国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于層積云飛機(jī)觀測(cè)資料評(píng)估氣溶膠間接效應(yīng)

2021-06-28 07:16陸春松薛宇琦朱磊徐曉齊
大氣科學(xué)學(xué)報(bào) 2021年2期

陸春松 薛宇琦 朱磊 徐曉齊

摘要 利用2009年4、5月美國(guó)淺薄低云觀測(cè)項(xiàng)目(RACORO)的層積云飛機(jī)觀測(cè)資料,使用兩種方法對(duì)氣溶膠間接效應(yīng)進(jìn)行了估算:根據(jù)云滴數(shù)濃度定義的值(AIEn)和根據(jù)有效半徑定義的值(AIEs)。AIEn幾乎都比AIEs大,尤其在中等含水量條件下。理論推導(dǎo)表明,AIEn與AIEs的偏差應(yīng)與氣溶膠對(duì)云滴譜離散度的影響有關(guān),即離散度效應(yīng)。當(dāng)AIEn加上離散度效應(yīng)后,數(shù)值與AIEs十分接近,證實(shí)了理論預(yù)期。離散度效應(yīng)對(duì)氣溶膠間接效應(yīng)的貢獻(xiàn)主要為抵消作用,這種抵消作用在中等含水量時(shí)最大,當(dāng)含水量為0.24 g/m3時(shí)達(dá)到37%左右。該研究成果增強(qiáng)了對(duì)氣溶膠-云相互作用的理論認(rèn)識(shí),將有助于增強(qiáng)對(duì)模式和觀測(cè)中氣溶膠間接效應(yīng)的準(zhǔn)確評(píng)估。

關(guān)鍵詞 氣溶膠間接效應(yīng);離散度效應(yīng);飛機(jī)觀測(cè)

在云含水量(LWC,記為L(zhǎng))或者液水路徑固定的條件下,云滴有效半徑(Reff,定義為云滴譜分布的3階矩與2階矩的比值)直接決定著云的光學(xué)厚度,進(jìn)而對(duì)云頂反照率、地氣系統(tǒng)輻射平衡和全球氣候變化有著重要影響。研究表明,云水含量不變時(shí),云滴有效半徑減小2 μm就可以基本抵消CO2增加一倍所帶來的溫室效應(yīng)(Slingo,1990)。Twomey(1974)提出在相同的大氣條件下,云水含量一定時(shí),人為氣溶膠增多會(huì)導(dǎo)致云滴數(shù)濃度(Nc)增多,相應(yīng)地,云滴半徑會(huì)減小;個(gè)數(shù)較少的大云滴與個(gè)數(shù)較多的小云滴相比,后者云滴的總表面積更大,因此氣溶膠增多將導(dǎo)致云的反照率增強(qiáng)、到達(dá)地表的太陽輻射減少,這一過程被稱為氣溶膠第一間接效應(yīng)。盡管這一理論被提出之后,許多觀測(cè)(呂巧誼等,2017;陳春美等,2018;楊文霞等,2018;黃興友等,2019)和模式模擬(吳蓬萍和韓志偉,2011;張悅等,2016;郭麗君等,2019;史湘軍等,2020a,2020b)結(jié)果證明了氣溶膠第一間接效應(yīng)的凈冷卻作用,但對(duì)這一效應(yīng)的定量化卻存在爭(zhēng)議,且各種觀測(cè)結(jié)果的差異超過2倍(Feingold,2003;Rosenfeld and Feingold,2003)。此外,全球氣候模式(GCMs)對(duì)氣溶膠間接效應(yīng)的估算值往往也比觀測(cè)結(jié)果大很多(Anderson,2003)。一些GCMs推斷的Twomey冷卻作用甚至與增加的溫室氣體所導(dǎo)致的溫室效應(yīng)相當(dāng),這與全球增溫的事實(shí)不符(Penner et al.,2004)。另外,盡管北半球人為氣溶膠的排放量遠(yuǎn)高于南半球,北半球云的反照率卻并沒有因此大于南半球云的反照率,北半球的溫度也沒有比南半球更低(Schwartz,1988)。以上提到的諸多問題表明,當(dāng)前人們對(duì)于氣溶膠與云的關(guān)系以及云對(duì)地氣系統(tǒng)輻射平衡影響的理解還很不充分(葛旭陽等,2018;李占清,2020)。根據(jù)2013年政府間氣候變化專門委員會(huì)報(bào)告(Stocker et al.,2014),氣溶膠間接效應(yīng)仍是最不確定的氣候強(qiáng)迫之一,其原因之一在于氣溶膠數(shù)濃度在導(dǎo)致云滴平均尺度變小的同時(shí),也改變了云滴譜譜型。但當(dāng)前的氣候模式在對(duì)云輻射性質(zhì)的計(jì)算中,往往將譜型視為常數(shù),在很大程度上忽視了氣溶膠對(duì)云滴譜譜型的影響。

