曹迷霞 陳奇 楊劍 劉夢(mèng)倩 賈妮娜 韋英益 胡庭俊
摘要:【目的】探究山豆根多糖(SSP)對(duì)豬圓環(huán)病毒Ⅱ型(PCV2)感染RAW264.7細(xì)胞增殖活性及炎癥相關(guān)因子的影響,揭示SSP對(duì)PCV2感染免疫細(xì)胞炎癥相關(guān)因子的調(diào)控作用?!痉椒ā縋CV2體外感染RAW264.7細(xì)胞建立炎癥模型,以不同濃度(25、50、100、200、400、800和1600 μg/mL)SSP進(jìn)行培養(yǎng)處理,然后采用CCK-8和ELISA分別測(cè)定SSP對(duì)PCV2體外感染RAW264.7細(xì)胞增殖活性及炎癥相關(guān)因子(IL-1β、IL-8和MCP-1)分泌水平和胞內(nèi)環(huán)氧合酶-1(COX-1)活性的影響?!窘Y(jié)果】與細(xì)胞對(duì)照組相比,SSP濃度≤400 μg/mL對(duì)RAW264.7細(xì)胞增殖活性無顯著影響(P>0.05),但SSP濃度達(dá)800和1600 μg/mL時(shí)RAW264.7細(xì)胞增殖活性極顯著降低(P<0.01,下同),且隨培養(yǎng)時(shí)間的延長(zhǎng),細(xì)胞增殖活性呈先降低后升高的變化趨勢(shì),于培養(yǎng)48 h時(shí)達(dá)最低值。PCV2感染RAW264.7細(xì)胞后其增殖活性極顯著降低,炎癥相關(guān)因子IL-1β、IL-8和MCP-1分泌水平及胞內(nèi)COX-1活性極顯著升高;100~400 μg/mL SSP能極顯著提高PCV2感染RAW264.7細(xì)胞增殖活性,且能有效降低RAW264.7細(xì)胞的IL-1β、IL-8和MCP-1分泌水平及胞內(nèi)COX-1活性。具體表現(xiàn)為:與PCV2模型組相比,100 ?g/mL SSP能顯著降低PCV2感染RAW264.7細(xì)胞的IL-1β和MCP-1分泌水平(P<0.05,下同);200 ?g/mL SSP能極顯著降低PCV2感染RAW264.7細(xì)胞的MCP-1分泌水平,同時(shí)顯著降低細(xì)胞IL-1β和IL-8的分泌水平及胞內(nèi)COX-1活性;400 ?g/mL SSP能極顯著降低PCV2感染RAW264.7細(xì)胞的IL-1β、IL-8和MCP-1分泌水平及胞內(nèi)COX-1活性?!窘Y(jié)論】SSP對(duì)RAW264.7細(xì)胞增殖活性無顯著影響,也未表現(xiàn)出細(xì)胞毒性作用,且100~400 μg/mL SSP能極顯著提高PCV2感染RAW264.7細(xì)胞增殖活性,并通過調(diào)節(jié)PCV2感染免疫細(xì)胞的炎癥相關(guān)因子水平而發(fā)揮抗炎作用。
關(guān)鍵詞: 豬圓環(huán)病毒Ⅱ型;山豆根多糖;RAW264.7細(xì)胞;增殖活性;炎癥相關(guān)因子
中圖分類號(hào): S853.74? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2021)02-0439-09
Abstract:【Objective】This study aimed to investigate the proliferation activity and inflammation-related factors of Sophora subprostrate polysaccharide(SSP) on porcine circovirus Ⅱ(PCV2) infected RAW264.7 cells, and to reveal its regulation on PCV2 infected immune cells inflammation-related factors. 【Method】 Established the inflammatory model of PCV2 infected RAW264.7 cells in vitro, and then cultured with different concentrations(25, 50, 100, 200, 400, 800 and 1600 μg/mL) of SSP. CCK-8 method was used to determine the proliferation activity of RAW264.7 cells and PCV2 infec-ted RAW264.7 cells with SSP at different concentrations. The effect of SSP at different concentrations on inflammation-related factors(IL-1β, IL-8, MCP-1 and COX-1) in PCV2 infected RAW264.7 cells were determined by enzyme linked immunosorbent assay(ELISA). 【Result】Compared with the cell control group, the results showed that the concentration of SSP≤400 μg/mL had no significant effect on RAW264.7 cell viability(P>0.05), but SSP concentrations at 800 μg/mL and 1600 μg/mL? extremely significantly decreased the viability of RAW264.7 cells(P<0.01,the same below). After PCV2 infection, the proliferation activity of RAW264.7 cells was extremely decreased, the secretion levels of inflammatory cytokines IL-1β, IL-8 and MCP-1 and the activity of intracellular COX-1 were extremely increased. 100-400 μg/mL of SSP exttemely increased the viability of PCV2 infected RAW264.7 cells, and the secretion levels of IL-1β, IL-8, MCP-1 and the activity of COX-1 in RAW264.7 cells were decreased compared to PCV2 group. Compared with PCV2 model group, 100 μg/mL of SSP significantly decreased IL-1β and MCP-1 secretion levels in PCV2 infected RAW264.7 cells(P<0.05, the same below); 200 μg/mL of SSP extremely decreased the secretion level of MCP-1, significantly decreased the secretion levels of? IL-1β and IL-8, and the activity of COX-1 in PCV2 infected RAW264.7 cells; SSP at 400 μg/mL of could extremely reduce the levels of IL-1β, IL-8 and MCP-1 and the activity of COX-1 in PCV2 infected RAW264.7 cells. 【Conclusion】 SSP has no significant effect on the proliferation activity of RAW264.7 cells, and shows no cytotoxicity. 100-400 μg/mL of SSP extremely increases the proliferation activity of PCV2 infected RAW264.7 cells, and play an anti-inflammatory effect via regulating the secretion levels of inflammation-related factors.
