国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

帶阻尼項(xiàng)的g-Navier-Stokes方程的全局吸引子

2021-07-06 05:16劉文婧姜金平熊坤翠

劉文婧 姜金平 熊坤翠

摘 要:考慮帶非線性阻尼項(xiàng)cuβu的g-Navier-Stokes方程解的長(zhǎng)時(shí)間行為,通過(guò)驗(yàn)證完備度量空間X上的一個(gè)連續(xù)半群{S(t)}t≥0存在有界吸收集BX和{S(t)}t≥0的漸近緊性,得出全局吸引子存在。

關(guān)鍵詞:非線性阻尼;g-Navier-Stokes方程;全局吸引子;吸收集;漸近緊

中圖分類(lèi)號(hào):O175.29

文獻(xiàn)標(biāo)志碼:A

4 結(jié)論

本文驗(yàn)證了帶非線性阻尼項(xiàng)cuβu的g-Navier-Stokes方程存在全局吸引子,進(jìn)一步完善了2Dg-Navier-Stokes系統(tǒng)理論,有利于該系統(tǒng)指數(shù)吸引子的研究,同時(shí)期待本文的方法和結(jié)論能對(duì)3Dg-Navier-Stokes系統(tǒng)的研究有幫助。

參考文獻(xiàn):

[1] ROH J. G-Navier-Stokes equations[D]. Sao Paulo: PH D Thesis, University of Minnesota, 2001.

[2] ROH J. Dynamics of the g-Navier-Stokes equations[J]. Journal of Differential Equations, 2005, 211(2):452-484.

[3] KWAK M, KWEAN H, ROH J. The dimension of attractor of the 2D g-Navier-Stokes equations[J]. Journal of Mathematical Analysis and Applications, 2006, 315(2):436-461.

[4] ROH J. Convergence of the g-navier-stokes equations[J]. Journal of Differential Equations, 2009, 211(2):452-484.

[5] JIANG J P, HOU Y R. Pullback attractor of 2D non-autonomous g-Navier-Stokes equations on some bounded domains[J]. Applied Mathematics and Mechanics, 2010,31(6):697-708.

[6] JIANG J P, HOU Y R. The global attractor of g-Navier-Stokes equations with linear dampness on R2[J]. Applied Mathematics and Computation, 2009, 215(3):1068-1076.

[7] JIANG J P, HOU Y R,WANG X X. Pullback attractor of 2D nonautonomous g-Navier-Stokes equations with linear dampness[J]. Applied Mathematics and Mechanics, 2011,32(2):151-166.

[8] JIANG J P, WANG X X. Global attractor of 2D autonomous g-Navier-Stokes equations[J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(3):385-394.

[9] 姜金平, 王小霞, 侯延仁. 一類(lèi)含線性阻尼的非線性自治g-Navier-Stokes系統(tǒng)解的漸近光滑效應(yīng)[J]. 西北大學(xué)學(xué)報(bào)(自然科學(xué)版), 2017,47(4):471-475.

[10]MA Q F, WANG S, ZHONG C K. Necessary and sufficient conditions for the existence of global attractors for semigroups and applications[J]. Indiana University Mathematics Journal, 2002, 51(6): 1541-1570.

[11]郭柏靈. 無(wú)窮維動(dòng)力系統(tǒng)[M]. 北京: 國(guó)防工業(yè)出版社, 2000.

[12]TEMAM R. Infinite-dimensional dynamical systems in mechanics and physics volume[M]. New York: Spring-verlag, 1988.

[13]JAMES C. Infinite-dimensional dynamical systems[M]. Cambridge: Cambridge University Press,2001.

[14]SELL G R, YOU Y C. Dynamics of evolutionary equations[M].New York: Applied Mathematical Sciences, 2002.

[15]馬紅鋁. 無(wú)窮維動(dòng)力系統(tǒng)全局吸引子問(wèn)題的研究[D]. 南京: 南京大學(xué), 2018.

[16]SONG X L, HOU Y R. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping[J]. Discrete & Continuous Dynamical Systems, 2011, 31(1):239-252.

(責(zé)任編輯:于慧梅)

The Global Attractor of g-Navier-Stokes Equations with Dampness

LIU Wenjing, JIANG Jinping*, XIONG Kuncui

(College of Mathematics and Computer Science, Yan an University, Yan an 716000, China)

Abstract:

The long time behaviors of g-Navier-Stokes equations with dampness were investigated. The bounded absorbing set of a continuous semigroup S{t}t≥0in a complete metric space X is verified and the asymptotic compactness of the semigroup S{t}t≥0was proved,hence the existence of the global attractor for the equations was proved.

Key words:

nolinear dampness; g-Navier-Stokes equations; global attractor; bounded absorbing set; asymptotic compact

收稿日期:2020-09-25

基金項(xiàng)目:陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃資助項(xiàng)目(2018JM1042)

作者簡(jiǎn)介:劉文婧(1994—),女,在讀碩士,研究方向:無(wú)窮維動(dòng)力系統(tǒng),E-mail:1357850443@qq.com.

通訊作者:姜金平,E-mail:yadxjjp@163.com.

桓仁| 化德县| 宁河县| 星座| 贡山| 沂南县| 合水县| 阿拉善右旗| 抚松县| 松滋市| 文安县| 桐庐县| 顺昌县| 南城县| 临邑县| 思南县| 汉中市| 富平县| 长寿区| 东丰县| 浙江省| 高碑店市| 深水埗区| 炉霍县| 桑植县| 仙游县| 新平| 南丰县| 渭南市| 苏尼特左旗| 新民市| 正安县| 高尔夫| 乌拉特前旗| 汕头市| 维西| 新绛县| 阜新市| 翁牛特旗| 昆山市| 监利县|