Reff與體積平均半徑(Rv)的比值β被稱為有效半徑比率,它是關(guān)于云滴譜離散度ε的函數(shù)(Martin et al.,1994;Liu and Hallett,1997;Liu and Daum,2000;Pawlowska et al.,2006)。ε定義為云滴譜的標(biāo)準(zhǔn)差(σ)與平均半徑(Rm)的比值,它表征了云滴譜的相對(duì)寬度,可以用來衡量云滴譜的離散水平。由于離散度與云滴有效半徑的這種固有關(guān)系,離散度對(duì)云的光學(xué)性質(zhì)起著關(guān)鍵作用。如果云滴譜離散度隨云滴數(shù)濃度的增大而增加,那么云滴有效半徑減小的程度會(huì)變小,也就是說離散度的改變會(huì)抵消部分氣溶膠第一間接效應(yīng);反之,如果離散度隨云滴數(shù)濃度的增加而減小,則會(huì)增強(qiáng)氣溶膠第一間接效應(yīng)。此外,離散度通過影響云水向雨水的自動(dòng)轉(zhuǎn)化率(Liu et al.,2006a;Xie et al.,2013),會(huì)影響云的生命時(shí)間。云滴譜離散度對(duì)氣溶膠間接效應(yīng)的這些影響,被簡(jiǎn)稱為云滴譜離散度效應(yīng)(Liu and Daum,2002)。盡管全球范圍內(nèi)對(duì)離散度效應(yīng)開展了許多觀測(cè)(Liu et al.,2002;Zhao et al.,2006;Berg et al.,2011)和模擬研究(Fountoukis and Nenes,2005;Wang et al.,2011;Chen et al.,2016),目前人們對(duì)于影響離散度的因子的理解還很不夠,利用不同觀測(cè)資料所建立的離散度與氣溶膠濃度之間的關(guān)系甚至?xí)厝幌喾矗∕artin et al.,1994;Lai,2006;Zhao et al.,2006;Rotstayn and Liu,2009;Berg et al.,2011;Brenguier et al.,2011;Xie and Liu,2013;Tas et al.,2015)。因此,對(duì)離散度效應(yīng)的定量化研究仍處于初期。

鑒于此,本研究利用2009年4、5月美國(guó)淺薄低云觀測(cè)項(xiàng)目(RACORO)飛機(jī)觀測(cè)資料,探討用云滴數(shù)濃度和有效半徑定義的第一間接效應(yīng)的差異,并指出離散度是導(dǎo)致該差異的主要原因。該成果將增強(qiáng)對(duì)氣溶膠-云相互作用的理論認(rèn)識(shí),為進(jìn)一步改進(jìn)模式中該相互作用的參數(shù)化方案奠定基礎(chǔ),也為尋找模式和觀測(cè)中氣溶膠間接效應(yīng)差異的來源提供參考。

1 資料與方法

1.1 資料

美國(guó)南部大平原1—6月經(jīng)常出現(xiàn)邊界層云 (Lazarus et al.,2000),非常適合進(jìn)行云的觀測(cè)和統(tǒng)計(jì)分析。為此,美國(guó)大氣輻射觀測(cè)項(xiàng)目組于2009年4月19、27、28日和5月6、27日,利用Twin Otter飛機(jī),在位于俄克拉荷馬州的南部大平原站對(duì)層積云進(jìn)行了綜合觀測(cè),飛行速度50 m/s。圖1給出了飛行過程的高度隨時(shí)間的演變,飛機(jī)在云底、云中和云頂不同高度進(jìn)行觀測(cè)(Vogelmann et al.,2012)。項(xiàng)目組對(duì)所測(cè)數(shù)據(jù)進(jìn)行了嚴(yán)格的質(zhì)量控制,消除了儀器故障所導(dǎo)致的異常值。飛行方案經(jīng)過了科學(xué)嚴(yán)謹(jǐn)?shù)脑O(shè)計(jì),排除了惡劣天氣條件(例如:存在結(jié)冰條件、大面積降水)或不利的云層條件(例如:低空云層覆蓋面積小于10%)。

