賀廣健,彭程
摘要:針對船載穩(wěn)定平臺的平穩(wěn)控制問題,考慮到穩(wěn)定平臺存在未建模動態(tài)等不確定性以及未知時變環(huán)境擾動,將自適應(yīng)技術(shù)、徑向基神經(jīng)網(wǎng)絡(luò)技術(shù)與矢量逆推的方法相結(jié)合,提出一種魯棒自適應(yīng)神經(jīng)網(wǎng)絡(luò)的穩(wěn)定平臺控制方案。采用矢量逆推的方法,設(shè)計穩(wěn)定平臺的平穩(wěn)控制律;運(yùn)用徑向基神經(jīng)網(wǎng)絡(luò)技術(shù)對穩(wěn)定平臺系統(tǒng)的未建模動態(tài)等不確定性進(jìn)行估計及補(bǔ)償;利用自適應(yīng)技術(shù)在線估計徑向基神經(jīng)網(wǎng)絡(luò)相關(guān)參數(shù)及環(huán)境擾動的上界;并引入最少學(xué)習(xí)參數(shù)方法降低控制方案的計算負(fù)載。通過Lyapunov理論證明穩(wěn)定平臺閉環(huán)控制系統(tǒng)的所有變量的一致最終有界性。最后,基于穩(wěn)定平臺的仿真結(jié)果驗(yàn)證了所提出的魯棒自適應(yīng)神經(jīng)網(wǎng)絡(luò)控制方案的有效性。
關(guān)鍵詞:穩(wěn)定平臺;自適應(yīng)技術(shù);徑向基神經(jīng)網(wǎng)絡(luò);矢量逆推;最少學(xué)習(xí)參數(shù)
中圖分類號:U661.33? ?文獻(xiàn)標(biāo)識碼:A
文章編號:1009-3044(2021)19-0009-05
Robust Adaptive Neural Network Control of Ship-borne Stabilization Platform
HE Guang-jian, PENG Cheng
(Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)
Abstract: Aiming at the problem of stable control of the ship-borne stabilization platforms, considering the uncertainties such as unmodeled dynamics and unknown time-varying environmental disturbances of the ship-borne stabilization platforms.The adaptive technology, radial basis neural network technology and backstepping method are combined to propose a robust adaptive neural network stable platform control scheme. The method of backstepping is used to design the stable control law of the stable platform; the RBF neural network technology is used to estimate and compensate the uncertainties such as unmodeled dynamics of the stable platform system. The adaptive technology is used to estimate the relevant parameters of the RBF neural network and the upper bounds of environmental disturbances; and the least learning parameter method is introduced to reduce the calculation load of the control scheme. The Lyapunov theory is used to prove that all variables of the closed-loop control system of the stable platform are uniformly ultimately bounded. Finally, the simulation results based on the stable platform verify the effectiveness of the proposed robust adaptive neural network control scheme.
Key words: stable platform; adaptive technology; radial basis neural network; backstepping; least learning parameter
1 引言
作業(yè)中的船舶受到風(fēng)、浪、流等海洋環(huán)境影響會產(chǎn)生橫搖、縱搖、艏搖、橫蕩、縱蕩和升沉六個自由度的運(yùn)動,船舶搖蕩運(yùn)動嚴(yán)重影響船載直升機(jī)的安全起降、船載吊車等設(shè)備的安全作業(yè)等。船舶橫蕩、縱蕩和艏搖運(yùn)動會通過船舶動力定位系統(tǒng)被抑制,所以為了補(bǔ)償船舶橫搖、縱搖和升沉運(yùn)動,本文提出將穩(wěn)定平臺作為船舶的減搖裝置,隔離船舶橫搖、縱搖和升沉運(yùn)動對船舶設(shè)備等的影響。
船載穩(wěn)定平臺控制精度是船載穩(wěn)定平臺的關(guān)鍵性能指標(biāo),有效的控制方案可以提高穩(wěn)定平臺控制精度。船載穩(wěn)定平臺系統(tǒng)是一個嚴(yán)重非線性的、存在著未知時變環(huán)境擾動以及未建模動態(tài)等不確定性的系統(tǒng)。文獻(xiàn)[1]針對艦載雷達(dá)穩(wěn)定平臺,采用帶有修正因子的模糊控制算法設(shè)計控制器,具有良好的魯棒性與控制效果;文獻(xiàn)[2]針對陀螺穩(wěn)定平臺,采用灰色滑膜算法設(shè)計控制器,有效減小了系統(tǒng)非線性摩擦對控制效果的影響;文獻(xiàn)[3-4]針對陀螺穩(wěn)定平臺,采用自抗擾控制技術(shù)設(shè)計控制器,有效地提高系統(tǒng)的抗干擾性和魯棒性;然而,文獻(xiàn)[1-4]的被控系統(tǒng)的主要結(jié)構(gòu)為三軸陀螺式,但三軸陀螺式穩(wěn)定平臺結(jié)構(gòu)的限制,其承載能力較低。近年來,隨著海洋工程快速發(fā)展對大型船載設(shè)備穩(wěn)定的需求,大型船載穩(wěn)定平臺應(yīng)運(yùn)而生。針對大型船載穩(wěn)定平臺的穩(wěn)定控制,文獻(xiàn)[5-7]分別采用分離式PID、專家PID、非線性PID設(shè)計控制器,文獻(xiàn)[8-10]將模糊與PID相結(jié)合形成模糊自適應(yīng)PID控制方案設(shè)計控制器,雖然上述算法具有PID不依賴于模型等優(yōu)點(diǎn),但是對于外界時變環(huán)境擾動的抗干擾性仍比較差。文獻(xiàn)[11]針對并聯(lián)穩(wěn)定平臺系統(tǒng),采用滑膜變結(jié)構(gòu)方法設(shè)計了控制器,引入了邊界層減小抖振問題,使得系統(tǒng)最終具有較強(qiáng)的魯棒性,但系統(tǒng)仍存在抖振;文獻(xiàn)[12]針對船載穩(wěn)定平臺系統(tǒng),采用非線性模型預(yù)測控制原理設(shè)計了控制器,但模型預(yù)測需部分模型先驗(yàn)知識。