耿耀強(qiáng) 索永錄 趙騰飛 張紅衛(wèi) 胡國(guó)和 馬小輝
摘 要:彬長(zhǎng)礦區(qū)孟村煤礦中央一號(hào)回風(fēng)大巷因高地應(yīng)力、DF29大斷層和強(qiáng)采動(dòng)等多因素耦合作用,使得原有錨網(wǎng)索噴支護(hù)失效,導(dǎo)致圍巖呈現(xiàn)變形大、破壞嚴(yán)重的問(wèn)題。為此,利用鉆孔勘探、地應(yīng)力原位測(cè)量和實(shí)驗(yàn)室試驗(yàn)等技術(shù)獲得斷層區(qū)域內(nèi)的地質(zhì)構(gòu)造和地應(yīng)力賦存環(huán)境,探明了巷道圍巖的變形破壞機(jī)理,研發(fā)了一種可注性好的反應(yīng)溫度低于95 ℃、抗壓強(qiáng)度大于40 MPa的礦用復(fù)合注漿加固材料。并結(jié)合數(shù)值模擬所得圍巖塑性破壞范圍和分布特征,提出了一種以中空注漿錨索為核心的錨注補(bǔ)強(qiáng)支護(hù)技術(shù),對(duì)其支護(hù)參數(shù)進(jìn)行了優(yōu)化。結(jié)果表明:該錨注補(bǔ)強(qiáng)支護(hù)技術(shù)在淺部圍巖內(nèi)形成厚度為4.5 m的注漿加固環(huán),且通過(guò)注漿錨索與深部圍巖形成一個(gè)整體,有效維持巷道圍巖的穩(wěn)定,為新型復(fù)合注漿加固材料在斷層破碎區(qū)巷道圍巖的錨注加固工程實(shí)踐提供參考和技術(shù)支持。
關(guān)鍵詞:高地應(yīng)力;斷層破碎區(qū);錨注支護(hù);中空注漿錨索;復(fù)合注漿材料中圖分類號(hào):TD 353
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-9315(2021)04-0616-08
DOI:10.13800/j.cnki.xakjdxxb.2021.0406開放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Bolt-grouting support for roadway in fault fracture zone
based on composite grouting material
GENG Yaoqiang1,2,3,SUO Yonglu1,ZHAO Tengfei2,3,
ZHANG Hongwei4,HU Guohe2,3,MA Xiaohui4
(1.College of Energy Science and Engineering,Xian University of Science and Technology,Xian 710054,China;
2.Weinan Shaanxi Coal Qichen Technology Co.,Ltd.,Weinan 714000,China;
3.National & Local United Engineering Research Center of Green Safety Efficient Mining,Xian 710065,China;
4.Shaanxi Bingchang Mengcun Coal Mining Co.,Ltd.,Xianyang 712000,China)
Abstract:Due to the coupling effect of multiple factors such as high geostress,DF29 fault and strong mining,the original bolt-mesh-cable-shotcrete support fails in? No.1 return airway of Mengcun coal mine in Binchang mining area,resulting in large deformation and serious damage of surrounding rock.To this end,the geological structure and stress occurrence environment in the fault area were obtained by drilling exploration,in-situ stress measurement and laboratory test,and the deformation and failure mechanism of roadway surrounding rock was proved.A kind of composite grouting reinforcement material for mine with good groutability was developed,with reaction temperature lower than 95 ℃ and compressive strength greater than 40 MPa.Combined with the plastic failure range and distribution characteristics of surrounding rock obtained by numerical simulation,a bolt-grouting reinforcement support technology with high prestressed hollow grouting anchor cable as the core was proposed,and its support parameters were optimized.The? results show that this bolt-grouting reinforcement technology forms a grouting reinforcement ring with a thickness of 4.5 m in the shallow surrounding rock,and forms a whole in the deep surrounding rock through the grouting anchor cable,which can provide reference and technical support for the anchor grouting reinforcement engineering practice of new composite grouting reinforcement material in roadway surrounding rock in fault fracture areas.