云滴譜資料由云和氣溶膠粒子譜儀(CAS)觀測(cè)得到,分辨率為10 Hz,為與氣溶膠資料同步,將10 Hz云滴譜平均成1Hz。CAS的采樣范圍為0.29~25 μm,分20檔。計(jì)算云的物理量時(shí),只包含半徑平均值大于1 μm的檔,該標(biāo)準(zhǔn)已在以往研究中被大量采用(Ma et al.,2010;Yum et al.,2015)。按照Nc>10 cm-3且LWC大于0.001 g/m3的標(biāo)準(zhǔn)對(duì)云滴譜資料進(jìn)行了篩選。氣溶膠資料由被動(dòng)腔氣溶膠光譜儀探頭(PCASP)進(jìn)行測(cè)量,粒子半徑范圍為0.05~1.12 μm,分為20檔,采樣頻率為1 Hz。Kleinman et al.(2012)指出,由于云滴破碎等原因,PCASP測(cè)量的氣溶膠數(shù)濃度會(huì)高于實(shí)際間隙氣溶膠濃度。因此,他們只把半徑在0.05~0.5 μm范圍的粒子作為間隙氣溶膠,并把間隙氣溶膠濃度乘以0.81,以訂正由于云滴破碎等導(dǎo)致的高估。Wang et al.(2019)采用了同樣的方法,并把間隙氣溶膠濃度和云滴濃度相加作為總的氣溶膠濃度(Na)。經(jīng)過篩選,五次試驗(yàn)共收集25 163個(gè)云滴譜和氣溶膠同步數(shù)據(jù)(1Hz)。圖2給出了4月19日部分時(shí)段氣溶膠和云滴譜隨時(shí)間演變。

若離散度偏差為負(fù)值,則離散度效應(yīng)對(duì)AIEn為抵消作用,即減弱了AIEnn;若離散度偏差為正值,則表明離散度效應(yīng)增強(qiáng)了AIEn。

2 結(jié)果與討論

2.1 云微物理的基本特征

圖3為美國(guó)南部大平原2009年5次觀測(cè)得到的云微物理量頻率分布,從中可以看出LWC大于0.4 g/m3的數(shù)據(jù)較少。為保證樣本量充足,以得到具有統(tǒng)計(jì)學(xué)意義的結(jié)論,在之后的計(jì)算中LWC范圍取為0.001~0.4 g/m3。圖4給出了LWC分檔間隔為0.01 g/m3時(shí)每一檔的譜分布。譜分布均為單峰譜,絕大部分云滴半徑都小于10 μm。隨著LWC的增大,整個(gè)云滴譜往右移動(dòng),與預(yù)期一致。

2.2 AIEn和AIEs的差異和離散度效應(yīng)

根據(jù)前述公式,氣溶膠間接效應(yīng)大小由一定含水量下云滴數(shù)濃度或云滴有效半徑隨氣溶膠數(shù)濃度的改變來計(jì)算。為滿足Twomey效應(yīng)中含水量為常數(shù)這一前提,分檔間隔需足夠小,本研究中將含水量的分檔間隔取為0.01 g/m3,并將氣溶膠數(shù)濃度與云微物理量(Nc、Reff)根據(jù)不同含水量進(jìn)行分組。為計(jì)算AIEn,對(duì)每檔中Nc與Na之間的關(guān)系進(jìn)行擬合。圖6a給出了LWC在0.23~0.24 g/m3范圍內(nèi)的關(guān)系,隨著Na的增大,Nc增大,擬合線的斜率為0.75。根據(jù)公式(1),該LWC內(nèi)AIEn的近似值為0.25。圖6b給出了其他LWC檔擬合結(jié)果,Nc與Na擬合的斜率均為正值。AIEs的計(jì)算方法與AIEn類似,圖7給出了不同LWC檔中Reff與Na的擬合結(jié)果。LWC在0.23~0.24 g/m3范圍時(shí),Reff隨Na的增大而減小,斜率為-0.16(圖7a)。根據(jù)方程(2),該LWC范圍內(nèi)AIEs的近似值為0.16。其他LWC檔的擬合結(jié)果如圖7b所示。

圖8給出了AIEn和AIEs隨LWC的變化。AIEn的變化范圍為0.15~0.30,平均0.25;AIEs的變化范圍為0.14~0.26,平均0.21。整體而言,AIEn比AIEs大,尤其在中等LWC下,差值明顯。這一結(jié)果與以往的大量研究一致(Chuang et al.,2000;Feingold et al.,2003;Kim et al.,2003;Sekiguchi et al.,2003;Twohy et al.,2005)。但之前的一些研究在計(jì)算AIEs和AIEn時(shí),沒有把LWC或者液水路徑限定在某一個(gè)小范圍內(nèi)。因此,有學(xué)者認(rèn)為AIEs和AIEn之間的差異是夾卷導(dǎo)致的,在夾卷過程中,云的LWC會(huì)發(fā)生變化,從而影響AIEn和AIEs的評(píng)估(Shao and Liu,2006)。本文中對(duì)AIEn和AIEs的計(jì)算已經(jīng)將LWC限定在很小的范圍內(nèi),因此僅僅夾卷的作用不足以解釋這兩者之間的差異,需要考慮云滴譜離散度效應(yīng)的影響。

