孟祥坤,吳趙露,楊雪梅,官道杰,王建軍
二化螟P糖蛋白基因的克隆分析及對(duì)殺蟲劑的誘導(dǎo)響應(yīng)
孟祥坤,吳趙露,楊雪梅,官道杰,王建軍
揚(yáng)州大學(xué)園藝與植物保護(hù)學(xué)院,江蘇揚(yáng)州 225009
【】克隆二化螟()P糖蛋白基因()并對(duì)其分子特征和表達(dá)模式進(jìn)行分析,明確對(duì)常用防治殺蟲劑氯蟲苯甲酰胺和阿維菌素的誘導(dǎo)響應(yīng)并對(duì)其潛在的轉(zhuǎn)錄調(diào)控機(jī)制進(jìn)行探索。使用基因克隆技術(shù)擴(kuò)增全長基因序列,利用生物信息學(xué)技術(shù)對(duì)編碼蛋白的分子特征和5′端轉(zhuǎn)錄調(diào)控區(qū)中的轉(zhuǎn)錄因子結(jié)合位點(diǎn)進(jìn)行分析。使用熒光定量PCR方法對(duì)在二化螟不同齡期和不同組織中的表達(dá)模式及在殺蟲劑氯蟲苯甲酰胺和阿維菌素不同劑量處理下的誘導(dǎo)響應(yīng)進(jìn)行測定分析。cDNA序列全長4 584 bp,由23個(gè)外顯子構(gòu)成,編碼1 259個(gè)氨基酸,含有兩個(gè)跨膜區(qū)和兩個(gè)核苷酸結(jié)合區(qū),具有ABC轉(zhuǎn)運(yùn)蛋白家族典型的結(jié)構(gòu)特征,如對(duì)底物轉(zhuǎn)運(yùn)具有重要功能的Walker A、Walker B及D、H、P、Q-Loop等特征序列。主要在二化螟幼蟲期表達(dá),在3—4齡幼蟲中具有最高的表達(dá)量,在蛹期和成蟲期的表達(dá)量較低。組織表達(dá)分析表明,主要高表達(dá)于二化螟的前腸和中腸組織,在后腸、脂肪體、馬氏管等其他組織中的表達(dá)量較低。相比于對(duì)照,使用LC30和LC70劑量氯蟲苯甲酰胺分別處理二化螟3齡幼蟲12 h和24 h后,的表達(dá)量未發(fā)生顯著變化。但在處理36 h后,LC30處理組試蟲中顯著上調(diào)表達(dá),而LC70處理組試蟲中則顯著下調(diào)表達(dá)。使用低劑量0.05 mg·L-1的阿維菌素處理二化螟試蟲12 h后,相比于對(duì)照,顯著下調(diào)表達(dá),在處理24 h和36 h后的表達(dá)水平?jīng)]有發(fā)生顯著變化,使用0.15 mg·L-1的阿維菌素處理二化螟試蟲24 h和36 h后被顯著誘導(dǎo)上調(diào)表達(dá)。對(duì)的5′端轉(zhuǎn)錄調(diào)控區(qū)的序列分析發(fā)現(xiàn),在轉(zhuǎn)錄調(diào)控區(qū)中預(yù)測到多個(gè)轉(zhuǎn)錄因子結(jié)合位點(diǎn),其中包括5個(gè)潛在的CncC結(jié)合位點(diǎn)。二化螟在重要解毒代謝組織中腸中高表達(dá),并且能夠被殺蟲劑氯蟲苯甲酰胺和阿維菌素誘導(dǎo)表達(dá),表明可能參與對(duì)氯蟲苯甲酰胺和阿維菌素的解毒代謝。5′端轉(zhuǎn)錄調(diào)控區(qū)中含有多個(gè)轉(zhuǎn)錄因子CncC結(jié)合位點(diǎn),可能對(duì)的轉(zhuǎn)錄表達(dá)具有重要調(diào)控作用。推測在氯蟲苯甲酰胺或阿維菌素脅迫下,可能受到轉(zhuǎn)錄因子CncC的轉(zhuǎn)錄調(diào)控并參與對(duì)氯蟲苯甲酰胺或阿維菌素的解毒代謝。
二化螟;P糖蛋白;分子特征;殺蟲劑誘導(dǎo);轉(zhuǎn)錄調(diào)控