Key words:high geostress;fault fracture zone;bolt-grouting support;hollow grouting anchor cable;composite grouting material
0 引 言
深部“三高一擾動(dòng)”作用使得復(fù)雜地質(zhì)環(huán)境下的巷道圍巖呈現(xiàn)變形大和破壞嚴(yán)重的特點(diǎn)[1-3]。強(qiáng)烈的開采擾動(dòng)應(yīng)力使斷層出現(xiàn)不同程度的活化,其對(duì)突水潰沙、頂板冒落、沖擊地壓、片幫、煤巖體失穩(wěn)等災(zāi)害產(chǎn)生重大影響[4-6]。國(guó)內(nèi)外學(xué)者針對(duì)斷層區(qū)域煤巖體穩(wěn)定性控制的研究表明:注漿加固技術(shù)可達(dá)到有效控制斷層開采擾動(dòng)區(qū)圍巖變形破壞的目的[7-10]。水泥及添加劑等因其來(lái)源廣、成本低和結(jié)石率高等優(yōu)點(diǎn)而成為注漿加固的首選材料。但由于水泥的顆粒較大,導(dǎo)致其可注性和加固效果較差。為此,管學(xué)茂、郭東明和吳愛(ài)祥等研制了超細(xì)水泥漿,解決了可注性差的問(wèn)題[11-14]。但超細(xì)水泥漿耐久性差,后期強(qiáng)度往往不足,限制了其應(yīng)用[15]。而聚氨酯類化學(xué)注漿材料因具有黏度低、可注性好和強(qiáng)度高等優(yōu)點(diǎn)而成為注漿加固材料的新選擇[16],但傳統(tǒng)的聚氨酯注漿加固材料需摻用一定的阻燃劑來(lái)滿足阻燃要求[17],而這些阻燃劑多含有高氯離子,危害礦工健康。因而,研制一種既能保留聚氨酯本身良好的性能又能避免其阻燃等缺點(diǎn)的新型材料成為必須解決的問(wèn)題。在巷道圍巖穩(wěn)定控制上,劉泉聲等揭示了深部圍巖的變形規(guī)律及支護(hù)難點(diǎn),提出分步聯(lián)合支護(hù)的設(shè)計(jì)理念[18]。郭相平等分析了應(yīng)力環(huán)境及圍巖變形破壞特征,提出了全錨索支護(hù)技術(shù)[19]。孟慶彬等獲得了巷道斷面形狀對(duì)圍巖變形破壞失穩(wěn)的影響規(guī)律,提出“三錨”聯(lián)合支護(hù)體系[20-22]。王連國(guó)等基于巷道圍巖的變形及破壞特征,提出了以注漿錨桿和注漿錨索為核心的深-淺耦合全斷面錨注支護(hù)方法[23]。這些為巷道圍巖的穩(wěn)定性控制提供了寶貴的經(jīng)驗(yàn),但巷道在不同復(fù)雜地質(zhì)環(huán)境下的破壞特征差異明顯,因而其支護(hù)方法也將是不同的。針對(duì)上述問(wèn)題,以彬長(zhǎng)礦區(qū)孟村煤礦中央一號(hào)回風(fēng)大巷過(guò)DF29大斷層為背景,研制了一種可注性好、反應(yīng)溫度低的新型注漿加固材料。并據(jù)巷道圍巖變形破壞范圍和分布特征,提出一種以中空注漿錨索為核心的錨注加固補(bǔ)強(qiáng)技術(shù),且對(duì)其注漿加固效果進(jìn)行了驗(yàn)證。
1 井田概況及地應(yīng)力特征
1.1 工程地質(zhì)概況孟村煤礦位于國(guó)家規(guī)劃的14個(gè)億噸級(jí)大型煤炭基地之一的黃隴侏羅紀(jì)煤田彬長(zhǎng)礦區(qū)中西部,建設(shè)規(guī)模600萬(wàn)t/a,以4#煤層為主采煤層,煤層厚度平均為24 m,埋深普遍超過(guò)700 m,采用綜采分層放頂煤采煤方法,回采煤層厚度10.5~12.0 m。中央一號(hào)回風(fēng)大巷于里程1 643 m位置揭露DF29斷層,落差33 m,煤層頂板破壞較嚴(yán)重,如圖1所示。中央一號(hào)回風(fēng)大巷受高地應(yīng)力、沖擊地壓、DF29大斷層、采動(dòng)影響、厚煤層托頂煤等因素影響,造成1 560~1 800 m區(qū)段巷道變形破壞嚴(yán)重,主要表現(xiàn)為巷道底鼓、錨索拉斷、巷道頂部漿皮局部開裂、脫落等,且巷道斷層附近約40 m范圍存在淋水現(xiàn)象,嚴(yán)重影響行人安全,如圖2所示。