根據(jù)公式(6),離散度效應(yīng)涉及到β。圖9a為L(zhǎng)WC在0.23~0.24 g/m3范圍內(nèi)β與Na之間的散點(diǎn)關(guān)系。圖9b為不同LWC下β隨 Na的變化。不同LWC下,β與Na基本上呈正相關(guān)關(guān)系,并且,隨著LWC的增大,這種正相關(guān)不斷增強(qiáng),在中等LWC下達(dá)到最大。因此,根據(jù)公式(6),離散度效應(yīng)主要為負(fù)值,其對(duì)于氣溶膠間接效應(yīng)主要為抵消作用。

如圖8所示,黑色實(shí)線(AIEn與離散度效應(yīng)之和)與綠色實(shí)線(AIEs)十分吻合。因此,AIEn比AIEs偏大的主要原因是離散度效應(yīng),這或許可以解釋模式中忽略氣溶膠對(duì)云滴譜譜型的影響所導(dǎo)致的對(duì)氣溶膠第一間接效應(yīng)的高估(Rotstayn and Liu,2009)。在大多數(shù)氣候模式中,有效半徑比率β被指定為固定的參數(shù),但實(shí)際上,β會(huì)受到諸多因子的影響,比如LWC、Na等。在AIEs的估算方法中,云滴有效半徑為云滴譜分布的3階矩與2階矩的比值,已經(jīng)包含了譜型的信息,因此其本身已經(jīng)考慮了離散度效應(yīng)。而利用AIEn進(jìn)行計(jì)算時(shí),需要另外考慮離散度效應(yīng)。圖8進(jìn)一步給出了離散度效應(yīng)占AIEn的比例,即離散度偏差(公式7)。結(jié)果表明,該偏差在中等LWC下最大,LWC為0.24 g/m3時(shí)達(dá)到37%左右。這一結(jié)果與Kumar et al.(2016)對(duì)印度南部的西高止山脈的季風(fēng)云的研究一致。Kumar et al.(2016)的工作中,抵消作用的最大值同樣發(fā)生在中等LWC區(qū)域(0.22 g/m3左右),隨后抵消作用隨含水量的增大而減小。

2.3 氣溶膠對(duì)ε、σ、Rm的影響

圖9中氣溶膠對(duì)β的影響,本質(zhì)上是氣溶膠對(duì)ε的影響。圖10a為L(zhǎng)WC在0.23~0.24 g/m3范圍內(nèi)ε與Na之間的散點(diǎn)關(guān)系。如圖10b所示,不同 LWC條件下,ε與Na均為正相關(guān)。之前的研究中已經(jīng)發(fā)現(xiàn)氣溶膠對(duì)ε的影響具有很大的不確定性。Liu et al.(2002)通過分析清潔和污染條件下云的觀測(cè)數(shù)據(jù)后指出,氣溶膠數(shù)濃度的增加導(dǎo)致ε增大,而Berg et al.(2011)的觀測(cè)結(jié)果表明ε隨氣溶膠濃度的增加而減小。此外,Zhao et al.(2006)通過分析亞洲不同區(qū)域的飛機(jī)觀測(cè)資料指出,低云滴數(shù)濃度下(約50 cm-3),云滴離散度值的變化范圍較大(0.2~0.8),隨著濃度的增大,離散度減小并收斂到非常窄的范圍。除了以上不同的觀測(cè)結(jié)果,Liu et al.(2006b)根據(jù)云滴的絕熱增長(zhǎng)理論推導(dǎo)出將ε與云凝結(jié)核譜、上升氣流速度聯(lián)系起來的理論模型,在理論上證明氣溶膠濃度(云凝結(jié)核濃度)的增加導(dǎo)致云滴濃度和離散度的同步增加,而上升氣流速度的增大導(dǎo)致云滴濃度增大和離散度的減小。本研究的結(jié)論與Liu et al.(2002)和Liu et al.(2006b)的結(jié)論一致。

根據(jù)Wang et al.(2019)的結(jié)果,ε與Na之間的斜率等于σ-Na和Rm-Na斜率的差,定量計(jì)算時(shí),這三個(gè)斜率需分別用ε、σ、Rm歸一化。圖11給出了定性分析的結(jié)果,即σ、Rm與Na的擬合斜率隨LWC的變化??傮w而言,ε-Na關(guān)系的趨勢(shì)與σ-Na關(guān)系類似,但是ε-Na始終為正相關(guān)關(guān)系,σ-Na的符號(hào)則在正負(fù)之間震蕩。Rm-Na關(guān)系則均為負(fù)值,這是導(dǎo)致ε與Na之間斜率為正的重要因素。

