李鵬飛 肖賀賀 劉明珠 李夢(mèng)夢(mèng) 黃亞明 余慶
摘要:【目的】探究桑葉提取物成分對(duì)石斑魚虹彩病毒(SGIV)的抑制作用,并對(duì)其抗病毒機(jī)制進(jìn)行研究,為利用桑葉提取物成分研發(fā)抗SGIV藥物提供理論依據(jù),也為開發(fā)高效安全的新型抗病毒漁用藥物提供新思路?!痉椒ā坷檬唪~脾臟組織細(xì)胞系(GS),通過(guò)光學(xué)顯微鏡觀察及CCK-8檢測(cè)分析桑葉水提物(Morus alba L. water extracts,MAE)及其活性成分異槲皮苷(Isoquercetin,IQ)的安全工作濃度,然后使用實(shí)時(shí)熒光定量PCR及核酸適配體熒光分子探針技術(shù)(Q2-AFMP)分析MAE和IQ對(duì)SGIV的抗病毒效果;通過(guò)分析SGIV感染GS細(xì)胞中MCP基因和VP19基因的表達(dá)水平,分析IQ對(duì)SGIV的粒子結(jié)構(gòu)及其與宿主細(xì)胞表面結(jié)合、侵入宿主細(xì)胞和在宿主細(xì)胞中復(fù)制的影響,探究IQ體外抗SGIV的作用機(jī)制?!窘Y(jié)果】桑葉源化合物成分(MAE和IQ)對(duì)GS細(xì)胞的最高安全工作濃度為:MAE≤10.0 mg/mL,IQ≤1000.0 μg/mL。與接入SGIV的GS細(xì)胞相比,在以安全工作濃度的MAE(10.0 mg/mL)和IQ(1000.0 μg/mL)分別接入SGIV孵育感染的GS細(xì)胞后細(xì)胞病變(CPEs)明顯減少,MCP基因和VP19基因的相對(duì)表達(dá)量均呈極顯著下降趨勢(shì)(P<0.01,下同),GS細(xì)胞熒光值也極顯著降低,表明桑葉源化合物成分能有效抑制SGIV感染。以IQ處理SGIV孵育感染的GS細(xì)胞,其細(xì)胞內(nèi)MCP基因和VP19基因的相對(duì)表達(dá)量均呈極顯著下降趨勢(shì),提示IQ能破壞SGIV的粒子結(jié)構(gòu),并干擾SGIV對(duì)宿主細(xì)胞的吸附、侵入和復(fù)制?!窘Y(jié)論】MAE和IQ對(duì)SGIV具有良好的抗病毒效果,其中IQ能在病毒吸附、侵入和復(fù)制階段發(fā)揮抗病毒作用,即桑葉源化合物成分在防治SGIV感染方面具有潛在的應(yīng)用價(jià)值,可作為研發(fā)抗SGIV感染的有效藥用成分。
關(guān)鍵詞: 石斑魚虹彩病毒(SGIV);桑葉水提物(MAE);異槲皮苷(IQ);抗病毒機(jī)制
Abstract:【Objective】This study aimed to explore the antiviral effects and mechanisms of Morus alba L. extracts on grouper iridovirus(SGIV), and provide data support and theoretical basis for developing anti-SGIV drugs with Morus alba extracts and offer new ideas for developing efficient and safe antiviral fishing drugs. 【Method】The safe working concentrations of M. alba water extracts(MAE) and its active component isoquercetin(IQ) were determined on grouper spleen tissue cell line(GS) by light microscope observation and CCK-8 cell viability assay. Then, real-time fluorescence quantitative PCR(RT-qPCR) and aptamer Q2-based fluorescent molecular probe assay(Q2-AFMP) were used to analyze the antiviral effects of MAE and IQ against SGIV in vitro. RT-qPCR was further applied to detect the expression level of MCP gene and VP19 gene in SGIV infected cells, and explore the antiviral mechanism of IQ, including the effects of IQ onSGIV particles, SGIV bound to host cell surface, SGIV invasion and replication in host cells. 【Result】The safe working concentrations of M. alba extracts on GS cells were that, MAE≤10.0 mg/mL,IQ≤1000.0 μg/mL. The research results of MAE and IQ against SGIV showed that, compared to GS cells only incubated with SGIV, the cytopathic effects(CPEs) of GS cells incubated with both SGIV and M. alba extracts(10.0 mg/mL MAE and 1000.0 μg/mL IQ) in the experimental groups were greatly reduced. MCP gene and VP19 gene in experimental group cells decreased extremely significantly(P<0.01, the same below), and the fluorescence intensity of GS cells decreased significantly. The above results indicated that MAE and IQ could effectively combat SGIV infection. GS cells incubated with SGIV treated with IQ showed extremely significant decrease in the relative expression of both the intracellular MCP gene and the VP19 gene, it showed that, IQ could destroy the SGIV particles structure and interfere with the adsorption, invasion and replication of SGIV to host cells. 【Conclusion】MAE and IQ have great antiviral effects on SGIV, and IQ plays an antiviral role in the stages of virus adsorption, invasion and replication.M. alba extracts have potentials in the treatments of SGIV infection, and can be used in the development of fishery drugs for inhibiting SGIV infection.
