杜曉慶,成文濤,董浩天,馬文勇
摘? ?要:為闡明雙方柱中上游方柱尾流對下游方柱脈動氣動性能的影響,在雷諾數(shù)Re = 8.0 × 104均勻來流條件下,完成了間距比P/B = 1.25~5(其中P為柱心距,B為方柱邊長)、全風向角α = 0° ~ 90°的雙方柱測壓風洞試驗. 分析了不同P/B條件時下游方柱脈動氣動力、升力功率譜、Strouhal數(shù)和氣動力展向相關(guān)性隨α的變化規(guī)律. 發(fā)現(xiàn)P/B < 3時下游方柱的脈動氣動力整體上小于單方柱,且α ≥ 40°時幾乎不隨風向角變化. 但在3 ≤ P/B ≤ 5且0° ≤ α ≤ 30°時下游方柱脈動阻力遠大于單方柱. 下游方柱的脈動氣動力、升力功率譜和氣動力展向相關(guān)性隨α的變化規(guī)律在P/B = 3前后差異顯著. P/B < 3時,下游方柱旋渦脫落受到顯著抑制;P/B > 3時,下游方柱的脈動氣動性能近似于單方柱.
關(guān)鍵詞:雙方柱;脈動氣動性能;間距比;風向角;風洞試驗
中圖分類號:TU 311? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼:A
Experimental Study on Fluctuating Aerodynamic Characteristics
of Two Square Cylinders at Various Incidence Angles
DU Xiaoqing1,2,CHENG Wentao1,DONG Haotian3?覮,MA Wenyong4
(1. Department of Civil Engineering,Shanghai University,Shanghai 200444,China;
2. Wind Engineering and Aerodynamic Flow Control Research Center,Shanghai University,Shanghai 200444,China;
3. School of Mechanics and Engineering Science,Shanghai University,Shanghai 200444,China;
4. Wind Engineering Research Center,Shijiazhuang Tiedao University,Shijiazhuang 050043,China)
Abstract:To reveal the influence of the wake released from the upstream square cylinder on fluctuating aerodynamic characteristics of the downstream one,wind tunnel tests were carried out to measure the pressure on twin square cylinders,under a uniform inflow condition with a Reynolds number Re of 8.0×104,space ratios P/B of 1.25~5 (where P is the central distance,B is the side length) and various incidence angles of 0° ≤ α ≤ 90°. The variations of fluctuating aerodynamic forces,power spectrums of lift,Strouhal numbers and spanwise aerodynamic correlations with α are investigated considering the multiple space ratios. When P/B < 3,fluctuating forces on the downstream cylinder are roughly smaller than those on a single square cylinder,and they change little at α ≥ 40°. However,when 3 ≤ P/B ≤ 5 and 0° ≤ α ≤ 30°,the fluctuating drag on the downstream cylinder is significantly stronger than that on a single one. The fluctuating forces,power spectrums of lift and spanwise aerodynamic correlations on the downstream cylinder change dramatically when P/B reaches 3. When P/B < 3,vortex shedding from the downstream cylinder is significantly suppressed. When P/B > 3,however,the fluctuating aerodynamic properties of the downstream cylinder become similar to those of a single one.
Key words:two square cylinders;fluctuating aerodynamic characteristics;space ratio;various incidence angle;wind tunnel experiment
超高層建筑在大城市中常以群體建筑的形式存在,其周圍流場存在復雜的氣動干擾. 在氣動干擾影響下其風荷載和風致響應特征與單體建筑相比有著顯著的區(qū)別[1-5]. 受上游建筑尾流旋渦的激勵作用,下游建筑易發(fā)生風致振動,對其抗風性能造成不利影響[6]. 常以均勻來流中的雙方柱作為群體超高層建筑的簡化模型. 雙方柱繞流受眾多因素影響,流場結(jié)構(gòu)復雜,研究雙方柱,特別是下游方柱的脈動氣動性能有助于理解超高層建筑的氣動干擾機理.