3 結(jié)論

本文基于美國(guó)淺薄低云觀測(cè)項(xiàng)目(RACORO)的飛機(jī)觀測(cè)資料,詳細(xì)分析了5個(gè)層積云個(gè)例。層積云的含水量主要位于0~0.4 g/m3,不同含水量檔內(nèi)的譜分布主要為單峰分布。通過計(jì)算云雨自動(dòng)轉(zhuǎn)化閾值函數(shù),發(fā)現(xiàn)這些云碰并很弱,屬于非降水云。

隨著氣溶膠數(shù)濃度的增大,云滴濃度增大、有效半徑減小?;诖?,利用云滴數(shù)濃度和有效半徑分別估算了氣溶膠的間接效應(yīng),即AIEn和AIEs。AIEn和AIEs的變化范圍分別為0.15~0.30和0.14~0.26,平均分別為0.25和0.21。整體而言,AIEn比AIEs大,特別是在中等含水量(LWC)條件下,兩者的差值顯著。根據(jù)理論推導(dǎo),該差值與有效半徑比率和離散度有關(guān)。隨著氣溶膠濃度的增大,有效半徑比率和離散度幾乎都增大,對(duì)氣溶膠間接效應(yīng)主要起抵消作用,并且在中等LWC時(shí)強(qiáng)度最大。含水量等于0.24 g/m3時(shí),抵消作用強(qiáng)度達(dá)到37%左右。當(dāng)AIEn基礎(chǔ)上考慮離散度效應(yīng)后,數(shù)值就與AIEs十分接近,與前面的理論預(yù)期一致。

致謝:感謝美國(guó)布魯克海文國(guó)家實(shí)驗(yàn)室的劉延剛研究員對(duì)本文的分析提供的諸多幫助!

參考文獻(xiàn)(References)

Anderson T L,2003.Climate forcing by aerosol:a hazy picture[J].Science,300(5622):1103-1104.doi:10.1126/science.1084777.

Berg L K,Berkowitz C M,Barnard J C,et al.,2011.Observations of the first aerosol indirect effect in shallow cumuli[J].Geophys Res Lett,38(3):L03809.doi:10.1029/2010GL046047.

Brenguier J L,Burnet F,Geoffroy O,2011.Cloud optical thickness and liquid water path-does the k coefficient vary with droplet concentration?[J].Atmos Chem Phys,11(18):9771-9786.doi:10.5194/acp-11-9771-2011.

Chen J Y,Liu Y G,Zhang M H,et al.,2016.New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects[J].Geophys Res Lett,43(4):1780-1787.doi:10.1002/2016GL067683.

陳春美,鐘珂,陳勇航,等,2018.干旱區(qū)典型城市云對(duì)太陽輻射的影響[J].干旱區(qū)研究,35(2):436-443. Chen C M,Zhong K,Chen Y H,et al.,2018.Effects of clouds on solar radiation over typical City in arid area[J].Arid Zone Res,35(2):436-443.doi:10.13866/j.azr.2018.02.23.(in Chinese).

Chuang P Y,Collins D R,Pawlowska H,et al.,2000.CCN measurements during ACE-2 and their relationship to cloud microphysical properties[J].Tellus B,52(2):843-867.doi:10.1034/j.1600-0889.2000.00018.x.

Feingold G,2003.Modeling of the first indirect effect:analysis of measurement requirements[J].Geophys Res Lett,30(19):1997.doi:10.1029/2003gl017967.

Feingold G,Eberhard W L,Veron D E,et al.,2003.First measurements of the Twomey indirect effect using ground-based remote sensors[J].Geophys Res Lett,30(6):225-242.doi:10.1029/2002gl016633.

Fountoukis C,Nenes A,2005.Continued development of a cloud droplet formation parameterization for global climate models[J].J Geophys Res:Atmos,110(D11):D11212.doi:10.1029/2004JD005591.

葛旭陽,許可,馬悅,等,2018.云輻射強(qiáng)迫效應(yīng)對(duì)熱帶氣旋發(fā)展和結(jié)構(gòu)的影響[J].大氣科學(xué)學(xué)報(bào),41(1):46-54. Ge X Y,Xu K,Ma Y,et al.,2018.Impacts of cloud-radiative forcing on tropical cyclone intensification and structure[J].Trans Atmos Sci,41(1):46-54.doi:10.13878/j.cnki.dqkxxb.20150421001.(in Chinese).