Key words: grouper iridovirus(SGIV); Morus alba L. water extracts(MAE); isoquercetin(IQ); antiviral mechanism
0 引言
【研究意義】石斑魚(Epinephelus spp.)隸屬于鱸形目(Perciformes)鮨科(Serranidae),是水產(chǎn)業(yè)中的一種重要海水養(yǎng)殖魚類,其肉質(zhì)鮮美,營(yíng)養(yǎng)豐富,具有蛋白含量高、脂肪含量低的食用優(yōu)點(diǎn),是海水養(yǎng)殖最名貴的品種之一(王大鵬等,2012)。我國(guó)的石斑魚養(yǎng)殖產(chǎn)量需求一直居高不下,早在2017年就達(dá)13萬(wàn)t(李鵬飛等,2018)。我國(guó)石斑魚養(yǎng)殖以南方地區(qū)為主,主要分布在南海附近,近年來(lái)隨著人工苗種繁育技術(shù)的迅速發(fā)展、養(yǎng)殖環(huán)境的不斷優(yōu)化及養(yǎng)殖方式的優(yōu)良改進(jìn),石斑魚養(yǎng)殖產(chǎn)業(yè)逐步進(jìn)入蓬勃發(fā)展階段(肖賀賀等, 2019)。隨著水產(chǎn)養(yǎng)殖規(guī)模的迅速擴(kuò)大,導(dǎo)致魚類疾病的暴發(fā)率不斷上升,嚴(yán)重威脅著石斑魚養(yǎng)殖業(yè)的可持續(xù)健康發(fā)展。石斑魚虹彩病毒(Singapore grouper iridovirus,SGIV)是石斑魚養(yǎng)殖生產(chǎn)中最嚴(yán)重的病毒性病原之一,給石斑魚養(yǎng)殖業(yè)帶來(lái)重大經(jīng)濟(jì)損失(Li et al.,2015,2018)。SGIV是一種致病性高、傳染速度快的魚類病原微生物,在掃描電鏡下觀察其結(jié)構(gòu)呈六邊形,直徑約200 nm(Qin et al.,2003;Chao et al.,2004;Lü et al.,2005;Huang et al.,2015)。感染SGIV的石斑魚表現(xiàn)出食欲不振及肝脾臟腫大的典型癥狀,且在感染后短期內(nèi)即出現(xiàn)大批量死亡(Qin et al.,2003),因此研發(fā)可有效抗SGIV感染的藥物對(duì)保障石斑魚養(yǎng)殖業(yè)健康發(fā)展具有重要意義?!厩叭搜芯窟M(jìn)展】藥物防治仍是目前控制水產(chǎn)病害的主要手段,但長(zhǎng)期使用抗生素等化學(xué)藥物極易產(chǎn)生耐藥性和藥物殘留問(wèn)題,且許多國(guó)家已嚴(yán)令禁止抗生素在水產(chǎn)養(yǎng)殖中濫用。疫苗接種是預(yù)防和控制病毒傳染最有效的途徑。Ouyang等(2012)研發(fā)出SGIV滅活疫苗,通過(guò)對(duì)石斑魚進(jìn)行腹腔注射SGIV滅活疫苗,發(fā)現(xiàn)在疫苗接種后30 d內(nèi)可對(duì)人工感染SGIV的石斑魚產(chǎn)生保護(hù)作用,石斑魚存活率在90%以上。疫苗作為控制病毒性病害的預(yù)防策略,必須在魚體感染病毒之前進(jìn)行預(yù)防性接種,而不能用于治療魚類病毒性疾病。此外,全病毒滅活疫苗尚存在一定缺陷,如疫苗具有未完全滅活的風(fēng)險(xiǎn),且水生動(dòng)物的免疫劑量較陸生動(dòng)物更大、使用成本更高等(Davis and McCluskie,1999;Sommerset et al.,2005)。因此,研發(fā)新型高效的抗病毒功能產(chǎn)品對(duì)控制石斑魚養(yǎng)殖中SGIV感染勢(shì)在必行。藥用植物中通常含有黃酮類、苷類、有機(jī)酸、糖類、揮發(fā)油、生物堿及氨基酸等多種生物活性成分,這些生物活性成分不僅發(fā)揮抑菌和抗病毒等功效,還能促進(jìn)動(dòng)物生長(zhǎng)及增加體重,同時(shí)具有增強(qiáng)機(jī)體免疫的能力(Shang et al.,2011;Shi et al.,2012;Kwon et al.,2015;Wang et al.,2015)。已有研究證實(shí),綠茶(Wang et al.,2016)、紫花地丁(Yu et al.,2019b)、番石榴葉(陳小龍,2020)、廣西莪術(shù)(Liu et al.,2020b)、八角茴香(Liu et al.,2020c)及金銀花(Liu et al.,2020d)等多種藥用植物提取物對(duì)水生病毒具有顯著的抑制效果。桑葉(Morus alba L.)是我國(guó)傳統(tǒng)的中藥,安全且無(wú)毒副作用,異槲皮苷(Isoquercetin,IQ)是桑葉的主要活性成分之一,具有良好的抑菌、抗病毒及抗腫瘤等功效,藥用價(jià)值極高(穆春旭等,2012;楊永玉,2012)。近年來(lái),利用桑葉活性化學(xué)成分抗病毒的研究已有較多報(bào)道,如桑葉提取物能有效抑制單純皰疹病毒(HSV)(鄭民實(shí),1990)、人類免疫缺陷病毒(HIV)(Tierney et al.,1995)及呼吸道合胞病毒(RSV)(戴開金等,2009)等,但尚缺乏系統(tǒng)的作用機(jī)制研究?!颈狙芯壳腥朦c(diǎn)】SGIV是嚴(yán)重威脅石斑魚養(yǎng)殖業(yè)發(fā)展的病毒性病原之一,其感染致死率在90%以上,因此迫切需要研發(fā)出能有效抵抗SGIV感染的藥物以確保石斑魚養(yǎng)殖業(yè)的可持續(xù)健康發(fā)展?!緮M解決的關(guān)鍵問(wèn)題】基于已知的桑葉提取物藥理作用及其抗病毒活性,探究桑葉水提物成分對(duì)SGIV的抑制作用,并對(duì)其抗病毒機(jī)制進(jìn)行深入研究,為利用桑葉提取物成分研發(fā)抗SGIV藥物提供理論依據(jù),也為開發(fā)高效安全的新型抗病毒漁用藥物提供新思路。
1 材料與方法
1. 1 試驗(yàn)材料
桑葉粉碎制成粉末,稱量25 g桑葉粉末浸泡于500 mL水中,4 ℃浸泡過(guò)夜,次日將桑葉藥包及浸泡液置于鍋中煎煮獲得桑葉水提物(M. alba L. water extrasts,MAE)母液,并定容至初始母液濃度為250.0 mg/mL。MAE經(jīng)0.22 μm無(wú)菌濾膜過(guò)濾后,-20 ℃保存?zhèn)溆?。桑葉主要活性化合物成分異槲皮苷(IQ)購(gòu)自成都瑞芬思生物科技有限公司,以二甲硫亞砜(DMSO)溶解,并定容至初始濃度為100.0 mg/mL。石斑魚脾臟組織細(xì)胞系(Grouper spleen,GS)由廣西海洋天然產(chǎn)物與組合生物合成化學(xué)重點(diǎn)實(shí)驗(yàn)室建立,石斑魚虹彩病毒廣西株(SGIV-GX)分離自廣西人工養(yǎng)殖的珍珠龍膽石斑魚(Xiao et al.,2019)。