國內(nèi)外學者對二維單方柱的氣動力與流場結(jié)構(gòu)已有了非常深入的研究[7-9],其氣動力與流場結(jié)構(gòu)受風向角的影響顯著,而受雷諾數(shù)的影響較小. 對雙方柱的研究則主要針對串列[10-13]及并列[14-17]兩種布置形式,方柱間距比P/B(其中P為柱心距,B為方柱邊長)對串列和并列方柱的表面風壓、氣動力和斯托羅哈數(shù)等氣動參數(shù)影響顯著. 對于串列雙方柱,Sakamoto等[10]通過風洞試驗觀察到雷諾數(shù)Re = 2.76×104和5.52×104時,存在臨界間距比P/B = 4,方柱氣動力會在臨界間距比附近發(fā)生突變. Yen等[11]和Sohankar[12]根據(jù)間距比把串列雙方柱繞流分為單一鈍體、剪切層再附和雙渦脫三種流態(tài). 對于并列雙方柱,Alam等[16]通過流跡顯示和測力試驗測量了Re = 4.7 × 104時不同間距比并列雙方柱的氣動力和斯托羅哈數(shù),按照P/B的大小將并列雙方柱繞流分為單一鈍體、雙頻率渦脫、過渡轉(zhuǎn)換和雙渦脫四種流態(tài). 陳素琴等[17]通過數(shù)值模擬研究了Re = 1 × 104時并列雙方柱偏向流與氣動力關(guān)系的機理. 需要注意的是,既有研究較少關(guān)注間距比對雙方柱,特別是下游方柱的脈動氣動性能的影響.
針對風向角對雙柱干擾效應的影響,Du等[18]通過風洞試驗研究了Re = 8 × 104雙方柱0°到90°風向角時平均氣動力和風壓分布的變化. Wu等[19-20]通過數(shù)值模擬研究了Re = 1.4 × 105時雙圓柱的脈動氣動力,發(fā)現(xiàn)在小風向角下(α = 0°~30°)上、下游圓柱的脈動升力和流場特性變化劇烈,雙圓柱會經(jīng)歷五種干擾流態(tài). 目前針對雙方柱,尤其是下游方柱脈動氣動性能在不同風向角下變化的研究仍屬于空白.
本文針對雙方柱中的下游方柱,通過同步測壓風洞試驗,在Re = 8.0 × 104時測得其在風向角α = 0° ~ 90°和間距比P/B = 1.25~5時的表面風壓,并進一步研究了不同間距比時下游方柱脈動氣動力、升力功率譜、斯托羅哈數(shù)和氣動力展向相關(guān)性隨風向角的變化規(guī)律,最終為群體超高層建筑的抗風設計提供參考[21].
1? ?風洞試驗
全風向角下雙方柱測壓風洞試驗如圖1所示,在石家莊鐵道大學風工程研究中心回流風洞高速段完成. 試驗風洞長5 m,高2 m,寬2.2 m,背景湍流度Iu ≤ 0.2%. 以方柱邊長B為特征長度,計算得到雷諾數(shù)Re = 8.0×104,試驗風速U = 10 m/s. 電子壓力掃描閥的采樣頻率為330 Hz,采樣時間約為36 s.
全風向角下雙方柱的試驗布置如圖2所示,其中α為風向角,P為柱心間距,方柱邊長B = 120 mm,CDf和CLf分別為脈動阻力系數(shù)和脈動升力系數(shù). 下游方柱的展向和環(huán)向風壓測點布置分別如圖3和圖4所示. 模型的展向長度為1 620 mm,長細比為13.5. 沿展向布置了四圈測點(1,2,3,4),分別距下游方柱端部450 mm、670 mm、930 mm和1 170 mm;每圈沿環(huán)向設有44個測點,共計176個測點. 為減小端部效應影響,在方柱模型的兩端設置了直徑為1 m的端板. 考慮了模型、端板、支架等影響后的面積阻塞率為5.3%. 試驗風向角α為0°、2.5°、5°、7.5°、10°、12.5°、15°、17.5°、20°、25°、30°、35°、40°、45°、50°、55°、60°、65°、70°、75°、80°、85°、90°. 試驗的間距比P/B分別為1.25、1.5、1.75、2、2.5、3、3.5、4、4.5、5. 此外,還進行了相同條件下單方柱的風洞試驗.