根據(jù)中央一號(hào)回風(fēng)斷層附近周圍鉆孔資料及已揭露的地質(zhì)情況綜合分析表明:煤層結(jié)構(gòu)較簡(jiǎn)單,一般含2層夾矸,且位于煤層的中上部,煤層上部均為塊狀,下部為碎片及碎粒狀。實(shí)驗(yàn)室測(cè)得4#煤上、下分層的單軸抗壓強(qiáng)度分別為19.37,26.88 MPa。而4#煤層偽頂多為黑色炭質(zhì)泥巖,厚度小,直接頂板為較易冒落的泥巖、粉砂巖、砂質(zhì)泥巖,巖石飽和抗壓強(qiáng)度為0.4~25.8 MPa。基本頂為泥質(zhì)膠結(jié)的中粒砂巖和粗粒砂巖,實(shí)驗(yàn)室測(cè)得其單軸抗壓強(qiáng)度分別為28.75,24.53 MPa。底板巖性一般為泥巖及粉砂巖,局部為細(xì)粒砂,泥巖單軸抗壓強(qiáng)度平均為17.99 MPa。中央一號(hào)回風(fēng)巷道圍巖柱狀圖及物理力學(xué)參數(shù)見(jiàn)表1。
1.2 地應(yīng)力特征為獲得礦區(qū)地應(yīng)力分布特征,對(duì)首采區(qū)的3個(gè)測(cè)點(diǎn)進(jìn)行了地應(yīng)力原位測(cè)量,其測(cè)點(diǎn)和地應(yīng)力方向如圖3所示。結(jié)果表明:中央一號(hào)回風(fēng)大巷處測(cè)點(diǎn)的最大主應(yīng)力為水平應(yīng)力,其值為30.52 MPa,與巷道軸向夾角為65°~81°。該地應(yīng)力場(chǎng)屬于超高應(yīng)力區(qū),對(duì)巷道頂?shù)椎姆€(wěn)定性影響較大。
1.3 巷道圍巖原支護(hù)方式及破壞特征中央一號(hào)回風(fēng)巷道斷面為直墻半圓拱形,巷道設(shè)計(jì)寬度6 m,高度4.9 m,原始設(shè)計(jì)采用“錨網(wǎng)索噴”支護(hù):全斷面鋪設(shè)1 500 mm×
800 mm×100 mm鋼筋網(wǎng);噴射C25混凝土150 mm;螺紋錨桿參數(shù)為22 mm×L2500 mm,間排距700 mm×700 mm;錨索參數(shù)為21.8 mm×L7 100 mm,間排距1 200 mm×1 400 mm。但由于高地應(yīng)力、煤巖層含水、DF29斷層、和開挖擾動(dòng)等使得原有支護(hù)失效而破壞。經(jīng)現(xiàn)場(chǎng)探查和鉆孔發(fā)現(xiàn):巷道1 560~1 800 m區(qū)段的噴層大片開裂脫落、鋼筋網(wǎng)鼓出外露、拱頂變平、頂板下沉、架棚彎曲,如圖4所示;巷道幫部和肩角處破壞較大,兩幫部距巷道4 m處存在大裂隙。
2 新型礦用復(fù)合注漿加固材料市場(chǎng)上使用較多的聚氨酯類加固材料具有較高的反應(yīng)溫度(最高反應(yīng)溫度可達(dá)140 ℃以上),阻燃性能相對(duì)較差,需要加入大量含鹵素元素的阻燃劑來(lái)達(dá)到阻燃性要求,施工現(xiàn)場(chǎng)一旦發(fā)生聚熱導(dǎo)致的高溫冒煙或著火,就會(huì)產(chǎn)生大量的有毒氣體,危害到井下施工人員的人身安全。針對(duì)聚氨酯加固材料存在的問(wèn)題,結(jié)合預(yù)應(yīng)力中空注漿錨索,研發(fā)了一種低反應(yīng)溫度高強(qiáng)度礦用復(fù)合注漿加固材料(SCPJG-2),該材料通過(guò)添加環(huán)氧樹脂來(lái)降低聚氨酯(PAPI)的用量,從而達(dá)到降低最高反應(yīng)溫度,提高抗壓強(qiáng)度的目的。而且,該注漿材料還具有反應(yīng)時(shí)間可調(diào)、可注性與流動(dòng)性好和粘結(jié)性強(qiáng)的優(yōu)點(diǎn)。礦用復(fù)合注漿加固材料如圖5所示,其性能指標(biāo)見(jiàn)表2。
3 斷層破碎帶巷道圍巖錨注支護(hù)設(shè)計(jì)