1. 2 細(xì)胞安全工作濃度確定
將GS細(xì)胞接種至96孔細(xì)胞培養(yǎng)板,28 ℃培養(yǎng)18 h。試驗(yàn)組GS細(xì)胞加入稀釋至不同濃度的MAE和IQ進(jìn)行孵育培養(yǎng),對(duì)照組GS細(xì)胞不作任何處理。培養(yǎng)24和48 h時(shí),分別于光學(xué)顯微鏡下進(jìn)行細(xì)胞形態(tài)觀察。培養(yǎng)48 h后向各處理組GS細(xì)胞中加入10 μL CCK-8溶液,室溫避光孵育4 h,然后采用全波長(zhǎng)掃描酶標(biāo)儀檢測(cè)各處理組GS細(xì)胞在450 nm處的吸光值,設(shè)3個(gè)重復(fù)。將測(cè)得的吸光值帶入公式(1)計(jì)算各處理組GS細(xì)胞的存活率:
1. 3 實(shí)時(shí)熒光定量PCR檢測(cè)SGIV感染情況
將GS細(xì)胞接種至12孔細(xì)胞培養(yǎng)板,28 ℃培養(yǎng)18 h后收集各孔細(xì)胞及其上清液,3000×g離心3 min,收集細(xì)胞沉淀并提取各處理組GS細(xì)胞樣品總RNA,再用HiFiScript cDNA Synthesis Kit試劑盒反轉(zhuǎn)錄合成cDNA。以cDNA為模板、β-actin基因?yàn)閮?nèi)參基因,利用實(shí)時(shí)熒光定量PCR檢測(cè)SGIV主要衣殼蛋白MCP基因和囊膜蛋白VP19基因的表達(dá)情況,每組樣品均設(shè)3個(gè)重復(fù)。實(shí)時(shí)熒光定量PCR擴(kuò)增引物序列信息見(jiàn)表1。
1. 4 基于核酸適配體Q2的熒光分子探針檢測(cè)SGIV感染情況
核酸適配體是通過(guò)指數(shù)富集配體系統(tǒng)進(jìn)化技術(shù)篩選獲得能高特異性識(shí)別結(jié)合靶標(biāo)物質(zhì)的單鏈核酸(Li et al.,2018;Yu et al.,2019a)。Q2是本課題組篩選獲得能高特異性高親和性識(shí)別SGIV感染細(xì)胞的核酸適配體(Li et al.,2015,2018),其5'端用6-羧基熒光素(FAM)進(jìn)行標(biāo)記。核酸適配體FAM-Q2序列信息為5'-FAM-GACGCTTACTCAGGTGTGACTCGTATGTCCATGGCCGCATATTGGGAAGGTTGG TTTGGACTATGTGGAAGTTCGAAGGACGCAGAT GAAGTCTC-3'。將GS細(xì)胞接種至12孔細(xì)胞培養(yǎng)板,對(duì)各處理組GS細(xì)胞進(jìn)行處理后收集各孔細(xì)胞,GS細(xì)胞與FAM-Q2探針在4 ℃避光條件下孵育30 min,3000×g離心3 min,棄上清液,以PBS輕輕漂洗后將細(xì)胞沉淀重懸于200 μL PBS中,使用流式細(xì)胞儀檢測(cè)分析各處理組GS細(xì)胞熒光值(495/535 nm)的變化情況。每組樣品均設(shè)3個(gè)重復(fù)。
1. 5 MAE和IQ體外抗SGIV效果分析
將GS細(xì)胞接種至12孔細(xì)胞培養(yǎng)板,28 ℃培養(yǎng)18 h。具體分組如下:對(duì)照組1(CK1)GS細(xì)胞正常培養(yǎng);對(duì)照組2(CK2)GS細(xì)胞接入4 μL SGIV-GX(107 TCID50/mL),28 ℃繼續(xù)培養(yǎng);試驗(yàn)組GS細(xì)胞接入安全工作濃度的藥物(MAE和IQ)及SGIV-GX,28 ℃繼續(xù)培養(yǎng)。培養(yǎng)48 h后于光學(xué)顯微鏡下觀察各處理組的GS細(xì)胞,同時(shí)收集各處理組細(xì)胞樣品分別進(jìn)行實(shí)時(shí)熒光定量PCR和Q2-AFMP檢測(cè),分析MAE和IQ體外抗SGIV的效果。每組樣品均設(shè)3個(gè)重復(fù)。
1. 6 IQ體外抗SGIV作用機(jī)制研究
1. 6. 1 IQ對(duì)SGIV-GX粒子結(jié)構(gòu)的影響 將SGIV-GX與稀釋至安全工作濃度的IQ在4 ℃下孵育2 h,然后在4 ℃下25000×g離心2 h,棄上清液,將離心得到的SGIV-GX粒子重懸于TN緩沖液中;對(duì)照組為SGIV-GX與L15培養(yǎng)基共同孵育、離心收集并重懸。然后將SGIV-GX懸液接入12孔細(xì)胞培養(yǎng)板的GS細(xì)胞中,28 ℃感染48 h,收集各孔的細(xì)胞樣品進(jìn)行實(shí)時(shí)熒光定量PCR檢測(cè)。每組樣品均設(shè)3個(gè)重復(fù)。
1. 6. 2 IQ對(duì)SGIV-GX吸附于GS細(xì)胞表面的影響
將GS細(xì)胞接種至12孔細(xì)胞培養(yǎng)板,28 ℃培養(yǎng)18 h。稀釋至安全工作濃度的IQ與SGIV-GX混勻后接入12孔細(xì)胞培養(yǎng)板的GS細(xì)胞中,4 ℃下孵育1 h;對(duì)照組僅接入SGIV-GX。孵育結(jié)束后棄上清液,以L15培養(yǎng)基清洗GS細(xì)胞2次,28 ℃繼續(xù)培養(yǎng)12 h。收集各孔細(xì)胞樣品進(jìn)行實(shí)時(shí)熒光定量PCR檢測(cè)。每組樣品均設(shè)3個(gè)重復(fù)。
1. 6. 3 IQ對(duì)SGIV-GX侵入宿主細(xì)胞的影響 將GS細(xì)胞接種至12孔細(xì)胞培養(yǎng)板,28 ℃培養(yǎng)18 h。SGIV-GX與冰上預(yù)冷的L15培養(yǎng)基混勻,然后接入12孔細(xì)胞培養(yǎng)板的GS細(xì)胞中,4 ℃下孵育1 h,使SGIV-GX吸附于宿主細(xì)胞表面。孵育1 h后棄上清液,將稀釋至安全工作濃度的IQ加入到各孔細(xì)胞中;對(duì)照組則接入L15培養(yǎng)基進(jìn)行處理。28 ℃培養(yǎng)2 h后棄上清液,用L15培養(yǎng)基清洗GS細(xì)胞;28 ℃繼續(xù)培養(yǎng)10 h,收集各孔細(xì)胞樣品進(jìn)行實(shí)時(shí)熒光定量PCR檢測(cè)。每組樣品均設(shè)3個(gè)重復(fù)。
1. 6. 4 IQ對(duì)SGIV-GX在宿主細(xì)胞中復(fù)制的影響
將GS細(xì)胞接種至12孔細(xì)胞培養(yǎng)板,28 ℃培養(yǎng)18 h。SGIV-GX與冰上預(yù)冷的L15培養(yǎng)基混勻,然后接入12孔細(xì)胞培養(yǎng)板的GS細(xì)胞中,4 ℃下孵育1 h,移除含SGIV-GX的L15培養(yǎng)基,再加入L15培養(yǎng)基,28 ℃繼續(xù)培養(yǎng)2 h,使SGIV-GX進(jìn)入宿主細(xì)胞。28 ℃培養(yǎng)2 h后棄上清液,加入稀釋至安全工作濃度的IQ;對(duì)照組則接入L15培養(yǎng)基進(jìn)行處理。28 ℃繼續(xù)培養(yǎng)10 h后,收集各孔細(xì)胞樣品進(jìn)行實(shí)時(shí)熒光定量PCR檢測(cè)。每組樣品均設(shè)3個(gè)重復(fù)。