【研究意義】二化螟()是我國水稻上危害最為嚴(yán)重的常發(fā)性害蟲之一,每年導(dǎo)致我國水稻大量減產(chǎn)[1]。目前二化螟的防治主要使用化學(xué)農(nóng)藥,但是大量使用農(nóng)藥引發(fā)的害蟲抗藥性等問題日益嚴(yán)重[2-4]。監(jiān)測發(fā)現(xiàn),二化螟已對(duì)氯蟲苯甲酰胺、阿維菌素等幾種常用防治殺蟲劑產(chǎn)生了不同水平的抗藥性[5-7]。因此,通過對(duì)二化螟抗藥性研究,探索潛在的抗性機(jī)制,不僅為新型高效殺蟲劑開發(fā)提供理論依據(jù),同時(shí)也為二化螟田間防治的藥劑選擇提供指導(dǎo),對(duì)于農(nóng)業(yè)害蟲防治具有重要意義。【前人研究進(jìn)展】對(duì)外源化合物的解毒代謝是昆蟲適應(yīng)環(huán)境及對(duì)殺蟲劑產(chǎn)生抗藥性的主要策略之一。昆蟲對(duì)植物有毒物質(zhì)和殺蟲劑等外源化合物的解毒代謝主要分3個(gè)反應(yīng)階段:I相反應(yīng)中,細(xì)胞色素P450(cytochrome P450,P450)和酯酶(esterase,EST)分別氧化和水解外源化合物,生成水溶性更高的代謝產(chǎn)物;II相反應(yīng)中,谷胱甘肽-轉(zhuǎn)移酶(glutathione-transferase,GST)和尿苷二磷酸糖基轉(zhuǎn)移酶(UDP-glycosyltransferase,UGT)通過催化結(jié)合反應(yīng)進(jìn)一步增加代謝產(chǎn)物的水溶性;III相反應(yīng)中,腺苷三磷酸結(jié)合盒轉(zhuǎn)運(yùn)蛋白(ABC轉(zhuǎn)運(yùn)蛋白,ATP-binding cassette transporter)將水溶性的代謝產(chǎn)物從細(xì)胞內(nèi)轉(zhuǎn)運(yùn)到細(xì)胞外[8-9]。ABC轉(zhuǎn)運(yùn)蛋白是多細(xì)胞動(dòng)物中最大的轉(zhuǎn)運(yùn)蛋白家族,含有8個(gè)(ABCA—ABCH)亞家族成員,在生物中發(fā)揮泵的作用將有毒物質(zhì)排出細(xì)胞。昆蟲ABC轉(zhuǎn)運(yùn)蛋白中的ABCB、ABCC和ABCG家族成員廣泛參與殺蟲劑的轉(zhuǎn)運(yùn)代謝,與昆蟲的殺蟲劑抗藥性密切相關(guān)[10]。對(duì)二化螟的殺蟲劑抗藥性研究中,已發(fā)現(xiàn)包括I、II相反應(yīng)中的多個(gè)P450、EST和UGT基因可能參與二化螟對(duì)殺蟲劑的解毒代謝,但關(guān)于二化螟對(duì)殺蟲劑解毒代謝的III相反應(yīng)研究卻鮮有報(bào)道[6,11-13]?!颈狙芯壳腥朦c(diǎn)】ABCB家族中的又稱P糖蛋白基因(P-glycoprotein gene,)。廣泛參與對(duì)藥物的轉(zhuǎn)運(yùn),是昆蟲中被研究最多的ABC基因,在多種昆蟲中參與對(duì)殺蟲劑的轉(zhuǎn)運(yùn)和抗藥性[10]。作為III相解毒代謝反應(yīng)中最重要的ABC基因之一,是否參與了二化螟對(duì)殺蟲劑的抗藥性還有待于進(jìn)一步研究?!緮M解決的關(guān)鍵問題】通過對(duì)二化螟克隆分析,明確其在二化螟中的表達(dá)模式以及在殺蟲劑誘導(dǎo)下的表達(dá)變化,通過對(duì)5′端轉(zhuǎn)錄調(diào)控區(qū)的序列分析,探索潛在的轉(zhuǎn)錄調(diào)控機(jī)制,為進(jìn)一步深入了解二化螟抗藥性機(jī)制打下基礎(chǔ)。
試驗(yàn)于2020年在揚(yáng)州大學(xué)園藝與植物保護(hù)學(xué)院農(nóng)藥分子靶標(biāo)與環(huán)境毒理實(shí)驗(yàn)室完成。
敏感品系二化螟試蟲在溫度為(28±1)℃,相對(duì)濕度為(70±5)%,光周期為16 h﹕8 h(光照﹕黑暗)的室內(nèi)培養(yǎng)箱中,使用人工飼料進(jìn)行飼養(yǎng)[14]。試蟲飼養(yǎng)過程中不接觸任何農(nóng)藥。