3.1 支護(hù)原理考慮到斷層破碎帶巷道圍巖變形破壞較為嚴(yán)重,在原有支護(hù)基礎(chǔ)上,選擇以中空注漿錨索為主的錨注支護(hù)補(bǔ)強(qiáng)技術(shù),其支護(hù)原理是:通過(guò)中空注漿錨索將礦用新型復(fù)合注漿材料注入破裂圍巖內(nèi),以充填孔裂隙等缺陷,使其膠結(jié)成整體,并在巷道淺部區(qū)域內(nèi)形成注漿加固環(huán),以此提高圍巖體的內(nèi)聚力及內(nèi)摩擦角,增加圍巖體的整體承載能力。此外在巷道深部區(qū)域內(nèi)形成局部注漿加固體,以與注漿錨索共同對(duì)淺部圍巖加固部分起到懸吊、承載的作用,達(dá)到控制圍巖穩(wěn)定的目的。
3.2 支護(hù)方案及參數(shù)在設(shè)計(jì)錨注補(bǔ)強(qiáng)支護(hù)相關(guān)參數(shù)時(shí),為了能更精確地確定注漿錨索的長(zhǎng)度和間距等,需要先獲得巷道圍巖的塑性破裂區(qū)范圍和分布特征[24]。因此,利用COMSOL數(shù)值軟件建立了中央一號(hào)回風(fēng)大巷二維模型,如圖6所示,尺寸60 m×60 m。在進(jìn)行巷道圍巖塑性破壞區(qū)數(shù)值計(jì)算時(shí),模型的左右邊界為輥支撐邊界,即約束法向位移;底部邊界為固定邊界,即約束所有位移;上邊界為上覆巖層的重量為17.5 MPa,其它圍巖力學(xué)參數(shù)見(jiàn)表1。而在進(jìn)行巷道內(nèi)復(fù)合注漿漿液的滲透擴(kuò)散范圍模擬時(shí),模型的四周皆為理想不可滲透邊界;巷道邊界也為不可滲透邊界;中空注漿錨索內(nèi)為復(fù)合注漿漿液的初始漿液壓頭邊界。
根據(jù)數(shù)值模擬得到巷道圍巖塑性破壞云圖,如圖7所示。從圖7可知,巷道圍巖在頂板和兩幫肩窩的破壞較嚴(yán)重,其塑性破壞區(qū)分別為4.8和4.1 m,與現(xiàn)場(chǎng)探查結(jié)果基本一致,其幫部塑性破壞區(qū)約為2.5 m。
依據(jù)巷道圍巖塑性破裂區(qū)范圍和特征及現(xiàn)場(chǎng)探查結(jié)果,設(shè)計(jì)錨注補(bǔ)強(qiáng)支護(hù)方案如下
1)頂板布置中空注漿錨索,其規(guī)格為22 mm×L7 100 mm,每根錨索使用2支型號(hào)為MSK2335和2支型號(hào)為MSZ2335的樹脂錨固劑,間排距為1 500 mm×1 400 mm,每排5根。其中空注漿錨索結(jié)構(gòu)形式如圖8所示。
2)巷道兩幫肩窩使用中空注漿錨索進(jìn)行補(bǔ)強(qiáng),其型號(hào)規(guī)格為22 mm×L5 800 mm,間排距為1 500 mm×1 400 mm,每排2根。其中央一號(hào)回風(fēng)大巷的完整錨注補(bǔ)強(qiáng)支護(hù)方案如圖9所示。
3.3 支護(hù)效果圖10為現(xiàn)場(chǎng)獲得的注漿漿液在頂板內(nèi)的擴(kuò)散效果圖,其表明注漿漿液能有效擴(kuò)散并充填膠結(jié)破裂圍巖,增加了圍巖結(jié)構(gòu)的整體性和承載能力。而注漿錨索由樹脂端錨變成全長(zhǎng)錨固,促使支護(hù)體與圍巖結(jié)構(gòu)耦合緊密,整體抵抗動(dòng)載荷對(duì)巷道結(jié)構(gòu)穩(wěn)定性的沖擊能力加強(qiáng)。同時(shí),該區(qū)域的淋水也得到有效治理。
為進(jìn)一步更直觀地看到圍巖注漿效果,基于上述支護(hù)方案,參照文獻(xiàn)[24]的方法,通過(guò)COMSOL模擬得到巷道圍巖內(nèi)的注漿擴(kuò)散效果,如圖11所示。從圖11可知,注漿錨索在淺部圍巖內(nèi)形成厚度為4.5 m的注漿加固環(huán),漿液能夠很好覆蓋淺部圍巖的破壞范圍,使淺部破碎的圍巖充分地膠結(jié)在一起。此外,注漿錨索又能在深部圍巖形成注漿加固體,不僅對(duì)深部圍巖進(jìn)行加固,且能與淺部圍巖形成一個(gè)整體,提高圍巖整體的承載能力,從而控制巷道圍巖變形破壞,維持巷道圍巖的穩(wěn)定。
4 結(jié) 論