1. 7 統(tǒng)計(jì)分析
采用GraphPad Prism 6和Excel 2010對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行處理并制圖,并利用SPSS 17.0分別進(jìn)行單因素方差分析(One-way ANOVA)和Duncans多重比較。
2 結(jié)果與分析
2. 1 MAE和IQ對(duì)GS細(xì)胞的安全工作濃度
以不同濃度的MAE和IQ分別與GS細(xì)胞孵育48 h,通過(guò)光學(xué)顯微鏡觀察GS細(xì)胞形態(tài),并采用全波長(zhǎng)掃描酶標(biāo)儀檢測(cè)GS細(xì)胞存活率。由圖1-A可看出,在安全工作濃度范圍(MAE≤10.0 mg/mL,IQ≤1000.0 μg/mL)內(nèi),桑葉源化合物成分(MAE和IQ)與GS細(xì)胞孵育培養(yǎng)48 h后,GS細(xì)胞基本能保持正常生長(zhǎng),細(xì)胞形態(tài)與對(duì)照組的正常GS細(xì)胞一致,但桑葉源化合物成分濃度高于安全工作濃度后,GS細(xì)胞出現(xiàn)明顯的形態(tài)變化,具體表現(xiàn)為細(xì)胞呈不同程度的皺縮、逐漸變圓或脫離細(xì)胞培養(yǎng)板等。使用CCK-8溶液進(jìn)一步檢測(cè)各處理組GS細(xì)胞的存活率,結(jié)果(圖1-B)顯示,MAE≤10.0 mg/mL時(shí)GS細(xì)胞的存活率與對(duì)照組的正常GS細(xì)胞無(wú)顯著差異(P>0.05,下同),但MAE>10.0 mg/mL后GS細(xì)胞的存活率極顯著低于對(duì)照組正常GS細(xì)胞(P<0.01,下同);IQ≤1000.0 μg/mL時(shí),試驗(yàn)組GS細(xì)胞的存活率雖然極顯著低于對(duì)照組的正常GS細(xì)胞,但光學(xué)顯微鏡觀察結(jié)果顯示GS細(xì)胞保持正常生長(zhǎng)。因此,確定桑葉源化合物成分對(duì)GS細(xì)胞的最高安全工作濃度為:MAE≤10.0 mg/mL,IQ≤1000.0 μg/mL。
2. 2 MAE和IQ體外抗SGIV-GX的效果
2. 2. 1 光學(xué)顯微鏡觀察結(jié)果 光學(xué)顯微鏡觀察結(jié)果(圖2)顯示,在僅接入SGIV-GX的CK2組GS細(xì)胞中出現(xiàn)大量典型細(xì)胞病變(Cytopathic effects,CPEs)。與CK2組的GS細(xì)胞相比,將安全工作濃度的MAE(10.0 mg/mL)和IQ(1000.0 μg/mL)分別接入經(jīng)SGIV-GX孵育感染的GS細(xì)胞后,CPEs均明顯減少,說(shuō)明桑葉源化合物成分(MAE和IQ)能有效抑制SGIV感染GS細(xì)胞。
2. 2. 2 實(shí)時(shí)熒光定量PCR檢測(cè)結(jié)果 如圖3所示,與僅接入SGIV-GX的CK2組GS細(xì)胞相比,試驗(yàn)組GS細(xì)胞接入安全工作濃度的桑葉源化合物成分(MAE和IQ)共同孵育后,GS細(xì)胞中MCP基因和VP19基因的相對(duì)表達(dá)量均呈極顯著下降趨勢(shì),表明桑葉源化合物成分能有效抑制SGIV-GX感染,且具有劑量依賴性。
2. 2. 3 Q2-AFMP檢測(cè)結(jié)果 使用流式細(xì)胞儀檢測(cè)分析各處理組GS細(xì)胞熒光值的變化情況,結(jié)果(圖4)發(fā)現(xiàn),與僅接入SGIV-GX的GS細(xì)胞相比,試驗(yàn)組GS細(xì)胞加入安全工作濃度的桑葉源化合物成分(MAE和IQ)共同孵育后,GS細(xì)胞熒光值極顯著降低,且隨著MAE和IQ濃度的增加GS細(xì)胞熒光強(qiáng)度越弱,表明MAE和IQ具有抑制SGIV-GX感染的作用。
2. 3 IQ抗SGIV-GX的作用機(jī)制
2. 3. 1 IQ對(duì)SGIV-GX粒子結(jié)構(gòu)的影響 如圖5所示,與僅接入SGIV-GX的對(duì)照組GS細(xì)胞相比,將IQ處理SGIV-GX接入試驗(yàn)組的GS細(xì)胞后,細(xì)胞中MCP基因和VP19基因的相對(duì)表達(dá)量均呈極顯著下降趨勢(shì),提示IQ是通過(guò)破壞SGIV-GX粒子結(jié)構(gòu)而發(fā)揮抗病毒作用。
2. 3. 2 IQ對(duì)SGIV-GX與宿主細(xì)胞表面結(jié)合的抑制作用 如圖6所示,與僅接入SGIV-GX的對(duì)照組GS細(xì)胞相比,將IQ處理SGIV-GX接入試驗(yàn)組GS細(xì)胞后,細(xì)胞中MCP基因和VP19基因的相對(duì)表達(dá)量均呈極顯著下降趨勢(shì),即吸附于宿主細(xì)胞上的病毒數(shù)量明顯少于對(duì)照組GS細(xì)胞。故推測(cè)在SGIV-GX感染GS細(xì)胞的過(guò)程中,IQ能有效抑制SGIV-GX與宿主細(xì)胞表面結(jié)合位點(diǎn)的結(jié)合。
2. 3. 3 IQ對(duì)SGIV-GX侵入宿主細(xì)胞的抑制作用
如圖7所示,與僅接入SGIV-GX的對(duì)照組GS細(xì)胞相比,將IQ接入經(jīng)SGIV-GX感染的試驗(yàn)組GS細(xì)胞后,細(xì)胞中MCP基因和VP19基因的相對(duì)表達(dá)量均呈極顯著下降趨勢(shì),說(shuō)明侵入宿主細(xì)胞的病毒數(shù)量明顯少于對(duì)照組GS細(xì)胞??梢?jiàn),IQ能在SGIV-GX侵入宿主細(xì)胞階段發(fā)揮抑制作用。
2. 3. 4 IQ對(duì)SGIV-GX在宿主細(xì)胞中復(fù)制的抑制作用
試驗(yàn)組GS細(xì)胞在SGIV-GX感染2 h后,加入安全工作濃度的IQ(1000.0 μg/mL),28 ℃繼續(xù)培養(yǎng)10 h。如圖8所示,與僅接入SGIV-GX的對(duì)照組GS細(xì)胞相比,試驗(yàn)組GS細(xì)胞中VP19基因的相對(duì)表達(dá)量呈極顯著下降趨勢(shì),而MCP基因的相對(duì)表達(dá)量無(wú)顯著變化,表明IQ能抑制SGIV-GX在宿主細(xì)胞中的復(fù)制。
3 討論