Key words: porcine circovirus Ⅱ;? Sophora subprostrate polysaccharide; RAW264.7 cell; proliferation activity; inflammation-related factors
Foundation item: National Natural Science Foundation of China(31960715); Project of Guangxi Graduate Education Innovation(YCBZ2020004)
0 引言
【研究意義】豬圓環(huán)病毒(Porcine circovirus,PCV)是圓環(huán)病毒科(Circoviridae)圓環(huán)病毒屬(Circovirus)的成員之一,無囊膜,含有共價(jià)閉合的環(huán)狀單鏈DNA基因組,主要包括PCV I型(PCV1)、PCV II型(PCV2)和PCV III型(PCV3)等基因型(劉國(guó)陽等,2019;張柱青等,2019;蘇芮等,2020)。其中,PCV1對(duì)豬為非致病性,而PCV2和PCV3均對(duì)豬表現(xiàn)出致病性(賀會(huì)利等,2017)。PCV2能引發(fā)一大類免疫抑制性的多系統(tǒng)傳染病,主要侵害機(jī)體的免疫系統(tǒng)(鄧文芳等,2020)。單核細(xì)胞和巨噬細(xì)胞是PCV2的靶細(xì)胞,PCV2感染可引起仔豬斷奶后多系統(tǒng)衰竭綜合癥、皮炎和腎病綜合征、增生性壞死性間質(zhì)性肺炎和繁殖障礙等,是豬圓環(huán)病毒相關(guān)疾病(Porcine circovirus associated disease,PCVD)的主要病原(方博,2019;沈順新和和玉丹,2020)。山豆根多糖(Sophora subprostrate polysaccharide,SSP)是一種從越南槐(Sophora tonkinensis Gapnep.)根和根莖中經(jīng)干燥后提取獲得的多糖,具有多種生物活性,如抗炎、抗氧化、抗病毒及抗腫瘤等(彭湘君等,2012)。山豆根多糖可通過調(diào)節(jié)一氧化氮(NO)分子水平而影響免疫細(xì)胞內(nèi)的cAMP/cGMP和6-keto-PGF1信號(hào)體系,進(jìn)而調(diào)節(jié)免疫功能(帥學(xué)宏等,2010)。已有研究證實(shí),山豆多糖通過抑制PCV2的CAP基因復(fù)制而增強(qiáng)免疫功能,達(dá)到抗病毒效果(Sun et al.,2020)。因此,明確SSP對(duì)PCV2感染細(xì)胞增殖活性及其相關(guān)炎癥因子分泌水平的調(diào)節(jié)作用,可為PCVD的綜合防控提供新思路?!厩叭搜芯窟M(jìn)展】炎癥是機(jī)體對(duì)致炎因子產(chǎn)生的一種應(yīng)答性反應(yīng),而炎癥細(xì)胞因子是指參與炎癥反應(yīng)的各類細(xì)胞因子(Yao et al.,2016;Ho et al.,2020)。SSP可調(diào)節(jié)炎癥細(xì)胞因子表達(dá),緩解炎癥癥狀。Su等(2013)研究表明,SSP可緩解PCV2誘導(dǎo)的RAW264.7細(xì)胞氧化應(yīng)激,降低PCV2感染細(xì)胞中活性氧(ROS)和NO生成,抑制過氧化物酶(MPO)活性和誘導(dǎo)型一氧化氮合酶(iNOS)表達(dá)。路海濱等(2018)研究發(fā)現(xiàn),以SSP處理Lewis肺癌小鼠后其血清腫瘤壞死因子α(TNF-α)和血管內(nèi)皮生長(zhǎng)因子(VEGF)水平均顯著升高,即SSP可通過調(diào)節(jié)血清TNF-α和VEGF水平以緩解炎癥反應(yīng),進(jìn)而達(dá)到抗腫瘤效果。Yang等(2020)探究SSP對(duì)PCV2感染RAW264.7細(xì)胞炎癥反應(yīng)及組蛋白乙?;揎椀挠绊?,發(fā)現(xiàn)SSP通過增加組蛋白去乙?;福℉DAC)活性和HDAC基因表達(dá),以降低H3和H4的乙?;讲⒓せ頝F-κB/MAPKs/c-Jun信號(hào)通路,即通過調(diào)節(jié)炎癥細(xì)胞因子表達(dá)水平進(jìn)一步抑制炎癥反應(yīng)。此外,陳云等(2014)研究表明,山豆根多糖硫酸酯(sBSRPS)可作為抗Ⅰ型鴨肝炎病毒(Duck hepatitis virus 1,DHV-1)藥物的重要組分。Chen等(2014,2018)、Voronov等(2014)通過對(duì)比分析SSP和sBSRPS對(duì)DHV-1在鴨肝細(xì)胞上復(fù)制及釋放的影響,發(fā)現(xiàn)SSP和sBSRPS均能較好地發(fā)揮體外抗DHV-1作用,且sBSRPS的抗病毒效果更明顯,能有效抑制DHV-1的體外復(fù)制和釋放。何淼等(2020)也研究證實(shí),SSP和sBSRPS均具有明顯的體外抗DHV-1活性,且sBSRPS的抗病毒效果優(yōu)于SSP,可顯著下調(diào)DHV-1的體外復(fù)制和釋放,即sBSRPS在體外對(duì)DHV-1具有良好的拮抗作用??梢姡瑂BSRPS具備良好的抗病毒活性,可作為主要成分用于研發(fā)抗病毒新型藥物?!颈狙芯壳腥朦c(diǎn)】PCV2作用于細(xì)胞或組織會(huì)促使炎癥細(xì)胞因子上調(diào)表達(dá),尤其是TNF-α、IL-1β、IL-6、IL-8和IL-10等細(xì)胞因子,但這些炎癥細(xì)胞因子的分泌時(shí)間段及上調(diào)幅度各不相同,其變化可能是病毒通過刺激炎癥反應(yīng),導(dǎo)致動(dòng)物機(jī)體免疫系統(tǒng)發(fā)生紊亂,最終促進(jìn)PCV2感染相關(guān)疾病的發(fā)生發(fā)展(李?;ǖ?,2016;石坤等,2016;崔貝貝,2017;譚紅連等,2017;張蕾等,2018)。至今尚無研究報(bào)道SSP對(duì)PCV2感染免疫細(xì)胞增殖活性及炎癥相關(guān)因子的調(diào)節(jié)作用?!緮M解決的關(guān)鍵問題】通過建立PCV2體外感染RAW264.7細(xì)胞的炎癥模型,以不同濃度SSP處理后采用CCK-8和ELISA分別測(cè)定SSP對(duì)PCV2體外感染RAW264.7細(xì)胞增殖活性及其炎癥相關(guān)因子(IL-1β、IL-8和MCP-1)分泌水平和胞內(nèi)環(huán)氧合酶-1(COX-1)活性的影響,旨在揭示SSP對(duì)PCV2感染免疫細(xì)胞炎癥相關(guān)因子的調(diào)控作用。
