肖文柯 張小娟 郝凌云 茅云 荊雨陽(yáng) 陳蓉蓉 任志偉 季家豪
DOI:10.16660/j.cnki.1674-098X.2107-5640-0643
摘? 要:通過(guò)將多孔結(jié)構(gòu)引入水凝膠膜,提高人工角膜材料含水量。首先,采用甲基丙烯酸縮水甘油酯(GMA)對(duì)氨基烷基封端聚二甲基硅氧烷(KF 8010)進(jìn)行親核取代反應(yīng),通過(guò)紫外聚合法制備無(wú)孔水凝膠膜。以單分散SiO2顆粒為模板,制備含SiO2模板的多孔水凝膠膜,浸泡除去SiO2模板得到多孔水凝膠膜。測(cè)試結(jié)果表明,多孔水凝膠膜具有三維網(wǎng)狀結(jié)構(gòu),平衡含水量達(dá)到無(wú)孔水凝膠膜的3倍。
關(guān)鍵詞:多孔水凝膠膜? SiO2模板? 無(wú)孔水凝膠膜? 紫外聚合法
中圖分類號(hào):R318.08? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A? ? ? ? ? ? ? ? ?文章編號(hào):1674-098X(2021)06(b)-0021-03
Preparation and properties of ordered porous hydrogel membranes
XIAO Wenke1,2,3? ZHANG Xiaojuan1,2,3*? HAO Lingyun2,3? MAO Yun2,3? JING Yuyang2,3
CHEN Rongrong2,3? REN Zhiwei2,3? JI Jiahao2,3
(1.School of Energy Materials and Chemical Industry, Hefei University, Hefei, Anhui Province, 230601? China; 2.School of Material Engineering, Jinling Institute of Technology, Nanjing, Jiangsu Province, 211169? China; 3.Nanjing Key Laboratory of Optometric Materials and Technology, Nanjing Jiangsu Province, 211169? China)
Abstract: The porous structure was introduced into the hydrogel membrane to improve the water content of the artificial cornea. Firstly, the nucleophilic substitution reaction of amino alkyl terminated poly (two methylsiloxane) (KF 8010) was carried out by glycidyl methacrylate(GMA), and the porous hydrogel membrane was prepared by UV polymerization. The porous hydrogel membrane containing SiO2 template was prepared by using monodisperse SiO2 particles as template. The porous hydrogel membrane was obtained after immersion in SiO2 template. The test results show that the porous hydrogel membrane has three dimensional network structure, and the equilibrium water content is 3 times that of the non porous hydrogel membrane.
Key Words: Porous hydrogel membrane; SiO2 template; Hydrogel membrane; UV polymerization
視光材料是用于增進(jìn)視覺(jué)體驗(yàn)、改善視覺(jué)功能和保護(hù)視覺(jué)健康的多功能協(xié)同響應(yīng)材料,包括發(fā)光與顯示材料、功能鏡片、角膜接觸鏡、眼藥緩釋載體、眼科智能穿戴等,是新材料的核心研究領(lǐng)域之一,是視覺(jué)健康的基礎(chǔ),其中人工角膜是為代替角膜混濁病變組織而使用異質(zhì)成型材料制成的特殊屈光裝置。目前人工角膜有兩大弊端:一是生物整合能力不足,無(wú)法長(zhǎng)期穩(wěn)定;二是機(jī)械性能較差。三維網(wǎng)絡(luò)結(jié)構(gòu)的水凝膠是通過(guò)分子交聯(lián)形成的,具有良好的透光性、親水性、生物相容性,能夠在水中溶脹而不溶解且不粘連傷口。
1? 實(shí)驗(yàn)
1.1 無(wú)孔水凝膠膜的制備
將2.7mL甲基丙烯酸縮水甘油酯(GMA)和8.2g氨基烷基封端聚二甲基硅氧烷(KF 8010)于80℃攪拌6h,得改性聚硅氧烷(GKF 8010)。將GKF 8010∶三羥甲基氨基甲烷(TRIS)∶Darocur1173∶N,N-二甲基苯胺(DMA)=60∶60∶1∶80,攪拌直至透明后,滴入模具,用紫外燈照射模具10min,得到無(wú)孔水凝膠膜。
1.2 多孔水凝膠膜的制備