cDNA末端擴(kuò)增試劑盒SMARTer RACE 5′/3′ Kit、DNA聚合酶 LA Taq、cDNA第一鏈合成試劑盒PrimeScriptTM1st cDNA Synthesis Kit、RNA提取試劑盒Takara MiniBEST Universal RNA Extraction Kit、凝膠回收試劑盒Takara MiniBEST Agarose Gel DNA Extraction Kit、熒光定量反轉(zhuǎn)錄試劑盒PrimeScriptTMRT reagent Kit with gDNA Eraser和熒光定量試劑TB Green Premix Ex TaqTM等購自寶生物工程(大連)有限公司(Takara);昆蟲基因組提取試劑盒Insect DNA Kit(Omega)購于揚(yáng)州祥瑞生物科技有限公司;克隆載體pEASY-T1和感受態(tài)細(xì)胞Trans5購于北京全式金生物技術(shù)有限公司。95%氯蟲苯甲酰胺和93.7%阿維菌素原藥由揚(yáng)州大學(xué)園藝與植物保護(hù)學(xué)院馮建國老師提供。
在二化螟轉(zhuǎn)錄組中鑒定到若干注釋為的序列片段[15],進(jìn)一步通過與同源基因的序列比對(duì)和拼接,使用Primer premier 5軟件設(shè)計(jì)特異引物(表1)用于部分編碼區(qū)序列的擴(kuò)增。50 μL PCR體系中含有5 μL 10× LA PCR Buffer(Mg2+Plus),0.5 μL LA Taq(5 U·μL-1),上下游引物(10 μmol·L-1)各2 μL,8 μL dNTP Mixture(各2.5 nmol·L-1),cDNA模板2 μL,滅菌蒸餾水32.5 μL。PCR反應(yīng)條件為95℃預(yù)變性2 min;95℃變性10 s,60—55℃(每循環(huán)降低0.5℃)退火15 s,72℃延伸3 min,循環(huán)10次;95℃變性10 s,55℃退火15 s,72℃延伸3 min,循環(huán)25次;72℃延伸10 min。使用瓊脂糖凝膠電泳檢測PCR產(chǎn)物,對(duì)大小正確的DNA條帶進(jìn)行膠回收、連接到克隆載體并轉(zhuǎn)化感受態(tài)細(xì)胞。使用菌落PCR對(duì)挑選的單克隆進(jìn)行鑒定并測序。根據(jù)測序結(jié)果和cDNA末端擴(kuò)增試劑盒使用說明,設(shè)計(jì)特異引物(表1),用于5′端和3′端的序列擴(kuò)增。使用CLUSTAL W和DNAMAN 7.0軟件對(duì)克隆的基因序列進(jìn)行比對(duì)分析,使用在線軟件ExPASy Compute pI/Mw(http://ca.expasy. org/tools/pi_tool.html)對(duì)翻譯的蛋白質(zhì)分子質(zhì)量和等電點(diǎn)進(jìn)行預(yù)測。MEGA 7軟件用于昆蟲的進(jìn)化樹分析。NCBI序列分析軟件用于CsPgp保守結(jié)構(gòu)特征分析。
使用NCBI中二化螟基因組(Bioproject:PRJNA506136)的序列信息,分析基因組結(jié)構(gòu),并設(shè)計(jì)特異引物,以二化螟幼蟲DNA為模板,擴(kuò)增基因編碼區(qū)上游5′側(cè)翼區(qū)DNA序列。使用在線軟件JASPAR(http://jaspar.genereg.net)、ALLGEN(http://alggen.lsi.upc.es)、http://www.fruitfly.org/seq_ tools/promoter.html和http://www.softberry.com對(duì)克隆的5′側(cè)翼區(qū)DNA序列中的轉(zhuǎn)錄因子結(jié)合位點(diǎn)、啟動(dòng)子序列和轉(zhuǎn)錄起始位點(diǎn)進(jìn)行預(yù)測分析。