1 材料與方法
1. 1 試驗(yàn)材料
PCV2(SH株)為南京農(nóng)業(yè)大學(xué)農(nóng)業(yè)農(nóng)村部動(dòng)物疫病診斷與免疫重點(diǎn)開放實(shí)驗(yàn)室分離獲得,后經(jīng)本課題組采用豬腎細(xì)胞系(PK-15細(xì)胞)增殖保存;RAW264.7細(xì)胞購(gòu)自武漢大學(xué)細(xì)胞庫(kù);SSP由廣西大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院獸醫(yī)藥理與毒理學(xué)實(shí)驗(yàn)室提取獲得;脂多糖(LPS)購(gòu)自上海索萊寶生物科技有限公司;細(xì)胞培養(yǎng)相關(guān)試劑包括DMEM高糖培養(yǎng)基(Gibco)、胎牛血清(Gibco)、青鏈霉素混合液(北京康為世紀(jì)生物科技有限公司)、蛋白酶K[生工生物工程(上海)股份有限公司]、飽和酚(上海索萊寶生物科技有限公司)、CCK-8試劑盒(上海碧云天生物技術(shù)有限公司);LA Taq DNA聚合酶購(gòu)自TaKaRa公司;小鼠IL-1β(Lot.M191008-001a)、IL-8(Lot.M191008-104a)、MCP-1(Lot.M191008-113a)和COX-1(Lot.M191008-135a)等ELISA試劑盒購(gòu)自深圳欣博盛生物科技有限公司。
1. 2 RAW264.7細(xì)胞復(fù)蘇傳代與培養(yǎng)
RAW264.7細(xì)胞復(fù)蘇后用含10% FBS-DMEM完全培養(yǎng)液稀釋并移至細(xì)胞培養(yǎng)瓶中,置于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng),待瓶底細(xì)胞貼壁融合至70%~80%后進(jìn)行傳代,連續(xù)穩(wěn)定傳代3次后即可用于后續(xù)試驗(yàn)。
1. 3 PCV2增殖及鑒定
將RAW264.7細(xì)胞稀釋至5×104個(gè)/mL,按100 μL/孔添加至96孔細(xì)胞培養(yǎng)板中。將-80 ℃保存的PCV2接種至RAW264.7細(xì)胞,2 h后棄培養(yǎng)液,PBS洗滌3次后加入含5% FBS的DMEM培養(yǎng)液,置于37 ℃、5% CO2的培養(yǎng)箱中培養(yǎng)24 h,收集細(xì)胞懸液,反復(fù)凍融3次后5000 r/min離心5 min,提取DNA。采用PCR檢測(cè)病毒核酸,根據(jù)GenBank已公布PCV2的ORF-2基因設(shè)計(jì)引物(F:5'-CACTTCTTTCGTTTTC AG-3'和R:5'-TTTATCACTTCGTAATGGT-3'),并委托深圳華大基因科技服務(wù)有限公司合成。PCR反應(yīng)體系25.0 μL:Ex Taq DNA聚合酶12.5 μL,上、下游引物各1.0 μL,DNA模板2.0 μL,ddH2O 8.5 μL。擴(kuò)增程序:94 ℃預(yù)變性3 min;94 ℃ 40 s,55.5 ℃ 40 s,72 ℃ 50 s,進(jìn)行30個(gè)循環(huán);72 ℃延伸7 min。PCR擴(kuò)增產(chǎn)物以1.0%瓊脂糖凝膠電泳進(jìn)行檢測(cè)。
1. 4 CCK-8測(cè)定SSP對(duì)RAW264.7細(xì)胞增殖活性的影響
將RAW264.7細(xì)胞稀釋至5×104個(gè)/mL,按100 μL/孔添加至96孔細(xì)胞培養(yǎng)板中,置于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng),使其貼壁長(zhǎng)成單層細(xì)胞融合至70%。如表1所示,分別設(shè)細(xì)胞對(duì)照組、LPS陽性對(duì)照組及不同濃度藥物組,其中,細(xì)胞對(duì)照組只加入10% FBS-DMEM完全培養(yǎng)液,LPS陽性對(duì)照組加入終濃度為1 μg/mL的LPS(以10% FBS-DMEM完全培養(yǎng)液稀釋),不同濃度藥物組加入終濃度分別為25、50、100、200、400、800和1600 μg/mL的SSP(以10% FBS-DMEM完全培養(yǎng)液稀釋),每組4個(gè)重復(fù)孔,進(jìn)行3個(gè)平行試驗(yàn)。在37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)12、24、48和72 h后,每孔分別加入10.0 μL CCK-8溶液繼續(xù)孵育4 h,于450 nm處測(cè)定吸光值。
1. 5 CCK-8測(cè)定SSP對(duì)PCV2感染RAW264.7細(xì)胞增殖活性的影響
根據(jù)1.4的試驗(yàn)結(jié)果,篩選出SSP濃度25、50、100、200和400 μg/mL作為后續(xù)試驗(yàn)劑量。RAW264.7細(xì)胞傳代培養(yǎng)后,調(diào)整其細(xì)胞濃度為5×104個(gè)/mL,按100 μL/孔添加至96孔細(xì)胞培養(yǎng)板中,置于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)過夜使其貼壁融合至70%。分別設(shè)細(xì)胞對(duì)照組、PCV2模型組及不同濃度藥物組(表2),每組4個(gè)重復(fù),進(jìn)行3個(gè)平行試驗(yàn)。PCV2模型組和不同濃度藥物組先用103 TCID50 PCV2懸液孵育感染2 h,棄病毒懸液后以PBS洗滌3次,再加入終濃度分別為25、50、100、200和400 μg/mL的SSP,細(xì)胞對(duì)照組和PCV2模型組加入10% FBS-DMEM完全培養(yǎng)液,置于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng),于培養(yǎng)12、24、48和72 h后,各處理組每孔分別加入10.0 μL CCK-8溶液繼續(xù)孵育4 h,于450 nm處測(cè)定吸光值。
1. 6 SSP對(duì)PCV2誘導(dǎo)RAW264.7細(xì)胞炎癥相關(guān)因子分泌水平的影響
