè)試。
用于LCLC諧振變換器優(yōu)化設(shè)計(jì)的粒子群優(yōu)化設(shè)計(jì)算法流程圖如圖3所示,包含以下幾步:
步驟 1 粒子群優(yōu)化算法初始化。粒子群優(yōu)化算法的參數(shù),包含Weight.start, Weight.end,kind和Vel.max被初始化。其中,粒子的個(gè)數(shù)Npa為20,最大的迭代次數(shù)Max.Iteration是100。
每一個(gè)粒子被賦予任意的Lr, Cs, Lm和Cp值。LCLC諧振變換器的參數(shù)輸入到粒子群優(yōu)化設(shè)計(jì)算法中,變換器總損耗作為粒子群優(yōu)化算法的目標(biāo)函數(shù)。
圖3 用于LCLC諧振變換器優(yōu)化設(shè)計(jì)的粒子群優(yōu)化設(shè)計(jì)算法
步驟 2 總損耗計(jì)算。在這步中,計(jì)算每個(gè)粒子的目標(biāo)函數(shù)值及變換器總損耗。目標(biāo)函數(shù)值將用于評(píng)價(jià)每個(gè)粒子的適應(yīng)度。
步驟 3 更新全局最優(yōu)值、個(gè)體最優(yōu)值、Weight和Vel?;诓襟E2中計(jì)算的總損耗,所有粒子的全局最優(yōu)值,每個(gè)粒子的個(gè)體最優(yōu)值,Weight和Vel將被更新。
步驟 4 重復(fù)步驟2和步驟3,直到滿足循環(huán)結(jié)束條件。如果平均目標(biāo)函數(shù)值穩(wěn)定,或者達(dá)到最大迭代次數(shù),循環(huán)過程將被終止。否則,將重復(fù)步驟2和步驟3的過程。
步驟 5 輸出優(yōu)化的諧振參數(shù)值以及優(yōu)化的總損耗。當(dāng)步驟2和步驟3的循環(huán)終止條件滿足之后,粒子群優(yōu)化算法將輸出優(yōu)化的諧振參數(shù)值以及總損耗。
至此,粒子群優(yōu)化算法結(jié)束。當(dāng)粒子群優(yōu)化算法結(jié)束之后,將得到優(yōu)化的諧振參數(shù),包含Lr, Cs,Lm和Cp。接下來,將利用優(yōu)化的諧振參數(shù),搭建LCLC諧振變換器,并進(jìn)行實(shí)驗(yàn)測(cè)試。
在3.1節(jié)和3.2節(jié)中,分別針對(duì)基于粒子群算法的LCLC諧振變換器優(yōu)化設(shè)計(jì)方法以及粒子群優(yōu)化算法進(jìn)行了闡述。本節(jié)將采用基于粒子群算法的LCLC諧振變換器優(yōu)化設(shè)計(jì)方法,進(jìn)行LCLC諧振變換器的優(yōu)化設(shè)計(jì),以此驗(yàn)證本文提出的優(yōu)化設(shè)計(jì)方法。
LCLC諧振變換器的參數(shù)如表1所示。輸入電壓為40 V,輸出電壓為4800 V,開關(guān)頻率為300 kHz,輸出功率為300 W。基于LCLC諧振變換器的輸入、輸出電壓以及開關(guān)頻率,磁芯選擇TDK公司的FEE38/16/25,磁芯材料為N87,適于工作在500 kHz以下的開關(guān)頻率。此外,主開關(guān)管選擇RJK6505PBF。
表1 LCLC諧振變換器參數(shù)
基于表1的參數(shù),采用本文提出的基于粒子群算法的LCLC諧振變換器優(yōu)化設(shè)計(jì)方法,對(duì)LCLC諧振變換器的總損耗進(jìn)行了優(yōu)化設(shè)計(jì)。LCLC諧振變換器的總損耗,隨迭代次數(shù)的變化如圖4所示。
由圖4可以看出,隨著迭代次數(shù)的增加,變換器總損耗逐漸穩(wěn)定,最終優(yōu)化得到的總損耗為8.9 W,對(duì)應(yīng)的諧振參數(shù)為Lr= 0.09 μH, Cs=1 μF, Lm= 8.0 μH, Cp= 13.2 nF。當(dāng)LCLC諧振變換器的優(yōu)化過程完成之后,第4節(jié)將基于優(yōu)化結(jié)果,搭建LCLC諧振變換器并進(jìn)行實(shí)驗(yàn)測(cè)試。
圖4 總損耗隨迭代次數(shù)的變化