根據(jù)克隆獲得的序列信息,設(shè)計(jì)特異性引物,使用熒光定量PCR對(duì)在二化螟不同發(fā)育時(shí)期和不同組織中的表達(dá)量進(jìn)行分析。分別收集二化螟各齡期幼蟲、不同日齡蛹和成蟲,每5—8頭試蟲為一個(gè)樣品。在二化螟3齡幼蟲中分別解剖腦、神經(jīng)索、前腸、中腸、后腸、血淋巴、脂肪體、表皮和馬氏管組織,在羽化24 h的雌成蟲中解剖卵巢組織。每個(gè)樣品分別收集3個(gè)生物學(xué)重復(fù)。根據(jù)試劑盒說明書,使用Takara MiniBEST Universal RNA Extraction Kit試劑盒提取樣品RNA,并利用瓊脂糖凝膠檢測RNA的完整性。使用熒光定量反轉(zhuǎn)錄試劑盒PrimeScriptTMRT reagent Kit with gDNA Eraser合成用于基因表達(dá)量分析的cDNA模板,不同模板統(tǒng)一稀釋至100 ng·μL-1。熒光定量PCR反應(yīng)體系為10 μL 2×TB Green Premix Ex Taq,10 μmol·L-1的上下游引物各1 μL,cDNA模板2 μL,6 μL滅菌超純水。PCR反應(yīng)條件為95℃預(yù)變性2 min;95℃變性30 s,60℃退火30 s,40個(gè)循環(huán)。以二化螟中穩(wěn)定表達(dá)的為內(nèi)參基因[16-17]。使用2-??Ct方法計(jì)算靶標(biāo)基因在每個(gè)樣品中的相對(duì)表達(dá)量,使用one-way ANOVA 進(jìn)行差異顯著性分析與多重比較,試驗(yàn)數(shù)據(jù)以平均數(shù)±標(biāo)準(zhǔn)誤表示。
根據(jù)前期試驗(yàn)結(jié)果,分別配制含有LC30(0.092 mg·L-1)和LC70(0.47 mg·L-1)氯蟲苯甲酰胺[15]及含有0.05、0.15 mg·L-1阿維菌素的人工飼料。使用含有殺蟲劑的飼料及正常飼料處理二化螟3齡幼蟲,每個(gè)處理接入60頭幼蟲,重復(fù)3次。在處理12、24和36 h后收集樣品試蟲,每5頭二化螟幼蟲為一個(gè)樣品,用于的表達(dá)量分析。使用one-way ANOVA Tukey’s test進(jìn)行差異顯著性分析,試驗(yàn)數(shù)據(jù)以平均數(shù)±標(biāo)準(zhǔn)誤表示(*<0.05,**<0.01,***<0.001)。
克隆獲得4 584 bp全長cDNA序列,其中開放閱讀框3 780 bp,5′非翻譯區(qū)125 bp,3′非翻譯區(qū)679 bp(圖1-A)。編碼1 259個(gè)氨基酸,預(yù)測的蛋白質(zhì)分子質(zhì)量為137.8 kD,等電點(diǎn)為6.58。編碼蛋白具有ABC全轉(zhuǎn)運(yùn)體家族典型的結(jié)構(gòu)特征,包括兩個(gè)跨膜區(qū)和兩個(gè)核苷酸結(jié)合區(qū),以及核苷酸結(jié)合區(qū)中對(duì)底物轉(zhuǎn)運(yùn)具有重要功能的保守特征序列如Walker A、Walker B及D、H、P、Q-Loop等(圖1-A)。基因組結(jié)構(gòu)分析顯示,基因組全長38 596 bp,由23個(gè)外顯子構(gòu)成,外顯子平均長度175 bp(圖1-B)。對(duì)不同物種Pgp的進(jìn)化樹分析顯示,CsPgp與其他鱗翅目昆蟲Pgp共聚一支,具有較高的同源性(圖2)。
在幼蟲期的表達(dá)量較高,其中在幼蟲中期(3—4齡)具有最高的表達(dá)量(圖3)。在蛹期和成蟲期的表達(dá)量較低,且在不同時(shí)期的表達(dá)量差異不顯著。組織表達(dá)分析顯示,在測定的10個(gè)組織中均有表達(dá),其中在前腸和中腸組織中顯著高表達(dá),在脂肪體中的表達(dá)量最低(圖4)。