取對(duì)數(shù)生長(zhǎng)期的RAW264.7細(xì)胞,調(diào)整細(xì)胞濃度為1×105個(gè)/mL,添加至12孔細(xì)胞培養(yǎng)板中,1000 μL/孔,置于37 ℃、5% CO2培養(yǎng)箱中培養(yǎng)過夜,待其貼壁后進(jìn)行試驗(yàn)處理,設(shè)細(xì)胞對(duì)照組、LPS陽性對(duì)照組、PCV2模型組及不同濃度(100、200和400 ?g/mL)藥物組(表3),每組3個(gè)重復(fù),進(jìn)行3個(gè)平行試驗(yàn)。細(xì)胞對(duì)照組加入500 ?L DMEM培養(yǎng)液,LPS對(duì)照組加入500 ?L終濃度為1 ?g/mL的LPS, PCV2模型組和不同濃度藥物組加入500 ?L的103 TCID50 PCV2懸液感染孵育2 h,棄病毒懸液,PBS洗3次;不同濃度藥物組分別加入1000 μL含不同終濃度(100、200和400 ?g/mL)SSP的10% FBS-DMEM完全培養(yǎng)液,細(xì)胞對(duì)照組、LPS陽性對(duì)照組和PCV2模型組則加入1000 μL的10% FBS-DMEM完全培養(yǎng)液。置于37 ℃、5% CO2培養(yǎng)箱中繼續(xù)培養(yǎng)24 h,收集細(xì)胞培養(yǎng)上清液置于1.5 mL滅菌EP管中,4 ℃下1500 r/min離心5 min,收集上清液,按ELISA試劑盒說明進(jìn)行IL-1β、IL-8、MCP-1和COX-1測(cè)定。
2 結(jié)果與分析
2. 1 PCV2在RAW264.7細(xì)胞內(nèi)的增殖鑒定結(jié)果
RAW264.7細(xì)胞接種PCV2后,反復(fù)凍融裂解RAW264.7細(xì)胞,釋放病毒,提取病毒DNA,檢測(cè)所提取DNA在260 nm和280 nm處的吸光值,得知A260/A280比值為1.81,表明提取獲得的病毒DNA不存在蛋白質(zhì)污染,純度較高。以病毒DNA為模板進(jìn)行PCR擴(kuò)增,擴(kuò)增產(chǎn)物經(jīng)1.0%瓊脂糖凝膠電泳檢測(cè)得到單一明亮的目的條帶(圖1),擴(kuò)增片段大?。?154 bp)與預(yù)期結(jié)果相符,即RAW264.7細(xì)胞成功感染PCV2。
2. 2 SSP對(duì)RAW264.7細(xì)胞增殖活性的影響
采用CCK-8檢測(cè)SSP對(duì)RAW264.7細(xì)胞增殖活性的影響,結(jié)果(表4)顯示,LPS處理RAW264.7細(xì)胞在各時(shí)間點(diǎn)的增殖活性均高于細(xì)胞對(duì)照組,且隨著培養(yǎng)時(shí)間的延長(zhǎng),細(xì)胞增殖活性呈先升高后降低的變化趨勢(shì),以培養(yǎng)24 h時(shí)的細(xì)胞增殖活性最高,與細(xì)胞對(duì)照組間存在極顯著差異(P<0.01,下同)。SSP濃度≤400 μg/mL時(shí),在各時(shí)間點(diǎn)的RAW264.7細(xì)胞增殖活性均無顯著差異(P>0.05,下同);但SSP濃度達(dá)800和1600 μg/mL時(shí),各時(shí)間點(diǎn)的RAW264.7細(xì)胞增殖活性極顯著低于細(xì)胞對(duì)照組,且隨著培養(yǎng)時(shí)間的延長(zhǎng),細(xì)胞增殖活性呈先降低后升高的變化趨勢(shì),于培養(yǎng)48 h時(shí)達(dá)最低值。因此,在后續(xù)研究中SSP使用濃度不宜超過400 μg/mL。
2. 3 SSP對(duì)PCV2感染RAW264.7細(xì)胞增殖活性的影響
由表5可知,PCV2感染RAW264.7細(xì)胞后,其增殖活性極顯著降低,且隨著培養(yǎng)時(shí)間的延長(zhǎng),細(xì)胞增殖活性整體上呈逐漸降低趨勢(shì),于培養(yǎng)72 h時(shí)降至最低值。以25~50 μg/mL SSP培養(yǎng)PRV2感染RAW264.7細(xì)胞能有效提高細(xì)胞增殖活性,且培養(yǎng)72 h的細(xì)胞增殖活性極顯著高于PCV2模型組;以100~400 μg/mL SSP培養(yǎng)PRV2感染RAW264.7細(xì)胞能極顯著提高細(xì)胞增殖活性,且隨著培養(yǎng)時(shí)間的延長(zhǎng),其細(xì)胞增殖活性越高,故選擇100~400 ?g/mL SSP進(jìn)行后續(xù)研究。
2. 4 SSP對(duì)PCV2感染RAW264.7細(xì)胞炎癥相關(guān)因子分泌水平的影響
由表6可知,PCV2感染RAW264.7細(xì)胞后,其細(xì)胞IL-1β、IL-8和MCP-1分泌水平及胞內(nèi)COX-1活性均極顯著升高。與PCV2模型組相比,100 ?g/mL SSP能顯著降低PCV2感染RAW264.7細(xì)胞的IL-1β和MCP-1分泌水平(P<0.05,下同);200 ?g/mL SSP能極顯著降低PCV2感染RAW264.7細(xì)胞的MCP-1分泌水平,同時(shí)顯著降低細(xì)胞IL-1β和IL-8的分泌水平及胞內(nèi)COX-1活性;400 ?g/mL SSP能極顯著降低PCV2感染RAW264.7細(xì)胞的IL-1β、IL-8和MCP-1分泌水平及胞內(nèi)COX-1活性。表明100~400 ?g/mL的SSP能通過降低PCV2感染RAW264.7細(xì)胞的IL-1β、IL-8和MCP-1分泌水平及胞內(nèi)COX-1活性,以緩解病毒引起的炎癥反應(yīng)。
3 討論
山豆根化學(xué)成分含量豐富,藥用價(jià)值高。SSP是山豆根的主要活性成分之一,具有調(diào)節(jié)免疫、抗炎、抗癌、抗病毒及抗氧化等多種生物活性(Cheng et al.,2013;Ji et al.,2014)。本研究通過測(cè)定SSP對(duì)RAW264.7細(xì)胞增殖活性的影響,以明確SSP對(duì)RAW264.7細(xì)胞增殖活性及細(xì)胞毒性影響的濃度范圍,從而篩選出SSP對(duì)PCV2感染RAW264.7細(xì)胞增殖活性影響的最適宜濃度,進(jìn)一步揭示SSP的抗炎作用,結(jié)果顯示,在25~400 ?g/mL濃度范圍內(nèi)SSP對(duì)RAW264.7細(xì)胞增殖活性無顯著影響,也未表現(xiàn)出細(xì)胞毒性作用,但SSP濃度為800~1600 ?g/mL時(shí)極顯著抑制RAW264.7細(xì)胞增殖活性,與Gan等(2018)的研究結(jié)果相似,即1.78~35.60 μmol/L SSP對(duì)雞胚肝細(xì)胞無細(xì)胞毒性,且對(duì)黃曲霉毒素誘導(dǎo)的雞胚肝細(xì)胞損傷起保護(hù)作用。