將47mL以去離子水∶氨水∶無(wú)水乙醇=3∶4∶40配制的溶液緩慢滴加至50mL 0.04g/mL的正硅酸乙酯(TEOS)/無(wú)水乙醇溶液中,磁力攪拌20h。離心洗滌3次,在60℃下恒溫干燥24h,得到SiO2粉末[1]。將GKF8010∶TRIS∶Darocur1173∶DMA=60∶60∶1∶80在室溫下攪拌直至透明,滴入鋪有SiO2微球模板的模具中,用紫外燈照射模具30min。多次洗滌后,得多孔水凝膠膜。
1.3 水凝膠膜的表征
利用傅里葉紅外光譜儀(FTIR,Thermo Nicolet IS10型)對(duì)水凝膠膜的官能團(tuán)進(jìn)行表征。采用掃描電子顯微鏡(SEM,SU8010型)測(cè)試所制備出的水凝膠膜的微觀形貌。采用熱分析儀(TG-DTA)測(cè)定水凝膠膜的熱降解行為,取樣品5~10mg,Al203坩鍋,參比為空坩鍋,N2氣氛,流量為30mL/min,升溫速率為10℃/min,溫度為0~600℃[2]。
2? 結(jié)果與分析
2.1 FTIR分析
圖1中a、b、c分別為無(wú)孔水凝膠膜、含SiO2模板的水凝膠膜和多孔水凝膠膜的紅外光譜圖。在3430cm-1處為-OH的伸縮振動(dòng)吸收峰[3]。2960cm-1處為C-H鍵的反對(duì)稱伸縮振動(dòng)吸收峰。1267cm-1處為Si-CH3的伸縮振動(dòng)[4]。在2367cm-1、1064cm-1和802cm-1處存在的特征峰對(duì)應(yīng)于Si-O-Si 基團(tuán)[5],含SiO2模板的水凝膠膜在1064cm-1處的特征峰強(qiáng)度加強(qiáng)[6],而多孔水凝膠膜在1064cm-1處的特征峰強(qiáng)度減弱,證明SiO2模板的引入和洗脫不影響水凝膠膜的性質(zhì)。在1644cm-1處為水分子中H-O-H的彎曲振動(dòng)吸收峰,證明多孔水凝膠的孔隙含水。
2.2 SEM分析
圖2中a和b分別為無(wú)孔水凝膠膜和含SiO2模板的水凝膠膜的掃描電鏡圖。如圖2所示,SiO2模板在無(wú)孔水凝膠膜中分散均勻,呈有序緊密堆積。圖2中c和d分別為1mol/L NaOH浸泡48h和72h的多孔水凝膠膜。對(duì)比可知,SiO2模板的引入和洗脫使無(wú)孔水凝膠膜具有多孔結(jié)構(gòu)[7]。
2.3 平衡含水量分析
無(wú)孔水凝膠膜的含水量在30%~40%之間,多孔水凝膠膜的含水量在90%左右,是無(wú)孔水凝膠膜含水量的3倍。這說(shuō)明去除SiO2模板后的多孔水凝膠膜呈三維網(wǎng)狀結(jié)構(gòu),增加表面粗糙程度,從而大大提高其平衡含水量。
3? 結(jié)論
(1)采用stober法制備單分散SiO2顆粒作為模板,通過(guò)紫外聚合法結(jié)合制備了含SiO2模板的多孔水凝膠膜,浸泡除去SiO2模板得到多孔水凝膠膜。(2)通過(guò)結(jié)果可知,多孔水凝膠膜具有三維網(wǎng)狀結(jié)構(gòu)且在孔隙中含水。相比于無(wú)孔水凝膠膜,多孔水凝膠膜的平衡含水量提高到3倍左右。
參考文獻(xiàn)
[1] Werner St?ber,Arthur Fink,Ernst Bohn.Controlled growth of monodisperse silica spheres in the micron size range[J].Journal of Colloid and Interface Science,1968,26(1):62-69.
[2] Alavinia S,Ghorbani-Vaghei R.Targeted development of hydrophilic porous polysulfonamide gels with catalytic activity - ScienceDirect[J]. Journal of Physics and Chemistry of Solids, 2020,146:109573.
[3] Korogiannaki M,Samsom M,Schmidt T A,et al. Surface-functionalized model contact lenses with a bioinspired proteoglycan 4 (PRG4)-Grafted layer[J].ACS Applied Materials & Interfaces,2018, 10(36):30125–30136.
[4] Wei Y Y,An S S,Sun S,et al.Photo-polymerized and thermal-polymerized silicon hydrogels with different surface microstructure and wettability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,618:126284.
[5] Lira M,Cátia Loureno,Silva M,et al. Physicochemical stability of contact lenses materials for biomedical applications[J]. Journal of Optometry, 2020,13(2):120-127.
[6] 李盛凱.二氧化硅微球及納米二氧化鈰的制備與工藝研究[D].南昌:江西師范大學(xué),2020.
[7] Chen K,F(xiàn)an X,Tang K,et al.A Morphology-controllable collagen/Poly(2-hydroxyethyl methacrylate) porous hydrogel with paraffin microsphere as template[J].Acs Applied Bio Materials, 2018,1(5):1311–1318.