2? ?結(jié)果與分析
2.1? ?脈動氣動力
圖5以云圖的形式描繪了下游方柱脈動阻力和升力隨間距比和風向角的變化,并以單方柱在不同風向角下的結(jié)果作為對照. 對于脈動阻力系數(shù),當P/B < 3時,下游方柱CDf很小,且在20°≤α≤90°時遠小于單方柱;而3≤P/B≤5且0°≤α≤30°時,下游方柱CDf遠大于單方柱. 對于脈動升力系數(shù),P/B < 3時,下游方柱CLf較單方柱小;當3≤P/B≤5,0°≤α≤10°或80°≤α≤90°時,下游方柱CLf與單方柱大致相似. 總的來看,下游方柱的脈動氣動力系數(shù)在間距比P/B = 3前后有明顯的不同. 為更好地認識不同間距比時下游方柱脈動氣動性能隨α的變化規(guī)律,下文選取P/B = 1.25、3、5三個典型間距比展開進一步分析.
圖6反映了三個典型間距比的下游方柱脈動氣動力隨α的變化. 相對于單方柱,下游方柱的脈動氣動力-風向角曲線的對稱性較弱,且多數(shù)工況的CDf和CLf數(shù)值較小,體現(xiàn)了上游方柱對下游方柱的影響.
對于間距比P/B = 1.25的下游方柱,α≤35°時,CDf的變化接近單方柱結(jié)果;α≥40°時CDf數(shù)值很小且基本上不隨風向角變化. CLf具有相似的變化規(guī)律,也在α = 40°附近出現(xiàn)顯著變化,可以推測下游方柱在臨界風向角α = 40°前后處于兩種差異顯著的流場之中. P/B = 3工況下游方柱脈動氣動力同P/B = 1.25工況有一定區(qū)別,40°≤α≤75°時CDf和CLf有所增大但整體上小于單方柱結(jié)果;α > 75°時下游方柱的脈動氣動力與單方柱基本一致,說明上游方柱對下游方柱的影響有所削弱. 當間距比P/B = 5時,下游方柱的脈動氣動力顯著強于前面兩種工況,甚至在部分工況強于單方柱;對于脈動阻力系數(shù),α≤35°時遠大于單方柱結(jié)果并在α = 10°左右達到峰值,40°≤α≤75°時略小于單方柱結(jié)果,α > 75°時則與單方柱結(jié)果趨于一致;對于脈動升力系數(shù),CLf在α < 25°或α > 75°時同單方柱基本吻合,但在25°≤α≤75°時下游方柱結(jié)果小于單方柱,說明上游方柱對下游方柱的影響仍較強.
2.2? ?功率譜和Strouhal數(shù)
圖7為單方柱和下游方柱的升力功率譜. 根據(jù)下游方柱脈動氣動力隨風向角的變化規(guī)律,選取了5個典型風向角α = 0°、25°、50°、70°和90°進行分析. 對于單方柱,可以發(fā)現(xiàn)各個風向角下的升力功率譜曲線較為一致,峰值所對應的Strouhal數(shù)幾乎不隨風向角的變化而變化. 對于下游方柱,當間距比P/B = 1.25時,下游方柱的升力功率譜與單方柱有很大的不同,這是由于雙方柱流場與單方柱流場的差異所導致的. 下游方柱在α = 0°下的升力功率譜曲線具有兩個峰值,且對應峰值均較小. 當風向角α = 50°和70°時,下游方柱的升力功率譜曲線沒有明顯的峰值,說明在此風向角下,下游方柱的旋渦脫落受到較強的抑制;當間距比P/B = 3時,與間距比P/B = 1.25相比,最明顯的差異在于,當風向角α = 50°和70°時,下游方柱的升力功率譜曲線又出現(xiàn)了峰值,說明上游方柱對下游方柱旋渦脫落的抑制作用減弱. 同時,注意到升力功率譜曲線的雙峰值現(xiàn)象也更為明顯,這是由于下游方柱處于上游方柱的尾流之中,兩個升力功率譜曲線峰值所對應的Strouhal數(shù)分別對應上游方柱的渦脫頻率和下游方柱的渦脫頻率[18];而當間距比P/B = 5時,下游方柱在各個風向角下的升力功率譜曲線更加接近單方柱,說明下游方柱在各個風向角下所處的流場與單方柱接近.
圖8給出了單方柱和三個間距比的下游方柱Strouhal數(shù)隨風向角的變化規(guī)律. 單方柱的Strouhal數(shù)隨風向角的變化幅度很小,渦脫頻率較為固定. 當間距比P/B = 1.25時,下游方柱的Strouhal數(shù)整體很小,而當風向角α接近90°時,Strouhal數(shù)突然增大且接近單方柱;當間距比P/B = 3時,與間距比P/B = 1.25相比. 下游方柱在相同風向角下的Strouhal數(shù)較大,略小于單方柱,說明下游方柱在此間距比下的渦脫頻率比較接近單方柱. 當間距比P/B = 5時,下游方柱的Strouhal數(shù)隨風向角的變化規(guī)律與間距比P/B = 3相似. 總的來說,不同間距比時下游方柱的Strouhal數(shù)隨風向角的變化規(guī)律有明顯的差異;與單方柱相比,各個間距比下的下游方柱的Strouhal數(shù)均較小,說明上游方柱對下游方柱的旋渦脫落有顯著的抑制作用.