炎癥是動(dòng)物機(jī)體對(duì)各種致炎因素引起損傷產(chǎn)生的防御性反應(yīng),而炎癥相關(guān)因子在炎癥過程中發(fā)揮關(guān)鍵作用,如IL-1β、IL-6、IL-8、COX-1和MCP-1等可促進(jìn)炎癥細(xì)胞聚集、活化及炎癥介質(zhì)釋放(Kandalam and Clark,2010;Yin et al.,2018;Xiao et al.,2020)。IL-1β是一種重要的促炎因子,在細(xì)胞免疫中扮演重要角色,能與TNF-α產(chǎn)生相互協(xié)同作用,通過激活靶細(xì)胞內(nèi)NF-κB信號(hào)通路而參與炎癥反應(yīng),在機(jī)體免疫調(diào)節(jié)過程中發(fā)揮重要作用(Wulster-Radcliffe et al.,2004;Li et al.,2020);MCP-1是炎癥反應(yīng)的促發(fā)劑,可促進(jìn)炎癥細(xì)胞聚集,且具有多種生物活性,包括促進(jìn)腫瘤細(xì)胞生長(zhǎng)、刺激免疫應(yīng)答及參與炎癥反應(yīng)等(Ou et al.,2020;Weber et al.,2020);IL-8在免疫應(yīng)答的全過程中發(fā)揮重要作用,能吸引炎癥細(xì)胞進(jìn)入組織部位,激活巨噬細(xì)胞及增強(qiáng)其殺傷活性(Mohamed et al.,2020);COX-1與炎癥發(fā)生密切相關(guān),受致炎因素刺激后,可分泌前列腺素(PGE2),活化小神經(jīng)膠質(zhì)細(xì)胞,進(jìn)而釋放促炎介質(zhì)IL-1、IL-6、TNF6、NO及PG等參與炎癥反應(yīng)(Liedtke et al.,2012)。已有研究表明,PCV2感染免疫細(xì)胞可導(dǎo)致炎癥相關(guān)因子的表達(dá)發(fā)生改變,尤其是IL-6、IL-8、IL-10、TNF-α和免疫調(diào)節(jié)因子IFN-γ(Borghetti et al.,2013)。汪偉等(2016)對(duì)PCV2體外感染3D4/21細(xì)胞的研究發(fā)現(xiàn),PCV2感染對(duì)炎癥相關(guān)因子IL-1β和IL-8的表達(dá)起促進(jìn)作用。在本研究中,采用103 TCID50的PCV2感染RAW264.7細(xì)胞后,其細(xì)胞IL-1β、IL-8和MCP-1分泌水平及胞內(nèi)COX-1活性均極顯著升高,說明PCV2能刺激RAW264.7細(xì)胞分泌炎癥相關(guān)因子,從而促進(jìn)炎癥反應(yīng)的發(fā)生,即PCV2感染誘導(dǎo)RAW264.7細(xì)胞炎癥模型構(gòu)建成功。
近年來,有關(guān)中藥活性多糖對(duì)免疫細(xì)胞炎癥相關(guān)因子分泌的調(diào)節(jié)作用研究逐漸增多。李勝亮等(2006)研究發(fā)現(xiàn),經(jīng)10 mg/L LPS刺激后肺血管內(nèi)巨噬細(xì)胞釋放TNF-α、IL-6和IL-8增多;仲芳等(2009)研究表明,姜黃素可下調(diào)LPS誘導(dǎo)人類腎小管近端上皮細(xì)胞MCP-1和IL-8的分泌;陳瀟等(2012)在研究靈芝多糖對(duì)動(dòng)脈粥樣硬化預(yù)防與治療作用機(jī)理時(shí)發(fā)現(xiàn),其高劑量組的血清TNF-α分泌水平較模型組顯著降低,表明靈芝多糖可有效抑制炎癥相關(guān)因子的分泌;王松等(2012)研究顯示,復(fù)方甘草酸苷可明顯降低LPS誘發(fā)RAW264.7細(xì)胞生成促炎因子NO、TNF-α、IL-1β和IL-6,并促進(jìn)抗炎因子IL-10表達(dá);Liu等(2015)研究發(fā)現(xiàn),酸棗多糖對(duì)四氯化碳(CCl4)誘導(dǎo)的小鼠肝毒性損傷有顯著治療作用;Xue等(2015)研究表明,黃芪多糖可通過抑制氧化應(yīng)激和阻斷NF-κB途徑來抑制PCV2復(fù)制。本研究結(jié)果顯示,PCV2感染RAW264.7細(xì)胞后極顯著提高其IL-1β、IL-8和MCP-1分泌水平及胞內(nèi)COX-1活性,而100~400 ?g/mL SSP能顯著或極顯著降低PCV2感染RAW264.7細(xì)胞IL-1β、IL-8、MCP-1分泌水平及胞內(nèi)COX-1活性,與Sun等(2020)的研究結(jié)果相似??梢姡琒SP是通過調(diào)節(jié)PCV2感染免疫細(xì)胞的炎癥相關(guān)因子水平而發(fā)揮抗炎作用。
4 結(jié)論
SSP對(duì)RAW264.7細(xì)胞增殖活性無顯著影響,也未表現(xiàn)出細(xì)胞毒性作用,且100~400 μg/mL SSP能顯著提高PCV2感染RAW264.7細(xì)胞增殖活性,并通過調(diào)節(jié)PCV2感染免疫細(xì)胞的炎癥相關(guān)因子水平而發(fā)揮抗炎作用。
參考文獻(xiàn):
陳瀟,王爽,孟國(guó)梁,常珊珊,陳惠,鄭惠華,徐濟(jì)良. 2012. 靈芝多糖對(duì)動(dòng)脈粥樣硬化大鼠炎癥因子表達(dá)的影響[J]. 中藥新藥與臨床藥理,23(3):251-254. doi:10.3969/j.issn.1003-9783.2012.03.004. [Chen X,Wang S,Meng G L,Chang S S,Chen H,Zheng H H,Xu J L. 2012. Effects of Ganoderma lucidum polysaccharids on expression of inflammatory factors in atherosclerosis rats[J]. Traditional Chinese Drug Research and Clinical Pharmacology,23(3):251-254.]
陳云,曾玲,熊文,張玲,張清,王德云,劉家國(guó). 2014. 山豆根多糖及其硫酸酯體外抗DHV-1感染細(xì)胞作用的比較[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),37(4):117-122. doi:10.7685/j.issn.1000-2030.2014.04.017. [Chen Y,Zeng L,Xiong W,Zhang L,Zhang Q,Wang D Y,Liu J G. 2014. Comparison of bush sophora root polysaccharide and its sulfate against DHV-1 infecting cell in vitro[J]. Journal of Nanjing Agricultural University,37(4):117-122.]