藥用植物作為抗生素等化學(xué)藥物的潛在替代品,具有天然來(lái)源、生態(tài)友好、活性化合物成分豐富及成本低廉等優(yōu)點(diǎn)(Bulfon et al.,2015;李鵬飛等,2018)。近年來(lái),具有天然免疫功能及抗病毒特性的天然產(chǎn)品在水產(chǎn)養(yǎng)殖中的應(yīng)用研究也備受關(guān)注(Reverter et al.,2014;Beltrán et al.,2018)。根據(jù)藥用植物提取物對(duì)魚類的積極作用,將其添加至魚類飼料中可有效促進(jìn)魚體生長(zhǎng)早熟及增強(qiáng)防御機(jī)制和免疫應(yīng)答能力(Galina et al.,2009;Newaj-Fyzul and Austin,2015;Vallejos-Vidal et al.,2016;Awad and Awaad,2017)。桑葉作為一味傳統(tǒng)中藥,富含IQ和槲皮素(Quercetin)等多種生物活性成分,具有抗菌、抗病毒、抗腫瘤及免疫調(diào)節(jié)等多種藥理作用。已有研究證實(shí),桑葉提取物成分可有效改善魚類糖脂代謝,提高免疫力及抗氧化能力,提高其生長(zhǎng)性能,因此在水產(chǎn)養(yǎng)殖中具有極高的開發(fā)利用價(jià)值(Sheikhlar et al.,2014;楊繼華等,2017;夏鑫等,2019)。桑葉提取物在抗病毒方面的應(yīng)用也有研究報(bào)道。王輝等(2016)利用細(xì)胞病變減少法(CPE)檢測(cè)發(fā)現(xiàn),多個(gè)桑葉樣品的有機(jī)萃取組分或水相組分對(duì)單純皰疹病毒1型(HSV-1)、甲型流感病毒(FluA)及登革病毒2型(DV2)等多種病毒具有抑制作用,且抗病毒活性具有選擇性,不同桑品種間的提取物成分抗病毒活性也存在一定差異。Kim等(2020)研究證實(shí)IQ能有效抑制人類皰疹病毒(HHV)的復(fù)制。本研究首次探究桑葉源化合物成分對(duì)SGIV的抑制作用,分析以桑葉提取物成分研發(fā)抗SGIV漁用藥物的潛力,并系統(tǒng)研究IQ抑制SGIV感染的抗病毒機(jī)理,為研發(fā)綠色安全的抗病毒藥物提供理論依據(jù)。
細(xì)胞系代替實(shí)驗(yàn)動(dòng)物,已廣泛用于免疫學(xué)、生物技術(shù)應(yīng)用及各類病原菌發(fā)病機(jī)制研究等方面(Qin et al.,2006;Li et al.,2016,2017;Zhou et al.,2017;余慶等,2018)。GS細(xì)胞系來(lái)源于褐點(diǎn)石斑魚的脾臟組織,是一種極易感染虹彩病毒的宿主細(xì)胞(彭超,2015)。本研究通過(guò)探究桑葉源化合物成分(MAE和IQ)對(duì)SGIV的潛在抗病毒作用,首先分析MAE和IQ對(duì)GS細(xì)胞的安全工作濃度,最終確定桑葉源化合物成分對(duì)GS細(xì)胞的最高安全工作濃度為:MAE≤10.0 mg/mL,IQ≤1000.0 μg/mL,即在安全工作濃度范圍內(nèi)桑葉源化合物成分對(duì)GS細(xì)胞并無(wú)明顯的毒性作用。然后采用光學(xué)顯微鏡觀察、實(shí)時(shí)熒光定量PCR及Q2-AFMP檢測(cè)桑葉提取物抑制SGIV-GX感染的效果,Q2-AFMP是一種監(jiān)測(cè)病毒感染情況的有效方法,其檢測(cè)結(jié)果與實(shí)時(shí)熒光定量PCR檢測(cè)結(jié)果基本一致。與實(shí)時(shí)熒光定量PCR相比,Q2-AFMP檢測(cè)具有檢測(cè)快速、易于操作、靈敏度高及特異性強(qiáng)等優(yōu)點(diǎn),對(duì)快速診斷病毒感染和篩選抗病毒藥物具有較大的應(yīng)用潛力(Yu et al.,2019a;Liu et al.,2020a)。桑葉源化合物成分(MAE和IQ)對(duì)SGIV-GX感染均具有極顯著的抑制作用,且抗病毒效應(yīng)具有劑量依賴性。黃筱鈞(2014)研究發(fā)現(xiàn)桑葉對(duì)RSV有明顯的抑制作用,既能抑制RSV的吸附和生物合成,又能直接殺死病毒。此外,有研究發(fā)現(xiàn)槲皮素和IQ在體外體內(nèi)均能顯著抑制流感病毒的復(fù)制,且IQ的抗病毒作用大于槲皮素(Kim et al.,2010;Thapa et al.,2012)。
在確定桑葉源化合物成分具有良好抗病毒效果的基礎(chǔ)上,進(jìn)一步對(duì)其抗SGIV-GX感染的作用機(jī)制進(jìn)行系統(tǒng)研究。本研究結(jié)果表明,與未經(jīng)藥物處理的SGIV-GX相比,經(jīng)IQ處理后SGIV-GX對(duì)宿主細(xì)胞的感染能力極顯著降低,提示IQ可能是通過(guò)破壞SGIV-GX的粒子結(jié)構(gòu)而發(fā)揮抗病毒作用。病毒感染的主要步驟是先吸附于宿主細(xì)胞膜上,然后穿透宿主細(xì)胞膜在宿主細(xì)胞中復(fù)制,再?gòu)乃拗骷?xì)胞釋放出來(lái)(Seisenberger et al.,2001;Fukuyama and Kawaoka,2011)。了解病毒與宿主細(xì)胞的相互作用機(jī)制,對(duì)研發(fā)新型高效的抗病毒及促抗病毒藥物至關(guān)重要。因此,系統(tǒng)研究IQ在SGIV-GX感染GS細(xì)胞時(shí)的抑制作用機(jī)制,結(jié)果證實(shí)IQ通過(guò)干擾SGIV-GX對(duì)GS細(xì)胞的吸附、侵入和復(fù)制而發(fā)揮抗病毒作用,且以在病毒吸附和侵入階段的抗病毒效果最顯著。Gaudry等(2018)通過(guò)研究IQ對(duì)寨卡病毒的作用機(jī)制,證實(shí)IQ是通過(guò)阻止病毒顆粒進(jìn)入宿主細(xì)胞而發(fā)揮抗病毒作用。因此,推測(cè)IQ與宿主細(xì)胞表面受體發(fā)生競(jìng)爭(zhēng)性結(jié)合,阻止病毒吸附于宿主細(xì)胞表面,從而發(fā)揮抗病毒作用。
4 結(jié)論
MAE和IQ對(duì)SGIV具有良好的抗病毒效果,其中IQ能在病毒吸附、侵入和復(fù)制階段發(fā)揮抗病毒作用,即桑葉源化合物成分在防治SGIV感染方面具有潛在的應(yīng)用價(jià)值,可作為研發(fā)抗SGIV感染的有效藥用成分。
參考文獻(xiàn):
陳小龍. 2020. 番石榴葉抗擬穴青蟹病毒病機(jī)制初探及抗菌中草藥制劑的研制[D]. 上海:上海海洋大學(xué). doi:10. 27314/d.cnki.gsscu.2020.000229. [Chen X L. 2020. Study on the mechanism of guava leaf against viral disease of Scylla paramamosain and development of antibacterial Chinese herbal compound preparation[D]. Shanghai:Shanghai Ocean University.]