郭麗君,郭學(xué)良,欒天,等,2019.云輻射效應(yīng)在華北持續(xù)性大霧維持和發(fā)展中的作用[J].氣象學(xué)報(bào),77(1):111-128. Guo L J,Guo X L,Luan T,et al.,2019.The role of cloud radiative effect in the maintenance and development of persistent heavy fog events in northern China [J].Acta Meteorol Sin,77(1):111-128.doi:10.11676/qxxb2018.041.(in Chinese).

黃興友,蘆荀,黃勇,等,2019.層狀云微物理參數(shù)反演及其輻射效應(yīng)的個(gè)例研究[J].大氣科學(xué)學(xué)報(bào),42(5):769-777. Huang X Y,Lu X,Huang Y,et al.,2019.A case study on the microphysical parameter retrieval and radiative effects of stratus clouds[J].Trans Atmos Sci,42(5):769-777.doi:10.13878/j.cnki.dqkxxb.20170223002.(in Chinese).

Kim B G,Schwartz S E,Miller M A,et al.,2003.Effective radius of cloud droplets by ground-based remote sensing:relationship to aerosol[J].J Geophys Res:Atmos,108(D23):4740.doi:10.1029/2003JD003721.

Kleinman L I,Daum P H,Lee Y N,et al.,2012.Aerosol concentration and size distribution measured below,in,and above cloud from the DOE G-1 during VOCALS-REx[J].Atmos Chem Phys,12(1):207-223.doi:10.5194/acp-12-207-2012.

Kumar V A,Pandithurai G,Leena P P,et al.,2016.Investigation of aerosol indirect effects on monsoon clouds using ground-based measurements over a high-altitude site in Western Ghats[J].Atmos Chem Phys,16(13):8423-8430.doi:10.5194/acp-16-8423-2016.

Lai Y F,2006.Microphysical properties of stratus/stratocumulus clouds during the 2005 marine stratus/stratocumulus experiment (MASE) [C]//AGU Spring Meeting.

Lazarus S M,Krueger S K,Mace G G,2000.A cloud climatology of the southern great Plains ARM CART[J].J Climate,13(10):1762-1775.doi:10.1175/1520-0442(2000)013<1762:accots>2.0.co;2.

李占清,2020.氣溶膠對(duì)中國(guó)天氣、氣候和環(huán)境影響綜述[J].大氣科學(xué)學(xué)報(bào),43(1):76-92. Li Z Q,2020.Impact of aerosols on the weather,climate and environment of China:an overview[J].Trans Atmos Sci,43(1):76-92.doi:10.13878/j.cnki.dqkxxb.20200115005.(in Chinese).

Liu Y G,Daum P H,2000.Spectral dispersion of cloud droplet size distributions and the parameterization of cloud droplet effective radius[J].Geophys Res Lett,27(13):1903-1906.doi:10.1029/1999GL011011.

Liu Y,Daum P H,2002.Anthropogenic aerosols.Indirect warming effect from dispersion forcing[J].Nature,419(6907):580-581.doi:10.1038/419580a.

Liu Y G,Daum P H,Chai S K,et al.,2002.Cloud parameterizations,cloud physics,and their connections:an overview[J].Recent Res Devel Geophy,4:119-142.

Liu Y G,Daum P H,McGraw R L,2005.Size truncation effect,threshold behavior,and a new type of autoconversion parameterization[J].Geophys Res Lett,32(11):L11811.doi:10.1029/2005GL022636.

Liu Y G,Daum P H,McGraw R,et al.,2006a.Generalized threshold function accounting for effect of relative dispersion on threshold behavior of autoconversion process[J].Geophys Res Lett,33(11):L11804.doi:10.1029/2005GL025500.

Liu Y G,Daum P H,Yum S S,2006b.Analytical expression for the relative dispersion of the cloud droplet size distribution[J].Geophys Res Lett,33(2):L02810.doi:10.1029/2005GL024052.

Liu Y G,Hallett J,1997.The ‘1/3 power law between effective radius and liquid-water content[J].Quart J Roy Meteor Soc,123(542):1789-1795.doi:10.1002/qj.49712354220.

Lu C S,Liu Y G,Niu S J,et al.,2013.Examination of microphysical relationships and corresponding microphysical processes in warm fogs[J].Acta Meteorol Sin,27(6):832-848.doi:10.1007/s13351-013-0610-0.

呂巧誼,張玉軒,李積明,2017.南半球中高緯度區(qū)域不同類型云的輻射特性[J].氣象學(xué)報(bào),75(4):596-606. Lyu Q Y,Zhang Y X,Li J M,2017.Radiative characteristics of various cloud types over southern mid-high latitudes [J].Acta Meteorol Sin,75(4):596-606.doi:10.11676/qxxb2017.039.(in Chinese).

Martin G M,Johnson D W,Spice A,1994.The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds[J].J Atmos Sci,51(13):1823-1842.doi:10.1175/1520-0469(1994)051<1823:tmapoe>2.0.co;2.