1)通過(guò)鉆孔勘探、地應(yīng)力原位測(cè)量和實(shí)驗(yàn)室試驗(yàn),獲得斷層區(qū)域內(nèi)的復(fù)雜地質(zhì)構(gòu)造、巖性和地應(yīng)力等特征,DF29斷層落差33 m,為目前彬長(zhǎng)礦區(qū)最大揭露斷層,最大主應(yīng)力為水平應(yīng)力,其值為30.52 MPa,地應(yīng)力場(chǎng)屬于超高應(yīng)力區(qū)。探明了斷層破碎區(qū)巷道圍巖的變形破壞特征,并揭示了其破壞機(jī)理。
2)針對(duì)斷層破碎區(qū)巷道圍巖所處的復(fù)雜地質(zhì)構(gòu)造環(huán)境,研發(fā)了一種可注性好的反應(yīng)溫度低于95 ℃、抗壓強(qiáng)度大于40 MPa的礦用復(fù)合注漿加固材料。
3)基于現(xiàn)場(chǎng)探測(cè)和數(shù)值模擬所得巷道圍巖的破壞特征,提出了一種以中空注漿錨索為核心的錨注補(bǔ)強(qiáng)支護(hù)方法,并優(yōu)化了支護(hù)參數(shù)。其現(xiàn)場(chǎng)加固結(jié)果表明,該技術(shù)能有效維持巷道圍巖的穩(wěn)定。
參考文獻(xiàn)(References):
[1] 何滿朝,謝和平,彭蘇萍,等.深部開采巖體力學(xué)研究[J].巖石力學(xué)與工程學(xué)報(bào),2005,24(16):2803-2813.HE Manchao,XIE Heping,PENG Suping,et al.Research on rock mechanics of deep mining[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2803-2813.
[2]何富連,張廣超.深部高水平構(gòu)造應(yīng)力巷道圍巖穩(wěn)定性分析及控制[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2015,44(3):466-476.HE Fulian,ZHANG Guangchao.Analysis and control of surrounding rock stability of deep roadway with high horizontal tectonic stress[J].Journal of China University of Mining and Technology,2015,44(3):466-476.
[3]王衛(wèi)軍,羅立強(qiáng),黃文忠,等.高應(yīng)力厚層軟弱頂板煤巷錨索支護(hù)失效機(jī)理及合理長(zhǎng)度研究[J].采礦與安全工程學(xué)報(bào),2014,31(1):17-21.WANG Weijun,LUO Liqiang,HUANG Wenzhong,et al.Study on failure mechanism and reasonable length of anchor cable support in coal roadway with high stress and thick layer with soft roof[J].Journal of Mining & Safety Engineering,2014,31(1):17-21.
[4]來(lái)興平,劉小明,曹建濤,等.開采擾動(dòng)區(qū)斷層采動(dòng)活化誘發(fā)巖體動(dòng)態(tài)變形模型實(shí)驗(yàn)[J].西安科技大學(xué)學(xué)報(bào),2014,34(6):647-651.LAI Xingping,LIU Xiaoming,CAO Jiantao,et al.Dynamic deformation model experiment of rock mass induced by fault mining activation in mining disturbance area[J].Journal of Xian University of Science and Technology,2014,34(6):647-651.