戴開金,羅奇志,侯連兵. 2009. 桑葉體外抗呼吸道合胞病毒作用研究[J]. 中藥材,32(8):1276-1278. doi:10.3321/j.issn:1001- 4454.2009.08.036. [Dai K J,Luo Q Z,Hou L B. 2009. Anti respiratory syncytial virus effect of mulberry leaves in vitro[J]. Journal of Chinese Medicine Materials,32(8):1276-1278.]
黃筱鈞. 2014. 桑葉乙醇提取物體外對(duì)呼吸道合胞病毒的抑制作用[J]. 中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,20(22):169-171. doi:10.13422/j. cnki.syfjx.2014220169. [Huang X J. 2014. Inhibiting effects of ethanol extract of mori folium on respiratory syncytial virus in vitro[J]. Chinese Journal of Experimental Traditional Medical Formulae,20(22):169-171.]
李鵬飛,余慶,覃仙玲,李菲,陳憲云,董德信,秦啟偉. 2018. 廣西北部灣海水養(yǎng)殖業(yè)現(xiàn)狀與病害防控技術(shù)體系研究展望[J]. 廣西科學(xué),25(1):15-25. doi:10.13656/j.cnki.gxkx.20180125.001. [Li P F,Yu Q,Qin X L,Li F,Chen X Y,Dong D X,Qin Q W. 2018. Current situation and research prospects of disease control technology system of mariculture in Beibu Gulf of Guangxi[J]. Guangxi Sciences,25(1):15-25.]
穆春旭,孫蘭鳳,張振秋. 2012. 高效液相色譜波長(zhǎng)切換法同時(shí)測(cè)定桑葉中多指標(biāo)成分的含量[J]. 黑龍江醫(yī)藥,25(3):339-341. doi:10.3969/j.issn.1006-2882.2012.03.003. [Mu C X,Sun L F,Zhang Z Q. 2012. Simultaneously determination of wavelength switching of multi-target ingredients in mulberry leaves(Morus alba L.) by HPLC[J]. Heilongjiang Medical Journal,25(3):339-341.]
彭超. 2015. 蛙病毒GIV-R-SY1301株對(duì)鞍帶石斑魚致病性的研究[D]. 上海:上海海洋大學(xué). [Peng C. 2015. Studies on pathogenicity of ranavirus GIV-R-SY1301 to Epinephe-lus lanceolatus[D]. Shanghai:Shanghai Ocean University.]
王大鵬,曹占旺,謝達(dá)祥,甘西. 2012. 石斑魚的研究進(jìn)展[J]. 南方農(nóng)業(yè)學(xué)報(bào),43(7):1058-1065. doi:10.3969/j:issn.2095- 1191.2012.07.1058. [Wang D P,Cao Z W,Xie D X,Gan X. 2012. Research progress in Epinephelus industry[J]. Journal of Southern Agriculture,43(7):1058-1065.]
王輝,吳莎,孫毅凡,江振友,廖森泰,劉凡. 2016. 桑葉提取物的抗病毒活性檢測(cè)[J]. 蠶業(yè)科學(xué),37(5):952-956. doi:10.3969/j.issn.0257-4799.2011.05.027. [Wang H,Wu S,Sun Y F,Jiang Z Y,Liao S T,Liu F. 2016. An assay on the antiviral activity of mulberry leaf extract[J]. Science of Sericulture,37(5):952-956.]
夏鑫,余曼榮,曾青華,肖定福. 2019. 桑葉提取物及其在動(dòng)物生產(chǎn)上的應(yīng)用研究進(jìn)展[J]. 中國(guó)飼料,(7):4-8. doi:10. 15906/j.cnki.cn11-2975/s.20190701. [Xia X,Yu M R,Zeng Q H,Xiao D F. 2019. The research of mulberry leaf extract and its application in animal production[J]. China Feed,(7):4-8.]
肖賀賀,劉明珠,余慶,王一兵,覃仙玲,黎思巧,吳思婷,陳憲云,董德信,朱冬琳,王太霞,李鵬飛. 2019. 敗醬草水提物對(duì)石斑魚虹彩病毒的抗病毒作用[J]. 廣西科學(xué)院學(xué)報(bào),35(3):185-192. doi:10.13657/j.cnki.gxkxyxb.20190905. 001. [Xiao H H,Liu M Z,Yu Q,Wang Y B,Qin X L,Li S Q,Wu S T,Chen X Y,Dong D X,Zhu D L,Wang T X,Li P F. 2019. Antiviral effects of Thlaspi arvense Linn. water extracts against grouper iridovirus infection[J]. Journal of Guangxi Academy of Sciences,35(3):185-192.]
楊繼華,陳冰,黃燕華,曹俊明,王國(guó)霞,孫育平,陳曉瑛. 2016. 飼料中添加桑葉黃酮對(duì)吉富羅非魚生長(zhǎng)性能、體成分、抗氧化指標(biāo)及抗亞硝酸鹽應(yīng)激能力的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),29(9):3403-3412. doi:10.3969/j.issn.1006-267x.2017.09.046. [Yang J H,Chen B,Huang Y H,Cao J M,Wang G X,Sun Y P,Chen X Y. 2016. Effects of die-tary mulberry leaf flavonoids on growth performance,body composition,antioxidant indices and resistance to nitrite exposure of genetic improvement of farmed tilapia (Oreochromis niloticus)[J]. Chinese Journal of Animal Nutrition,29(9):3403-3412.]
楊永玉. 2012. 桑葉黃酮類化學(xué)成分研究[D]. 長(zhǎng)沙:中南大學(xué). [Yang Y Y. 2012. Study on the flavonoids from mulberry leaf[D]. Changsha:Central South University.]