Ma J Z,Chen Y,Wang W,et al.,2010.Strong air pollution causes widespread haze-clouds over China[J].J Geophys Res:Atmos,115(D18):D18204.doi:10.1029/2009JD013065.

Niu S J,Lu C S,Liu Y G,et al.,2010.Analysis of the microphysical structure of heavy fog using a droplet spectrometer:a case study[J].Adv Atmos Sci,27(6):1259-1275.doi:10.1007/s00376-010-8192-6.

Pawlowska H,Grabowski W W,Brenguier J L,2006.Observations of the width of cloud droplet spectra in stratocumulus[J].Geophys Res Lett,33(19):L19810.doi:10.1029/2006GL026841.

Penner J E,Dong X,Chen Y,2004.Observational evidence of a change in radiative forcing due to the indirect aerosol effect[J].Nature,427(6971):231-234.doi:10.1038/nature02234.

Rosenfeld D,F(xiàn)eingold G,2003.Explanation of discrepancies among satellite observations of the aerosol indirect effects[J].Geophys Res Lett,30(14):1776.doi:10.1029/2003GL017684.

Rotstayn L D,Liu Y G,2009.Cloud droplet spectral dispersion and the indirect aerosol effect:comparison of two treatments in a GCM[J].Geophys Res Lett,36(10):L10801.doi:10.1029/2009GL038216.

Schwartz S E,1988.Are global cloud albedo and climate controlled by marine phytoplankton?[J].Nature,336(6198):441-445.doi:10.1038/336441a0.

Sekiguchi M,Nakajima T,Suzuki K,et al.,2003.A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters[J].J Geophys Res:Atmos,108(D22):4699.doi:10.1029/2002JD003359.

Shao H F,Liu G S,2006.Influence of mixing on evaluation of the aerosol first indirect effect[J].Geophys Res Lett,33(14):L14809.doi:10.1029/2006GL026021.

史湘軍,沈沛潔,朱壽鵬,等,2020a.基于CMIP6強(qiáng)迫模擬分析人為氣溶膠的氣候效應(yīng)(一):介紹NUIST模式評(píng)估結(jié)果[J].大氣科學(xué)學(xué)報(bào),43(3):506-515. Shi X J,Shen P J,Zhu S P,et al.,2020.A modeling study on anthropogenic aerosol effects based on CMIP6 forcing.part Ⅰ:NUIST model results and corresponding estimation[J].Trans Atmos Sci,43(3):506-515.doi:10.13878/j.cnki.dqkxxb.20180919001.(in Chinese).

史湘軍,劉嬌嬌,朱壽鵬,等,2020b.基于CMIP6強(qiáng)迫模擬分析人為氣溶膠的氣候效應(yīng)(二):診斷方法在分類評(píng)估中的重要性[J].大氣科學(xué)學(xué)報(bào),43(4):630-639. Shi X J,Liu J J,Zhu S P,et al.,2020.A modeling study on anthropogenic aerosol effects based on CMIP6 forcing,part Ⅱ:the importance of calculation methods in classification analysis[J].Trans Atmos Sci,43(4):630-639.doi:10.13878/j.cnki.dqkxxb.20180919002.(in Chinese).

Slingo A,1990.Sensitivity of the earth's radiation budget to changes in low clouds[J].Nature,343(6253):49-51.

Stocker T,Plattner G K,Dahe Q,2014.IPCC climate change 2013:the physical science basis-findings and lessons learned[C]//EGU General Assembly Conference.

Tas E,Teller A,Altaratz O,et al.,2015.The relative dispersion of cloud droplets:its robustness with respect to key cloud properties[J].Atmos Chem Phys,15(4):2009-2017.doi:10.5194/acp-15-2009-2015.

Twohy C H,Petters M D,Snider J R,et al.,2005.Evaluation of the aerosol indirect effect in marine stratocumulus clouds:droplet number,size,liquid water path,and radiative impact[J].J Geophys Res:Atmos,110(D8):D08203.doi:10.1029/2004JD005116.

Twomey S,1974.Pollution and the planetary albedo[J].Atmos Environ 1967,8(12):1251-1256.doi:10.1016/0004-6981(74)90004-3.

Vogelmann A M,McFarquhar G M,Ogren J A,et al.,2012.Racoro extended-term aircraft observations of boundary layer clouds[J].Bull Amer Meteor Soc,93(6):861-878.doi:10.1175/bams-d-11-00189.1.

Wang X F,Xue H W,F(xiàn)ang W,et al.,2011.A study of shallow cumulus cloud droplet dispersion by large eddy simulations[J].Acta Meteorol Sin,25(2):166-175.doi:10.1007/s13351-011-0024-9.