[5]呂兆海,來(lái)興平,趙長(zhǎng)紅,等.斷層破碎區(qū)煤巖體失穩(wěn)機(jī)制與注漿耦合控制研究[J].華北科技學(xué)院學(xué)報(bào),2018,15(2):19-25.LYU Zhaohai,LAI Xingping,ZHAO Changhong,et al.Study on instability mechanism of coal and rock mass and grouting coupling control in fault fracture zone[J].Journal of North China Institute of Science and Technology,2018,15(2):19-25.
[6]劉小明,來(lái)興平,陶冰鑫,等.開采擾動(dòng)區(qū)斷層水患防治[J].西安科技大學(xué)學(xué)報(bào),2015,35(6):715-720.LIU Xiaoming,LAI Xingping,TAO Bingxin,et al.Prevention of groundwater hazards due to fault activation in excavation disturbed zone[J].Journal of Xian University of Science and Technology,2015,35(6):715-720.
[7]孟慶彬,韓立軍,齊彪,等.復(fù)雜地質(zhì)條件下巷道過(guò)斷層關(guān)鍵技術(shù)研究及應(yīng)用[J].采礦與安全工程學(xué)報(bào),2017,34(2):199-207.MENG Qingbin,HAN Lijun,QI Biao,et al.Study and application of key technology for roadway crossing faults under complex geological conditions[J].Journal of Mining & Safety Engineering,2017,34(2):199-207.
[8]張喜傳,周玉軍,張海波.基于新型注漿材料的工作面過(guò)破碎斷層措施[J].煤礦安全,2018,49(9):187-193.ZHANG Xichuan,ZHOU Yujun,ZHANG Haibo.Measures of working face passing through broken fault based on new grouting strengthening materials[J].Safety in Coal Mines,2018,49(9):187-193.
[9]張振峰,康紅普,姜志云,等.千米深井巷道高壓劈裂注漿改性技術(shù)研發(fā)與實(shí)踐[J].煤炭學(xué)報(bào),2020,45(3):972-981.ZHANG Zhenfeng,KANG Hongpu,JIANG Zhiyun,et al.Study and application of high-pressure splitting grouting modification technology in coalmine with depth more than 1000m[J].Journal of China Coal Society,2020,45(3):972-981.
[10]熊祖強(qiáng),王凱,丁子文.新型無(wú)機(jī)注漿材料在大采高工作面過(guò)斷層注漿加固中的應(yīng)用[J].煤礦安全,2017,48(4):148-151.XIONG Zuqian,WANG Kai,DING Ziwen.Application of a kind of new type inorganic grouting material in grouting reinforcement of passing through fault at large mining height working face[J].Safety in Coal Mines,2017,48(4):148-151.
[11]管學(xué)茂,胡曙光,丁慶軍,等.超細(xì)水泥基注漿材料性能研究[J].煤礦設(shè)計(jì),2001,33(3):28-31.GUAN Xuemao,HU Shuguang,DING Qingjun,et al.Research on properties of superfine cement-based grouting materials[J].Coal Mine Design,2001,33(3):28-31.
[12]郭東明,李妍妍,左志昊,等.低黏度超細(xì)水泥漿液配比試驗(yàn)研究[J].煤礦安全,2019,50(5):72-77.GUO Dongming,LI Yanyan,ZUO Zhihao,et al.Experimental study on the ratio of ultra-fine cement slurry with low viscosity[J].Safety in Coal Mines,2019,50(5):72-77.
[13]郭東明,譚霽爽,肖正星,等.超細(xì)水泥漿液最優(yōu)配比及注漿效果研究[J].河南理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,36(5):1-8,34.GUO Dongming,TAN Jishuang,XIAO Zhengxing,et al.Research on optimal ratio and Grouting Effect of ultra-fine cement slurry[J].Journal of Henan Polytechnic University(Natural Science Edition),2017,36(5):1-8,34.
[14]吳愛(ài)祥,于少峰,韓斌,等.超細(xì)水泥注漿溶液配比優(yōu)化及擴(kuò)散規(guī)律研究[J].采礦與安全工程學(xué)報(bào),2014,31(2):304-309.WU Aixiang,YU Shaofeng,HAN Bin,et al.Research on the ratio optimization and diffusion law of ultra-fine cement grouting solution[J].Journal of Mining & Safety Engineering,2014,31(2):304-309.