余慶,李菲,覃仙玲,陳憲云,董德信,牙韓爭(zhēng). 2018. 廣西卵形鯧鲹小腦來(lái)源細(xì)胞系的建立及特征分析[J]. 廣西科學(xué),25(1):74-79. doi:10.13656/j.cnki.gxkx.20180206.001. [Yu Q,Li F,Qin X L,Chen X Y,Dong D X,Ya H Z. 2018. Establishment and characterization of a novel cell line from cerebellum of golden pompano(Tranchinotus ovatus) cultured in Guangxi[J]. Guangxi Sciences,25(1):74-79.]
鄭民實(shí). 1990. 472種中草藥抗單純皰疹病毒的實(shí)驗(yàn)研究[J]. 中西醫(yī)結(jié)合雜志,10(1):39-41. doi:10.7661/CJIM.1990. 1.39. [Zheng M S. 1990. An experimental study on 472 herbs relating antiviral actions on herpes simplex virus[J]. Chinese Journal of Integrated Traditional and Western Medicine,10(1):39-41.]
Awad E,Awaad A. 2017. Role of medicinal plants on growth performance and immune status in fish[J]. Fish & Shellfish Immunology,67:40-54. doi:10.1016/j.fsi.2017.05. 034.
Beltrán J M G,Espinosa C,Guardiola F A,Esteban M ?. 2018. In vitro effects of Origanum vulgare leaf extracts on gilthead seabream (Sparus aurata L.) leucocytes,cytotoxic,bactericidal and antioxidant activities[J]. Fish & Shellfish Immunology,79:1-10. doi:10.1016/j.fsi.2018. 05.005.
Bulfon C,Volpatti D,Galeotti M. 2015. Current research on the use of plant-derived products in farmed fish[J]. Aquaculture Research,46(3):513-551. doi:10.1111/are.12238.
Chao C B,Chen C Y,Lai Y Y,Lin C S,Huang H T. 2004. Histological,ultrastructural,and in situ hybridization study on enlarged cells in grouper Epinephelus hybrids infected by grouper iridovirus in Taiwan(TGIV)[J]. Di-seases of Aquatic Organisms,58(2-3):127-142. doi:10.3354/ dao058127.
Davis H L,McCluskie M J. 1999. DNA vaccines for viral di-seases[J]. Microbes and Infection,1(1):7-21. doi:10.1016/ s1286-4579(99)80009-4.
Fukuyama S,Kawaoka Y. 2011. The pathogenesis of influenza virus infections:The contributions of virus and host factors[J]. Current Opinion in Immunology,23(4):481-486. doi:10.1016/j.coi.2011.07.016.
Galina J,Yin G,Ardó L,Jeney Z. 2009. The use of immunostimulating herbs in fish. An overview of research[J]. Fish Physiology and Biochemistry,35(4):669-676. doi:10. 1007/s10695-009-9304-z.
Gaudry A,Bos S,Viranaicken W,Roche M,Krejbich-Trotot P,Gadea G,Desprès P,El-Kalamouni C. 2018. The flavonoid isoquercitrin precludes initiation of Zika virus infection in human cells[J]. International Journal of Molecular Sciences,19(4):1093. doi:10.3390/ijms19041093.
Huang X H,Huang Y,Xu L W,Wei S N,Ouyang Z L,F(xiàn)eng J,Qin Q W. 2015. Identification and characterization of a novel lymphocystis disease virus isolate from cultured grouper in China[J]. Journal of Fish Diseases,38(4):379-387. doi:10.1111/jfd.12244.
Kim C H,Kim J E,Song Y J. 2020. Antiviral activities of quercetin and isoquercitrin against human herpesviruses[J]. Molecules,25(10):2379. doi:10.3390/molecules 25102379.
Kim Y,Narayanan S,Chang K O. 2010. Inhibition of influenza virus replication by plant-derived isoquercetin[J]. Antiviral Research,88(2):227-235. doi:10.1016/j.antiviral. 2010.08.016.
Kwon S H,Ma S X,Hong S I,Lee S Y,Jang C G. 2015. Lonicera japonica Thunb. extract inhibits lipopolysaccharide-stimulated inflammatory responses by suppressing NF-κB signaling in BV-2 microglial cells[J]. Journal of Medicinal Food,18(7):762-775. doi:10.1089/jmf.2014. 3341.
Li P F,Wei S N,Zhou L L,Yang M,Yu Y P,Wei J G,Jiang G H,Qin Q W. 2015. Selection and characterization of novel DNA aptamers specifically recognized by Singapore grouper iridovirus-infected fish cells[J]. The Journal of General Virology,96(11):3348-3359. doi:10.1099/jgv.0.000270.
Li P F,Yu Q,Zhou L L,Dong D X,Wei S N,Ya H Z,Chen B,Qin Q W. 2018. Probing and characterizing the high specific sequences of ssDNA aptamer against SGIV-infected cells[J]. Virus Research,246:46-54. doi:10.1016/j.virusres.2018.01.006.
Li P F,Zhou L L,Ni S W,Xu M,Yu Y P,Cai J,Wei S N,Qin Q W. 2016. Establishment and characterization of a novel cell line from the brain of golden pompano (Trachinotus ovatus)[J]. In Vitro Cellular & Developmental Biology. Animal,52(4):410-418. doi:10.1007/s11626-015-9988-6.
Li P F,Zhou L L,Wei S N,Yang M,Ni S W,Yu Y P,Cai J,Qin Q W. 2017. Establishment and characterization of a cell line from the head kidney of golden pompano Trachinotus ovatus and its application in toxicology and virus susceptibility[J]. Journal of Fish Biology,90(5):1944-1959. doi:10.1111/jfb.13277.
Liu M Z,Xiao H H,Wu S T,Yu Q,Li P F. 2020a. Aptamer-based high-throughput screening model for medicinal plant drugs against SGIV[J]. Journal of Fish Diseases,43(11):1479-1482. doi:10.1111/JFD.13254.
Liu M Z,Xiao H H,Zhang Q,Wu S,Putra D F,Xiong X Y,Xu M Z,Dong L F,Li S Q,Yu Q,Li P F. 2020b. Antiviral abilities of Curcuma kwangsiensis ingredients against grouper iridoviral infection in vitro and in vivo[J]. Aquaculture Research,51(1):351-361. doi:10.1111/are.14382.
Liu M Z,Yu Q,Xiao H H,Yi Y,Cheng H,Putra D F,Huang Y M,Zhang Q,Li P F. 2020c. Antiviral activity of Illi-cium verum Hook. f. extracts against grouper iridovirus infection[J]. Journal of Fish Diseases,43(5):531-540. doi:10.1111/jfd.13146.
Liu M,Yu Q,Yi Y P,Xiao H H,Putra D,Ke K,Zhang Q,Li P F. 2020d. Antiviral activities of Lonicera japonica Thunb. components against grouper iridovirus in vitro and in vivo[J]. Aquaculture,519:734882. doi:10.1016/j.aquaculture.2019.734882.