崔貝貝. 2017. IL-10在PCV2感染與復(fù)制中的調(diào)控作用[D]. 楊凌:西北農(nóng)林科技大學(xué). [Cui B B. 2017. The regulation of IL-10 in the PCV2 infection and replication[D]. Yangling:Northwest A & F University.]
鄧文芳,宋文博,胡星星,賈雙,陳翔鴻,喻紅艷,湯細(xì)彪. 2020. 2017~2018年華中地區(qū)豬圓環(huán)病毒2型分子流行病學(xué)分析[J]. 中國(guó)動(dòng)物傳染病學(xué)報(bào),28(2):32-38. [Deng W F,Song W B,Hu X X,Jia S,Chen X H,Yu H Y,Tang X B. 2020. Molecular epidemiological analysis of porcine circovirus virus type 2 in central China during 2017-2018[J]. Chinese Journal of Animal Infectious Di-seases,28(2):32-38.]
方博. 2019. 豬圓環(huán)病毒2型及其綜合防控[J]. 廣東飼料,28(7):50-51. [Fang B. 2019. Prevention and control of porcine circovirus type 2[J]. Guangdong Feed,28(7):50-51.]
何淼,張寶康,粟靈琳,杜紅旭,明珂,白景英,劉家國(guó),王德云,武毅. 2020. 磷酸化修飾對(duì)山豆根多糖抗Ⅰ型鴨肝炎病毒效果的影響[J/OL]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào). doi:10. 7685/jnau.202003030. [He M,Zhang B K,Su L L,Du H X,Ming K,Bai J Y,Liu J G,Wang D Y,Wu Y. 2020. Effect of phosphorylation on resisting duck hepatitis virus I effect of Bush Sophora Root polysaccharide[J/OL]. Journal of Nanjing Agricultural University. doi:10.7685/jnau. 202003030.]
賀會(huì)利,李軍,潘艷,胡帥,馮世文,彭昊,李常挺,陳澤祥,楊威. 2017. 廣西首例豬圓環(huán)病毒3型的發(fā)現(xiàn)及其衣殼蛋白序列分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),48(8):1499-1503. doi:10.3969/j.issn.2095-1191.2017.08.27. [He H L,Li J,Pan Y,Hu S,F(xiàn)eng S W,Peng H,Li C T,Chen Z X,Yang W. 2017. The first report of porcine circovirus type 3 infection in Guangxi and sequence analysis of its capsid protein[J]. Journal of Southern Agriculture,48(8):1499-1503.]
李?;?,張蕾,楊春蕾,趙向華,喬家運(yùn),王文杰. 2016. PCV2通過NF-κB/NLRP3信號(hào)通路調(diào)控體外培養(yǎng)PAMs分泌IL-1β[J]. 中國(guó)畜牧獸醫(yī),43(9):2366-2372. doi:10.16431/j.cnki.1671-7236.2016.09.022. [Li H H,Zhang L,Yang C L,Zhao X H,Qiao J Y,Wang W J. 2016. PCV2 regulates PAMs secreting IL-1β through the NF-κB/NLRP3 signalling pathway in vitro[J]. China Animal Husbandry & Veterinary Medicine,43(9):2366-2372.]
李勝亮,張淑琴,秦翠平,陳彬,陳正堂,金敬順,伍偉玲. 2006. 脂多糖致肺血管內(nèi)巨噬細(xì)胞釋放炎癥因子變化的研究[J]. 中國(guó)危重病急救醫(yī)學(xué),18(3):136-138. doi:10.3760/j.issn:1003-0603.2006.03.003. [Li S L,Zhang S Q,Qin C P,Chen B,Chen Z T,Jin J S,Wu W L. 2006. Changes in inflammatory cytokines released by pulmonary intravascular macrophages after stimulation with lipopolysaccharide[J]. Chinese Critical Care Medicine,18(3):136-138.]
劉國(guó)陽,唐波,常晨,華濤,侯繼波,張道華. 2019. 豬圓環(huán)病毒2型與豬細(xì)小病毒混合感染對(duì)仔豬致病性的研究[J]. 江西農(nóng)業(yè)學(xué)報(bào),31(9):79-85. doi:10.19386/j.cnki.jxnyxb. 2019.09.14. [Liu G Y,Tang B,Chang C,Hua T,Hou J B,Zhang D H. 2019. Athogenicity of porcine circovirus type 2 and porcine parvovirus co-infection in piglets[J]. Acta Agriculturae Jiangxi,31(9):79-85.]
路海濱,高洋,禹珊珊,趙倩倩,宋玉明. 2018. 山豆根多糖對(duì)Lewis肺癌小鼠抑瘤作用及免疫功能影響的實(shí)驗(yàn)研究[J]. 中藥材,41(6):1459-1462. doi:10.13863/j.issn.1001-4454.2018.06.043. [Lu H B,Gao Y,Yu S S,Zhao Q Q,Song Y M. 2018. Experimental study of the effect of the Sophorae tonkinensis polysaccharide on the tumor inhibition and immune function in lewis lung cancer bearing mice[J]. Journal of Chinese Medicinal Materials,41(6):1459-1462.]
彭湘君,李銀保,李青松. 2012. 山豆根多糖的研究進(jìn)展[J]. 湖北農(nóng)業(yè)科學(xué),51(24):5559-5561. [Peng X J,Li Y B,Li Q S. 2012. The pesearch progress of polysaccharide from radix Sophorae tonkinensis[J]. Hubei Agricultural Sciences,51(24):5559-5561.]
沈順新,和玉丹. 2020. 豬圓環(huán)病毒病的危害及其防控[J]. 今日畜牧獸醫(yī),36(4):27-28. [Shen S X,He Y D. 2020. The harm of porcine circovirus disease and its prevention and control[J]. Today Animal Husbandry and Veterinary Medicine,36(4):27-28.]
石坤,魏建超,邱亞峰,張克龍,李宗瑞,劉茜倩,李蓓蓓,劉珂,邵東華,陳立志,馬志永. 2016. PCV2與PRRSV體外共感染對(duì)肺泡巨噬細(xì)胞系炎癥反應(yīng)的影響[J]. 中國(guó)動(dòng)物傳染病學(xué)報(bào),24(3):16-20. [Shi K,Wei J C,Qiu Y F,Zhang K L,Li Z R,Liu X Q,Li B B,Liu K,Shao D H,Chen L Z,Ma Z Y. 2016. Inflammatory response of a pulmonary alveolar macrophage in vitro response to porcine circovirus tyre 2 and porcine reproductive and respiratory syndrome virus co-infection[J]. Chinese Journal of Animal Infectious Diseases,24(3):16-20.]