在本節(jié)中,首先,基于第3節(jié)的優(yōu)化設(shè)計(jì)結(jié)果,搭建了優(yōu)化的LCLC諧振變換器;其次,在優(yōu)化的LCLC諧振變換器搭建完成之后,進(jìn)行了一系列實(shí)驗(yàn),驗(yàn)證了本文提出的優(yōu)化設(shè)計(jì)方法的有效性;最后,在改變輸入電壓和輸出功率的情況下,測(cè)試了LCLC諧振變換器的效率。
基于第3節(jié)優(yōu)化設(shè)計(jì)得到的諧振參數(shù),搭建了LCLC諧振變換器。由于改進(jìn)用于高壓平面變壓器的部分交錯(cuò)繞組結(jié)構(gòu)具有低漏感、低寄生電容以及低交流電阻的優(yōu)勢(shì),本文的高壓變壓器采用了這種結(jié)構(gòu)[15]。改進(jìn)的用于高壓變壓器的部分交錯(cuò)繞組結(jié)構(gòu)如圖5所示。
變壓器以及繞組的尺寸如表2所示。
圖5 改進(jìn)的用于高壓平面變壓器的部分交錯(cuò)繞組結(jié)構(gòu)
根據(jù)表2所示的尺寸,在Ansys Maxwell中搭建了高壓變壓器模型,并進(jìn)行了有限元仿真。仿真得到的漏感、勵(lì)磁電感以及寄生電容如表3所示。
表2 高壓平面變壓器參數(shù)
表3 仿真結(jié)果與優(yōu)化結(jié)果的對(duì)比
由表3可以看出,與優(yōu)化的諧振參數(shù)相比,仿真結(jié)果的誤差可以接受。因此,LCLC諧振變換器的優(yōu)化設(shè)計(jì)結(jié)果得以實(shí)現(xiàn)。需要指出的是,由于Cs為分立器件,優(yōu)化的串聯(lián)諧振的電容Cs值,可以直接通過選擇分立電容實(shí)現(xiàn)。
LCLC諧振變換器的測(cè)試波形如圖6所示。其中,vds1(t)為開關(guān)管S1的漏源極電壓,ir(t)為諧振電流,vgs1(t)為主開關(guān)管S1的驅(qū)動(dòng)電壓,vd1(t)為倍壓整流二極管D1的電壓,id1(t)為倍壓整流二極管D1的電流。
主開關(guān)管S1的實(shí)驗(yàn)波形如圖6(a)所示。由圖6(a)可以看出,在主開關(guān)管開通時(shí),諧振電流ir(t)為零,同時(shí),開關(guān)管S1上的電壓vds1(t)也為零,因此,主開關(guān)管實(shí)現(xiàn)了零電壓、零電流開通。同理,當(dāng)主開關(guān)管關(guān)斷時(shí),諧振電流ir(t)為零,同時(shí),開關(guān)管S1上的電壓vds1(t)也為零,因此,主開關(guān)管實(shí)現(xiàn)了零電壓、零電流關(guān)斷。綜合上述討論,主開關(guān)管S1實(shí)現(xiàn)了零電壓、零電流開通和關(guān)斷。
圖6 優(yōu)化的LCLC諧振變換器的實(shí)驗(yàn)波形
倍壓整流二極管D1的實(shí)驗(yàn)波形如圖6(b)所示。由圖6(b)可以看出,在倍壓整流二極管D1開通時(shí),諧振電流id1(t)為零,同時(shí),倍壓整流二極管D1上的電壓vd1(t)也為零,因此,倍壓整流二極管D1實(shí)現(xiàn)了零電壓、零電流開通。同理,當(dāng)倍壓整流二極管D1關(guān)斷時(shí),諧振電流id1(t)為零,同時(shí),倍壓整流二極管D1上的電壓vd1(t)也為零,因此,倍壓整流二極管D1實(shí)現(xiàn)了零電壓、零電流關(guān)斷。綜合上述討論,倍壓整流二極管D1實(shí)現(xiàn)了零電壓、零電流開通和關(guān)斷。
基于上述實(shí)驗(yàn)結(jié)果可以看出,主開關(guān)管和倍壓整流二極管都實(shí)現(xiàn)了零電壓、零電流開通和關(guān)斷。
為進(jìn)一步測(cè)試本文提出的優(yōu)化設(shè)計(jì)方法的有效性,分別測(cè)試了當(dāng)勵(lì)磁電感Lm和串聯(lián)諧振電容Cs改變時(shí)的波形效率。
改變勵(lì)磁電感得到的實(shí)驗(yàn)波形如圖7所示。如圖7(a)和圖7(b)對(duì)應(yīng)的勵(lì)磁電感分別為29.3 μH以及4.0 μH。測(cè)試得到的效率如圖7(c)所示。
圖7 改變勵(lì)磁電感時(shí)的測(cè)試波形