2.3? ?氣動力展向相關(guān)性
圖9~圖12分別給出了單方柱、P/B = 1.25時下游方柱、P/B = 3時下游方柱和P/B = 5時下游方柱阻力和升力的展向相關(guān)性系數(shù)COR隨風向角α和展向長度z/B(z為不同測圈的展向間距)的變化. 從圖9可知,對于單方柱,升力的展向相關(guān)性要強于阻力結(jié)果. 當z/B較小時,單方柱升力展向相關(guān)性基本上不隨風向角變化. 此外單方柱的阻力和升力的展向相關(guān)性曲線均大致關(guān)于α = 45°對稱. 從圖10可知,P/B = 1.25下游方柱的氣動力展向相關(guān)性曲線的對稱性和數(shù)值均同單方柱差異顯著. α ≤ 40°時,下游方柱的氣動力展向相關(guān)性優(yōu)于單方柱,且不同z/B的結(jié)果較為接近,同時其對應的脈動氣動力數(shù)值也較大. α ≥ 40°時,下游方柱的氣動力展向相關(guān)性則弱于單方柱. 值得注意的是在α = 65°和85°存在兩個展向相關(guān)性的極大值,而相同風向角下的脈動氣動力也存在峰值. 從圖11和圖12可知P/B = 3和5情況下下游方柱氣動力展向相關(guān)性隨風向角的變化趨勢較為接近,同P/B = 1.25結(jié)果差異較大. 同風向角下,不同z/B的氣動力展向相關(guān)性相差較大. α = 40°時,下游方柱的氣動力展向相關(guān)性沒有出現(xiàn)突變. 當z/B較小時,氣動力展向相關(guān)性隨風向角變化幅度較小,而隨著z/B增大,展向相關(guān)性隨風向角變化明顯.
3? ?結(jié)? ?論
本文以雙方柱中的下游方柱為研究對象,通過風洞試驗研究了不同間距比全風向角下脈動氣動力、升力功率譜和氣動力展向相關(guān)性的變化,得到以下主要結(jié)論:
1)在小間距比大風向角情況下,下游方柱的脈動氣動力遠小于單方柱,且脈動氣動力幾乎不隨風向角變化,上游方柱對下游方柱旋渦脫落的抑制作用顯著.
2)在大間距比小風向角情況下,下游方柱的脈動阻力系數(shù)遠大于單方柱,會對下游方柱的抗風性能產(chǎn)生不利的影響.
3)下游方柱的脈動氣動力、升力功率譜特性和氣動力展向相關(guān)性隨風向的變化規(guī)律在間距比P/B = 3前后均體現(xiàn)出不同的特征. 當間距比P/B < 3時,上游方柱對下游方柱脈動氣動性能的影響顯著,特別是在風向角較大的情況下,下游方柱旋渦脫落受到明顯的抑制作用. 當間距比P/B > 3時,下游方柱逐步擺脫上游方柱對它的氣動影響,脈動氣動力特性逐漸向單方柱轉(zhuǎn)變.
參考文獻
[1]? ? XIE Z N,GU M. Mean interference effects among tall buildings[J]. Engineering Structures,2004,26(9):1173—1183.
[2]? ? GU M,XIE Z N,HUANG P. Along-wind dynamic interference effects of tall buildings[J]. Advances in Structural Engineering,2005,8(6):623—636.
[3]? ? XIE Z N,GU M. Simplified formulas for evaluation of wind-induced interference effects among three tall buildings[J]. Journal of Wind Engineering & Industrial Aerodynamics,2007,95(1):31—52.
[4]? ? 韓寧,顧明. 兩串列方形高層建筑局部風壓干擾特性分析[J].土木建筑與環(huán)境工程,2011,33(5):13—22.