Wang Y,Niu S J,Lu C S,et al.,2019.An observational study on cloud spectral width in North China[J].Atmosphere,10(3):109.doi:10.3390/atmos10030109.

吳蓬萍,韓志偉,2011.東亞地區(qū)硫酸鹽氣溶膠間接輻射和氣候效應(yīng)的數(shù)值模擬研究[J].大氣科學(xué),35(3):547-559. Wu P P,Han Z W,2011.A modeling study of indirect radiative and climatic effects of sulfate over East Asia[J].Chin J Atmos Sci,35(3):547-559.(in Chinese).

Xie X N,Liu X D,2013.Analytical studies of the cloud droplet spectral dispersion influence on the first indirect aerosol effect[J].Adv Atmos Sci,30(5):1313-1319.doi:10.1007/s00376-012-2141-5.

Xie X N,Liu X D,Peng Y R,et al.,2013.Numerical simulation of clouds and precipitation depending on different relationships between aerosol and cloud droplet spectral dispersion[J].Tellus B:Chem Phys Meteorol,65(1):19054.doi:10.3402/tellusb.v65i0.19054.

楊文霞,胡朝霞,董曉波,等,2018.降水性層狀云結(jié)構(gòu)及微物理量相關(guān)性分析[J].大氣科學(xué)學(xué)報(bào),41(4):525-532. Yang W X,Hu Z X,Dong X B,et al.,2018.A study on the microphysical structure and the correlation of microphysical parameters of the precipitation stratiform cloud[J].Trans Atmos Sci,41(4):525-532.doi:10.13878/j.cnki.dqkxxb.20170216001.(in Chinese).

Yum S S,Wang J,Liu Y G,et al.,2015.Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project[J].J Geophys Res:Atmos,120(10):5047-5069.doi:10.1002/2014JD022802.

張悅,樊曙先,李皓,等,2016.氣溶膠輻射效應(yīng)在華東地區(qū)一次霧霾過程中的作用[J].氣象學(xué)報(bào),74(3):465-478. Zhang Y,F(xiàn)an S X,Li H,et al.,2016.Effects of aerosol radiative feedback during a severe smog process over Eastern China[J].Acta Meteorol Sin,74(3):465-478.(in Chinese).

Zhao C S,Tie X X,Brasseur G,et al.,2006.Aircraft measurements of cloud droplet spectral dispersion and implications for indirect aerosol radiative forcing[J].Geophys Res Lett,33(16):L16809.doi:10.1029/2006GL026653.

By considering the aircraft observational data of the stratocumulus obtained during the Routine AAF (Atmospheric Radiation Measurement(ARM) Aerial Facility) Clouds with Low Optical Water Depths(CLOWD) Optical Radiative Observations(RACORO) field operation that was accomplished in April and May 2009,two approaches were adopted in order to estimate the aerosol incidental effects.The first effect was estimated by considering the cloud drop concentration(AIEn),while the second effect was estimated by considering the effective radius(AIEs).It was observed that the AIEn always owned the higher value in comparison with AIEs,and this alteration was more projecting especially at moderate liquid water content.Theoretical derivation established on the base of deviation between AIEn and AIEs indicated that the dispersion of cloud droplet spectrum influentially related to the effect of aerosol in the consideration of the dispersion effect.It was observed that when the dispersion effect increased the value of evaluated AIEn come closer to the evaluated value of AIEs,and the happening of this corresponds authenticated the theoretical expectations.The contribution of the dispersion effect in the consideration of the aerosol indirect effect was the leading offset effect,which owned the largest value at moderate liquid water content,and it was observed that when liquid water content is 0.24 g/m3 then its corresponding percentage was about 37%.The consequences of this research enhance the theoretical understanding of the aerosol-cloud interaction and it can be concluded that it could be helpful asset to improve the accurate assessment of the aerosol indirect effect in models and observations.

aerosol indirect effect;dispersion effect;aircraft observation

doi:10.13878/j.cnki.dqkxxb.20200613001

(責(zé)任編輯:劉菲)

娱乐| 长汀县| 确山县| 丰顺县| 涟水县| 湟源县| 溆浦县| 张家口市| 普格县| 沈阳市| 仁化县| 吉隆县| 南投县| 玛多县| 邯郸市| 密山市| 无为县| 泰宁县| 醴陵市| 金寨县| 安泽县| 育儿| 甘泉县| 鹤庆县| 安陆市| 肇州县| 纳雍县| 济宁市| 新野县| 湟中县| 仙桃市| 方山县| 大理市| 江都市| 湘乡市| 基隆市| 牡丹江市| 临澧县| 安溪县| 赣州市| 和龙市|