帥學(xué)宏,蘇子杰,胡庭俊,曾蕓,韋英益,李躍華. 2010. 山豆根多糖對(duì)雞脾臟淋巴細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)相關(guān)分子水平的影響[J]. 動(dòng)物醫(yī)學(xué)進(jìn)展,31(1):36-41. doi:10.16437/j.cnki. 1007-5038.2010.01.009. [Shuai X H,Su Z J,Hu T J,Zeng Y,Wei Y Y,Li Y H. 2010. Effects of Sophora subprostrate polysaccharide on signal transduction related molecules in chicken splenic lymphocytes[J]. Progress in Veterinary Medicine,31(1):36-41.]
蘇芮,王東亮,陳指龍,范秀軍,鄧治邦,楊青. 2020. PCV2 ORF1~ORF4基因所編碼蛋白功能的研究進(jìn)展[J]. 經(jīng)濟(jì)動(dòng)物學(xué)報(bào),24(1):46-51. doi:10.13326/j.jea.2018.1357. [Su R,Wang D L,Chen Z L,F(xiàn)an X J,Deng Z B,Yang Q. 2020. Research progress on major function proteins encoded by PCV2 ORF1-ORF4 gene[J]. Journal of Economic Animal,24(1):46-51.]
譚紅連,楊劍,尹丹,郝祝兵,韋英益,胡庭俊. 2017. 馬尾藻多糖對(duì)PCV-2體外感染3D4/2細(xì)胞活性及炎癥相關(guān)因子的影響[J]. 江蘇農(nóng)業(yè)科學(xué),45(23):166-168. doi:10.15889/j.issn.1002-1302.2017.23.046. [Tan H L,Yang J,Yin D,Hao Z B,Wei Y Y,Hu T J. 2017. Effects of Sargassum sargassum polysaccharides on cell activity and inflammatory related factors of 3D4/2 cells infected with PCV-2 in vitro[J]. Jiangsu Agricultural Science,45(23):166-168.]
汪偉,王小敏,何孔旺,溫立斌,倪艷秀. 2016. 豬圓環(huán)病毒2型體外刺激3D4/21豬肺泡巨噬細(xì)胞的炎癥相關(guān)細(xì)胞因子mRNA轉(zhuǎn)錄分析[J]. 西南農(nóng)業(yè)學(xué)報(bào),29(5):1225-1228. doi:10.16213/j.cnki.scjas.2016.05.042. [Wang W,Wang X M,He K W,Wen L B,Ni Y X. 2016. Inflammation-associated cytokines mRNA transcriptional profiles of porcine alveolar macrophages cell lines 3D4/21 stimulated by porcine circovirus type 2[J]. Southwest China Journal of Agricultural Sciences,29(5):1225-1228.]
王松,王微,羅猛,趙修華,祖元?jiǎng)?,趙艷麗. 2012. 復(fù)方甘草酸苷制劑對(duì)脂多糖誘導(dǎo)小鼠RAW264.7細(xì)胞分泌炎癥因子的調(diào)節(jié)作用[J]. 藥學(xué)進(jìn)展,36(10):465-470. doi:10.3969/ j.issn.1001-5094.2012.10.005. [Wang S,Wang W,Luo M,Zhao X H,Zu Y G,Zhao Y L. 2012. Regulating effect of gompound glycyrrhizin on LPS-induced inflammatory factor release from murine RAW264.7 cells[J]. Progress in Pharmaceutical Sciences,36(10):465-470.]
張蕾,代松寶,張麗琳,時(shí)培殿,王家順,任婕,黃金海. 2018. PCV2逃逸宿主天然免疫的分子機(jī)制研究[J]. 華北農(nóng)學(xué)報(bào),33(2):149-156. doi:10.7668/hbnxb.2018.02.021. [Zhang L,Dai S B,Zhang L L,Shi P D,Wang J S,Ren J,Huang J H. 2018. Molecular mechanisms of PCV2 escape from innate immunity[J]. Acta Agriculturae Boreali-Sinica,33(2):149-156.]
張柱青,呂其壯,卓嚴(yán)玲,鄧啟霞. 2019. 豬圓環(huán)病毒2型Cap蛋白體外表達(dá)技術(shù)研究進(jìn)展[J]. 河南農(nóng)業(yè)學(xué)報(bào),48(9):1-6. doi:10.15933/j.cnki.1004-3268.2019.09.001. [Zhang Z Q,Lü Q Z,Zhuo Y L,Deng Q X. 2019. Research pro-gress on the expression technology of the Cap protein of porcine circovirus type 2 in vitro[J]. Journal of Henan Agricultural Sciences,48(9):1-6.]
仲芳,陳慧,韓琳,靳遠(yuǎn)萌,王偉銘,陳楠. 2009. 姜黃素對(duì)脂多糖刺激的腎小管近端上皮細(xì)胞分泌的相關(guān)炎癥因子的影響[J]. 腎臟病與透析腎移植雜志,18(3):236-241. doi:10.3969/j.issn.1006-298X.2009.03.007. [Zhong F,Chen H,Han L,Jin Y M,Wang W M,Chen N. 2009. Curcumin inhibits expression of pro-inflammation factors in renal tubular epithelial cells induced by lipopolysaccharide[J]. Chinese Journal of Nephrology,Dialysis & Transplantation,18(3):236-241.]
Borghetti P,Morganti M,Saleri R,F(xiàn)errari L,de Angelis E,Cavalli V,Cacchioli A,Corradi A,Martelli P. 2013. Innate pro-inflammatory and adaptive immune cytokines in PBMC of vaccinated and unvaccinated pigs naturally exposed to porcine circovirus type 2(pcv2) infection vary with the occurrence of the disease and the viral burden[J]. Veterinary Microbiology,163(1-2):42-53. doi:10. 1016/j.vetmic.2012.12.007.
Chen Y,Xiong W,Zeng L,Wang D Y,Liu J G,Wu Y,Hu Y L. 2014. Comparison of Bush Sophora Root polysaccharide and its sulfate?s anti-duck hepatitis A virus activity and mechanism[J]. Carbohydrate Polymers,102:333-340. doi:10.1016/j.carbpol.2013.11.065.
Chen Y,Yang Y H,Yuan W J,Wang Z H,Ming K,Zeng L,Liu J G. 2018. Effects of Bush Sophora Root polysaccharide and its sulfate on DHAV-1 replication[J]. Carbohydrate Polymers,19:508-514. doi:10.1016/j.carbpol.2018. 06.039.
Cheng H R,F(xiàn)eng S L,Shen S A,Zhang L,Yang R W,Zhou Y H,Ding C B. 2013. Extraction,antioxidant and antimicrobial activities of Epimedium acuminatum Franch. polysaccharide[J]. Carbohydrate Polymers,96(1):101-108. doi:10.1016/j.carbpol.2013.03.072.