由圖7可以看出,當(dāng)勵(lì)磁電感Lm偏離優(yōu)化值之后,LCLC諧振變換器的零電壓、零電流開通和關(guān)斷特性將消失:當(dāng)勵(lì)磁電感大于優(yōu)化值時(shí),主開關(guān)管無法實(shí)現(xiàn)零電壓開通,此時(shí)將引起開通損耗;當(dāng)勵(lì)磁電感值小于優(yōu)化值時(shí),主開關(guān)管將無法實(shí)現(xiàn)零電流關(guān)斷,此時(shí)將引起關(guān)斷損耗。由效率對(duì)比的結(jié)果可以看到,在勵(lì)磁電感的優(yōu)化點(diǎn),LCLC諧振變換器的效率最高,從而證實(shí)了本文所提的優(yōu)化設(shè)計(jì)方法的有效性。
改變串聯(lián)諧振電容得到的實(shí)驗(yàn)波形如圖8所示。如圖8(a)和圖8(b)對(duì)應(yīng)的串聯(lián)諧振電容分別為0.3 μF和1.6 μF。測(cè)試得到的效率如圖8(c)所示。
由圖8可以看出,當(dāng)串聯(lián)諧振電容Cs偏離優(yōu)化值之后,LCLC諧振變換器的零電壓、零電流開通和關(guān)斷特性將消失:當(dāng)串聯(lián)諧振電容Cs小于優(yōu)化值時(shí),主開關(guān)管無法實(shí)現(xiàn)零電壓開通,此時(shí)將引起開通損耗;當(dāng)串聯(lián)諧振電容Cs大于優(yōu)化值時(shí),主開關(guān)管將無法實(shí)現(xiàn)零電流關(guān)斷,此時(shí)將引起關(guān)斷損耗。由效率對(duì)比的結(jié)果可以看到,在串聯(lián)諧振電容的優(yōu)化點(diǎn),LCLC諧振變換器的效率最高,從而證實(shí)了本文所提的優(yōu)化設(shè)計(jì)方法的有效性。
由上述實(shí)驗(yàn)可以看出,采用本文提出的基于粒子群算法的LCLC諧振變換器優(yōu)化設(shè)計(jì)算法,主開關(guān)管和整流二極管都實(shí)現(xiàn)了零電壓、零電流開通和關(guān)斷。此外,與非優(yōu)化的參數(shù)相比,優(yōu)化的LCLC諧振變換器可以實(shí)現(xiàn)更高的效率,從而驗(yàn)證了優(yōu)化設(shè)計(jì)方法的有效性。
在空間行波管放大器中,由于輸入電壓和負(fù)載在變化,因此,需要進(jìn)一步研究LCLC諧振變換器在不同輸入電壓和負(fù)載時(shí)的變換器效率。
圖8 改變勵(lì)磁電容時(shí)的測(cè)試波形
圖9 效率測(cè)試
在空間行波管放大器中,由于輸入電壓和負(fù)載在變化,因此,需要進(jìn)一步研究LCLC諧振變換器在不同輸入電壓和負(fù)載時(shí)的變換器效率。
優(yōu)化的LCLC諧振變換器在不同輸入電壓條件下的效率如圖9(a)所示。在額定輸入電壓40 V條件下,變換器總損耗為9.2 W,效率為96.8%。本文提出的優(yōu)化設(shè)計(jì)方法計(jì)算得到的總損耗為8.9 W,這與實(shí)驗(yàn)測(cè)試結(jié)果高度一致。變換器效率隨著負(fù)載的變化如圖9(b)所示,由圖9(b)可以看出,在寬負(fù)載范圍內(nèi),LCLC諧振變換器都可以實(shí)現(xiàn)高效率。
本文提出了一種用于空間行波管放大器的基于粒子群算法的LCLC諧振變換器優(yōu)化設(shè)計(jì)方法。這種優(yōu)化設(shè)計(jì)方法的目標(biāo),是實(shí)現(xiàn)LCLC諧振變換器的低損耗、高效率。首先,推導(dǎo)了LCLC諧振變換器的總損耗公式;然后,以該總損耗公式為目標(biāo)函數(shù),基于粒子群算法進(jìn)行優(yōu)化設(shè)計(jì),得到了優(yōu)化的諧振參數(shù)以及優(yōu)化的總損耗;最后,基于優(yōu)化的諧振參數(shù)以及優(yōu)化的總損耗,搭建優(yōu)化的LCLC諧振變換器,并進(jìn)行實(shí)驗(yàn)測(cè)試。理論分析以及實(shí)驗(yàn)結(jié)果均表明,基于粒子群算法的LCLC諧振變換器優(yōu)化設(shè)計(jì)方法,能夠用于LCLC諧振變換器的優(yōu)化設(shè)計(jì),提高變換器效率。