[15]SHA F,LI S C,LIU R T,et al.Performance of typical cement suspension-sodium silicate double slurry grout[J].Construction and Building Materials,2019,200:408-419.
[16]馮志強(qiáng),康紅普,韓國(guó)強(qiáng).煤礦用無(wú)機(jī)鹽改性聚氨酯注漿材料的研究[J].巖土工程學(xué)報(bào),2013,35(8):1559-1564.FENG Zhiqiang,KANG Hongpu,HANG Guoqiang.Study on inorganic salt modified polyurethane grouting material for coal mine[J].Journal of Geotechnical Engineering,2013,35(8):1559-1564.
[17]吳懷國(guó).礦用高分子注漿加固材料安全性試驗(yàn)研究[J].煤炭科學(xué)技術(shù),2013,41(11):53-55.WU Huaiguo.Experimental study on safety of polymer grouting reinforcement materials for mining[J].Coal Science and Technology,2013,41(11):53-55.
[18]劉泉聲,康永水,白運(yùn)強(qiáng).顧橋煤礦深井巖巷破碎軟弱圍巖支護(hù)方法探索[J].巖土力學(xué),2011,32(10):3097-3104.LIU Quansheng,KANG Yongshui,BAI Yunqiang.Exploration on supporting method of broken soft surrounding rock in deep shaft roadway of Guqiao Coal Mine[J].Rock and Soil Mechanics,2011,32(10):3097-3104.
[19]郭相平,郝登云.深部軟巖巷道圍巖變形特征及全錨索支護(hù)機(jī)理[J].中國(guó)礦業(yè),2019,28(12):123-127.Guo Xiangping,HAO Dengyun.Deformation characteristics of surrounding rock of deep soft rock roadway and supporting mechanism of full anchor cable[J].China Mining,2019,28(12):123-127.
[20]孟慶彬,韓立軍,喬衛(wèi)國(guó),等.深部高應(yīng)力軟巖巷道斷面形狀優(yōu)化設(shè)計(jì)數(shù)值模擬研究[J].采礦與安全工程學(xué)報(bào),2012,29(5):650-656.MENG Qingbin,HAN Lijun,QIAO Weiguo,et al.Numerical simulation of cross-section shape optimization design of deep soft rock roadway under highstress[J].Journal of Mining & Safety Engineering,2012,29(5):650-656.
[21]孟慶彬,韓立軍,喬衛(wèi)國(guó),等.深部高應(yīng)力軟巖巷道變形破壞特性研究[J].采礦與安全工程學(xué)報(bào),2012,29(4):481-486.MENG Qingbin,HAN Lijun,QIAO Weiguo,et al.Research on deformation failure characteristics of the deep high-stress soft rock roadways[J].Journal of Mining & Safety Engineering,2012,29(4):481-486.
[22]孟慶彬,韓立軍,喬衛(wèi)國(guó),等.趙樓礦深部軟巖巷道變形破壞機(jī)制及控制技術(shù)[J].采礦與安全工程學(xué)報(bào),2013,30(2):165-172.MENG Qingbin,HAN Lijun,QIAO Weiguo,et al.The deformation failure mechanism and control techniques of soft rock in deep roadways in Zhaolou Mine [J].Journal of Mining & Safety Engineering,2013,30(2):165-172.
[23]王連國(guó),陸銀龍,黃耀光,等.深部軟巖巷道深-淺耦合全斷面錨注支護(hù)研究[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2016,45(1):11-18.WANG Lianguo,LU Yinlong,HUANG Yaoguang,et al.Research on deep-shallow coupled full-section bolting support for deep soft rock Roadway[J].Journal of China University of Mining and Technology,2016,45(1):11-18.
[24]黃耀光,張?zhí)燔?深部高地應(yīng)力巷道塑性破壞特征及注漿支護(hù)[J].采礦與安全工程學(xué)報(bào),2019,36(5):949-958.HUANG Yaoguang,ZHANG Tianjun.Plastic failure characteristics of deep high-stress roadway and grouting support[J].Journal of Mining & Safety Engineering,2019,36(5):949-958.