HAN N,GU M. Characteristics of interference effects on local pressure of two square tall buildings in tandem arrangement[J]. Journal of Civil and Environmental Engineering,2011,33(5):13—22. (In Chinese)
[5]? ? 韓寧,顧明. 兩串列方柱局部脈動風壓干擾研究:第1部分? 迎風面效應[J]. 振動與沖擊,2009,28(12):188—192.
HAN N,GU M. Interference effects on local fluctuating pressure on two square tall buildings in tandem arrangement:part 1 windward side effects[J]. Journal of Vibration and Shock,2009,28(12):188—192. (In Chinese)
[6]? ? 謝壯寧,顧明,倪振華. 不同斷面寬度群體高層建筑的動力干擾效應(第1部分 順風向響應)[J]. 建筑結(jié)構(gòu)學報,2003,24(4):8—16.
XIE Z N,GU M,NI Z H. Wind-induced dynamic interference effects on different size tall buildings (Part I:Along-wind response)[J]. Journal of Building Structures,2003,24(4):8—16. (In Chinese)
[7]? OKA S,ISHIHARA T. Numerical study of aerodynamic characteristics of a square prism in a uniform flow[J]. Journal of Wind Engineering & Industrial Aerodynamics,2009,97(11):548—559.
[8]? ?NISHIMURA H,TANIIKE Y. Fluctuating wind forces on a stationary two-dimension square prism[C]//16th National Symposium on Wind Engineering. 2000:255—260.
[9]? ?CARASSALE L,F(xiàn)REDA A,MARR?魬-BRUNENGHI M. Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners[J]. Journal of Fluids and Structures,2014,44:195—204.
[10]? SAKAMOTO H,HAINU H,OBATA Y. Fluctuating forces acting on two square prisms in a tandem arrangement[J]. Journal of Wind Engineering and Industrial Aerodynamics,1987,26(1):85—103.
[11]? YEN S C,SAN K C,CHUANG T H. Interactions of tandem square cylinders at low Reynolds numbers[J]. Experimental Thermal & Fluid Science,2008,32(4):927—938.
[12]? SOHANKAR A. A numerical investigation of the flow over a pair of identical square cylinders in a tandem arrangement[J]. International Journal for Numerical Methods in Fluids,2012,70(10):1244—1257.
[13]? LIU C H,CHEN J M. Observations of hysteresis in flow around two square cylinders in a tandem arrangement[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(9):1019—1050.
[14]? OKAJIMA A,SUGITANI K,MIZOTA T. Flow around two rectangular cylinders arranged side-by-side[J]. Transactions of the Japan Society of Mechanical Engineers Series B,1985,51(472):3877—3886.
[15]? YEN S C,LIU J H. Wake flow behind two side-by-side square cylinders[J]. International Journal of Heat & Fluid Flow,2011,32(1):41—51.
[16]? ALAM M,ZHOU Y,WANG X W. The wake of two side-by-side square cylinders[J]. Journal of Fluid Mechanics,2011,669(1):432—471.
[17]? CHEN S Q,GU M,HUANG Z P. Numerical computation of the flow around two square cylinders arranged side-by-side[J]. Applied Mathematics and Mechanics,2000,21(2):147—164.
[18]? DU X Q,XU H L,MA W Y,et al. Experimental study on aerodynamic characteristics of two square cylinders at various incidence angles [J]. Journal of Wind Engineering and Industrial Aerodynamics,2019,191:154—169.
[19]? WU G F,DU X Q,WANG Y L. LES of flow around two staggered circular cylinders at a high subcritical Reynolds number of 1.4 × 105[J]. Journal of Wind Engineering and Industrial Aerodynamics,2020,196:104044.
[20]? 杜曉慶,吳葛菲,王玉梁,等. 尾流干擾下下游圓柱氣動性能的流場機理[J]. 湖南大學學報(自然科學版),2019,46(7):104—112.
DU X Q,WU G F,WANG Y L,et al. Mechanism of wake interference effects on aerodynamic characteristics of a downstream circular cylinder[J]. Journal of Hunan University (Natural Sciences),2019,46(7):104—112. (In Chinese)
[21]? 柯世堂,王浩. 超高層連體建筑風荷載干擾效應大渦模擬研究[J]. 湖南大學學報(自然科學版),2017,44(5):53—62.
KE S T,WANG H. Large eddy simulation investigation of wind load and interference effects on ultra high-rise connecting buildings[J]. Journal of Hunan University (Natural Sciences),2017,44(5):53—62. (In Chinese)