Gan F,Yang Y L,Chen Y,Che C P,Pan C L,Huang K H. 2018. Bush Sophora Root polysaccharide could help prevent aflatoxin B1-induced hepatotoxicity in the primary chicken hepatocytes[J]. Toxicon,150:180-187. doi:10. 1016/j.toxicon.2018.05.019.
Ho D R,Chang P J,Lin W Y,Huang Y C,Chen C S,Lin J H,Huang K T,Chan W N,Chen C S. 2020. Beneficial effects of inflammatory cytokine-targeting aptamers in an animal model of chronic prostatitis[J]. International Journal of Molecular Sciences,21(11):3953. doi:10.3390/ijms21113953.
Ji P,Wei Y M,Xue W X,Hua Y L,Zhang M,Sun H G,Song Z X,Zhang L,Li J X,Zhang W Q. 2014. Characterization and antioxidative activities of polysaccharide in Chinese angelica and its processed products[J]. International Journal of Biological Macromolecules,67:195-200. doi:10.1016/j.ijbiomac.2014.03.025.
Kandalam U,Clark M A. 2010. Angiotensin II activates JAK2/STAT3 pathway and induces interleukin-6 production in cultured rat brainstem astrocytes[J]. Regulatory Peptides,159(1-3):110-116. doi:10.1016/j.regpep.2009. 09.001.
Li Y F,Huang B,Ye T T,Wang Y,Xia D J,Qian J. 2020. Physiological concentrations of bilirubin control infla-mmatory response by inhibiting NF-κB and inflammasome activation[J]. International Immunopharmacology,84: 106520. doi:10.1016/j.intimp.2020.106520.
Liedtke A J,Crews B C,Daniel C M,Blobaum A L,Kingsley P J,Ghebreselasie K,Marnett L J. 2012. Cyclooxygenase-1-selective inhibitors based on the (E)-2'-des-methyl-sulindac sulfide scaffold[J]. Journal of Medicinal Chemistry,55(5):2287-2300. doi:10.1021/jm201528b.
Liu G P,Liu X Q,Zhang Y C,Zhang F,Wei T,Yang M,Wang K M,Wang Y J,Liu N,Zhao Z X. 2015. Hepatoprotective effects of polysaccharides extracted from Zizyphus jujube cv. Huanghetanzao[J]. International Journal of Biological Macromolecules,76:169-175. doi:10.1016/j.ijbiomac.2015.01.061.
Mohamed H T,El-Ghonaimy E A,El-Shinawi M,Hosney M,G?tte M,Woodward W A,El-Mamlouk T,Mohamed M M. 2020. IL-8 and MCP-1/CCL2 regulate proteolytic activity in triple negative inflammatory breast cancer a mechanism that might be modulated by Src and Erk1/2[J]. Toxicology and Applied Pharmacology,401:115092. doi:10.1016/j.taap.2020.115092.
Ou X C,Ying J W,Bai X D,Ruan D K. 2020. Activation of SIRT1 promotes cartilage differentiation and reduces apoptosis of nucleus pulposus mesenchymal stem cells via the MCP1/CCR2 axis in subjects with intervertebral disc degeneration[J] International Journal of Molecular Medicine,46(3):1074-1084. doi:10.3892/ijmm.2020.4668.
Su Z J,Wei Y Y,Yin D,Shuai X H,Zeng Y,Hu T J. 2013. Effect of Sophora subprosrate polysaccharide on oxidative stress induced by PCV2 infection in RAW264.7 cells[J]. International Journal of Biological Macromolecules,62:457-464. doi:10.1016/j.ijbiomac.2013.09.026.
Sun N,Zhang H,Sun P P,Khan A,Guo J H,Zheng X Z,Sun Y G,F(xiàn)an K H,Yin W,Li H Q. 2020. Matrine exhibits antiviral activity in a PRRSV/PCV2 co-infected mouse model[J]. Phytomedicine,77:153289. doi:10.1016/j.phymed.2020.153289.
Voronov E,Carmi Y,Apte R N. 2014. The role IL-1 in tumor-mediated angiogenesis[J]. Frontiers in Physiology,5:114. doi:10.3389/fphys.2014.00114.
Weber R,Riester Z,Hüser L,Sticht C,Siebenmorgen A,Groth C,Hu X Y,Altevogt P,Utikal J S,Umansky V. 2020. IL-6 regulates CCR5 expression and immunosuppressive capacity of MDSC in murine melanoma[J]. Journal for Immunotherapy of Cancer,8(2):e000949. doi:10. 1136/jitc-2020-000949.
Wulster-Radcliffe M C,Ajuwon K M,Wang J Z,Christian J A,Spurlock M E. 2004. Adiponectin differentially regulates cytokines in porcine macrophages[J]. Biochemical and Biophysical Research Communications,316(3):924-929. doi:10.1016/j.bbrc.2004.02.130.
Xiao W D,F(xiàn)u L,Gu C W,Wang R,Zhao M D,Wang J,Jia X B,Chen S Y,Lai S J. 2020. β-Glucan augments IL-1β production by activating the JAK2/STAT3 pathway in cultured rabbit keratinocytes[J]. Microbial Pathogenesis,144:104175. doi:10.1016/j.micpath.2020.104175.
Xue H X,Gan F,Zhang Z Q,Hu J F,Chen X X,Huang K H. 2015. Astragalus polysaccharides inhibits pcv2 replication by inhibiting oxidative stress and blocking NF-κB pathway[J]. International Journal of Biological Macromolecules,81:22-30. doi:10.1016/j.ijbiomac.2015.07.050.
Yang J,Cao M X,Hu W Y,Wei Y Y,Hu T J. 2020. Sophora subprosrate polysaccharide suppress the inflammatory reaction of RAW264.7 cells infected with PCV2 via regulation NF-κB/MAPKs/c-Jun signal pathway and histone acetylation modification[J]. International Journal of Biological Macromolecules,159:957-965. doi:10.1016/j.ijbiomac.2020.05.128.
Yao Y,Zhu Y Y,Ren G X. 2016. Antioxidant and immunoregulatory activity of alkali-extractable polysaccharides from mung bean[J]. International Journal of Biological Macromolecules,84:289-294. doi:10.1016/j.ijbiomac. 2015.12.045.
Yin L F,Dai Q J,Jiang P P,Zhu L,Dai H F,Yao Z G,Liu H,Ma X P,Qu L X,Jiang J K. 2018. Manganese exposure facilitates microglial JAK2-STAT3 signaling and consequent secretion of TNF-a and IL-1β to promote neuronal death[J]. Neurotoxicology,64:195-203. doi:10.1016/j.neuro.2017.04.001.
(責(zé)任編輯 蘭宗寶)