Lü L,Zhou S Y,Chen C,Weng S P,Chan S M,He J G. 2005. Complete genome sequence analysis of an iridovirus isolated from the orange-spotted grouper,Epinephelus coioides[J]. Virology,339(1):81-100. doi:10.1016/j.virol.2005. 05.021.
Newaj-Fyzul A,Austin B. 2015. Probiotics,immunostimulants,plant products and oral vaccines,and their role as feed supplements in the control of bacterial fish diseases[J]. Journal of Fish Diseases,38(11):937-955. doi:10. 1111/jfd.12313.
Ouyang Z L,Wang P R,Huang X H,Cai J,Huang Y H,Wei S N,Ji H S,Wei J G,Zhou Y C,Qin Q W. 2012. Immunogenicity and protective effects of inactivated Singapore grouper iridovirus (SGIV) vaccines in orange-spotted grouper,Epinephelus coioides[J]. Developmental and Comparative Immunology,38(2):254-261. doi:10.1016/j.dci. 2012.07.004.
Qin Q W,Wu T H,Jia T L,Hegde A,Zhang R Q. 2006. Development and characterization of a new tropical marine fish cell line from grouper,Epinephelus coioides susceptible to iridovirus and nodavirus[J]. Journal of Virological Methods,131(1):58-64. doi:10.1016/j.jviromet.2005. 07.009.
Qin W F,Chang S F,Ngoh-Lim G H,Gibson-Kueh S,Shi C,Lam T J. 2003. Characterization of a novel ranavirus isolated from grouper Epinephelus tauvina[J]. Diseases of Aquatic Organisms,53(1):1-9. doi:10.3354/dao053001.
Reverter M,Bontemps N,Lecchini D,Banaigsb B,Sasala P. 2014. Use of plant extracts in fish aquaculture as an alternative to chemotherapy:Current status and future perspectives[J]. Aquaculture,433:50-61. doi:10.1016/j.aquaculture.2014.05.048.
Seisenberger G,Ried M U,Endress T,Büning H,Hallek M,Br?uchle C. 2001. Real-time single-molecule imaging of the infection pathway of an adeno-associated virus[J]. Science,294(5548):1929-1932. doi:10.1126/science. 1064103.
Shang X F,Pan H,Li M X,Miao X L,Ding H. 2011. Lonicera japonica Thunb.:Ethnopharmacology,phytochemistry and pharmacology of an important traditional Chinese medicine[J]. Journal of Ethnopharmacology,138(1):1-21. doi:10.1016/j.jep.2011.08.016.
Sheikhlar A,Alimon A R,Daud H M,Saad C R,Webster C D,Meng G Y,Ebrahimi M. 2014. White mulberry (Morus alba) foliage methanolic extract can alleviate aeromonas hydrophila infection in African catfish(Cla-rias gariepinus)[J]. The Scientific World Journal,2014:592709. doi:10.1155/2014/592709.
Shi K Q,F(xiàn)an Y C,Liu W Y,Li L F,Chen Y P,Zheng M H. 2012. Traditional Chinese medicines benefit to nonalcoholic fatty liver disease:A systematic review and meta-analysis[J]. Molecular Biology Reports,39(10):9715-9722. doi:10.1007/s11033-012-1836-0.
Sommerset I,Kross?y B,Biering E,F(xiàn)rost P. 2005. Vaccines for fish in aquaculture[J]. Expert Review of Vaccines,4(1):89-101. doi:10.1586/14760584.4.1.89.
Thapa M,Kim Y,Desper J,Chang K O,Hua D H. 2012. Synthesis and antiviral activity of substituted quercetins[J]. Bioorganic & Medicinal Chemistry Letters,22(1):353-356. doi:10.1016/j.bmcl.2011.10.119.
Tierney M,Pottage J,Kessler H,F(xiàn)ischl M,Richman D,Meri-gan T,Powderly W,Smith S,Karim A,Sherman J. 1995. The tolerability and pharmacokinetics of N-butyl-deoxynojirimycin in patients with advanced HIV disease (ACTG 100). The AIDS clinical trials group(ACTG) of the national institute of allergy and infectious diseases[J]. Journal of Acquired Immune Deficiency Syndromes and Human Retroviology,10(5):549-553.
Vallejos-Vidal E,Reyes-López F E,Teles M,MacKenzie S. 2016. The response of fish to immunostimulant diets[J]. Fish & Shellfish Immunology,56:34-69. doi:10.1016/j.fsi.2016.06.028.
Wang H,Liu W S,Yu F,Lu L Q. 2016. Identification of (-)-epigallocatechin-3-gallate as a potential agent for bloc-king infection by grass carp reovirus[J]. Archives of Virology,161(4):1053-1059. doi:10.1007/s00705-016-2751-9.
Wang L Q,Yang R,Yuan B C,Liu Y,Liu C S. 2015. The antiviral and antimicrobial activities of licorice,a widely-used Chinese herb[J]. Acta Pharmaceutica Sinica,5(4):310-315. doi:10.1016/j.apsb.2015.05.005.
Xiao H H,Liu M Z,Li S Q,Shi D Q,Zhu D L,Ke K,Xu Y H,Dong D X,Zhu L B,Yu Q,Li P F. 2019. Isolation and characterization of a ranavirus associated with di-sease outbreaks in cultured hybrid grouper(♀ Tiger grouper Epinephelus fuscoguttatus×♂ Giant grouper E. Lanceolatus) in Guangxi,China[J]. Journal Aquatic Animal Health,31(4):364-370. doi:10.1002/aah.10090.
Yu Q,Liu M Z,Wei S N,Xiao H H,Wu S T,Ke K,Huang X H,Qin Q W,Li P F. 2019a. Identification of major capsid protein as a potential biomarker of grouper iridovirus-infected cells using aptamers selected by SELEX[J]. Frontiers in Microbiology,10:2684. doi:10.3389/fmicb. 2019.02684.
Yu Q,Liu M Z,Xiao H H,Wu S T,Qin X L,Lu Z J,Shi D Q,Li S Q,Mi H Z,Wang Y B,Su H F,Wang T X,Li P F. 2019b. The inhibitory activities and antiviral mechanism of Viola philippica aqueous extracts against grouper iridovirus infection in vitro and in vivo[J]. Journal of Fish Diseases,42(6):859-868. doi:10.1111/jfd.12987.
Zhou L L,Li P F,Liu J X,Ni S W,Yu Y P,Yang M,Wei S N,Qin Q W. 2017. Establishment and characterization of a mid-kidney cell line derived from golden pompano Trachinotus ovatus,a new cell model for virus pathogenesis and toxicology studies[J]. In Vitro Cellular Developmental Biology. Animal,53(4):320-327. doi:10.1007/s11626-016-0112-3.
(責(zé)任編輯 蘭宗寶)