與對(duì)照組試蟲相比,使用0.05 mg·L-1劑量阿維菌素處理幼蟲12 h后,的表達(dá)量顯著降低,而在處理24 h和36 h后的表達(dá)量沒有發(fā)生顯著變化。當(dāng)使用0.15 mg·L-1劑量阿維菌素處理幼蟲12 h后,的表達(dá)量沒有發(fā)生顯著變化,但在處理24 h和36 h后的表達(dá)量分別增加至對(duì)照的2.2和2.8倍。分別使用LC30(0.092 mg·L-1)和LC70(0.47 mg·L-1)劑量的氯蟲苯甲酰胺處理幼蟲12 h和24 h后,幼蟲中的表達(dá)量均未發(fā)生顯著變化。但在處理36 h后,相比于對(duì)照,LC30處理組幼蟲中的表達(dá)量顯著增加至5.5倍,而LC70處理組幼蟲中的表達(dá)量則顯著降低(圖5)。
基于二化螟基因組序列信息,克隆了上游5′側(cè)翼區(qū)約2 000 bp DNA序列,并對(duì)序列中的轉(zhuǎn)錄因子結(jié)合位點(diǎn)、啟動(dòng)子序列及轉(zhuǎn)錄起始位點(diǎn)等轉(zhuǎn)錄調(diào)控元件進(jìn)行預(yù)測分析。分析結(jié)果顯示,在5′上游調(diào)控區(qū)中預(yù)測到一個(gè)潛在的啟動(dòng)子序列(Score=0.91)及多個(gè)轉(zhuǎn)錄因子結(jié)合位點(diǎn)(Score>0.8)(圖6)。預(yù)測的轉(zhuǎn)錄因子結(jié)合位點(diǎn)中包括5個(gè)Cnc::maf-S,3個(gè)EcR::usp及br、Deaf1、dl、tin、Dfd等。
A:CsPgp核酸序列及其編碼的氨基酸序列,深灰色背景標(biāo)注的為CsPgp跨膜區(qū)序列;淺灰色背景標(biāo)注的為CsPgp核苷酸結(jié)合區(qū),其中重要的結(jié)構(gòu)特征使用單下劃線標(biāo)出,斜體氨基酸為ATP結(jié)合位點(diǎn)Nucleotide and deduced amino acid sequences of CsPgp. The transmembrane domains are marked by dark grey background, and the nucleotide-binding domains are marked by light grey background. The important structural characteristics in nucleotide-binding domains are underlined, and the italic amino acids indicated as the binding sites of ATP。B:CsPgp基因組結(jié)構(gòu)Genomics structure of CsPgp。Intron:內(nèi)含子;Exon外顯子;UTR:非翻譯區(qū)Untranslated region
二化螟是水稻作物上最主要的害蟲之一,廣泛分布于亞洲地區(qū)。由于長期使用化學(xué)農(nóng)藥防治,目前我國一些地區(qū)二化螟田間種群已對(duì)氯蟲苯甲酰胺、阿維菌素等常用防治藥劑產(chǎn)生了不同水平的抗藥性[5-7]。根據(jù)2017—2019年有害生物抗藥性監(jiān)測結(jié)果,浙江、江西和湖南等部分地區(qū)二化螟種群對(duì)氯蟲苯甲酰胺處于高水平抗性,對(duì)阿維菌素處于中等至高水平抗性;江蘇、安徽、湖北和四川等部分地區(qū)二化螟種群對(duì)氯蟲苯甲酰胺處于敏感至中等水平抗性,對(duì)阿維菌素處于敏感水平;不同地區(qū)二化螟種群對(duì)氯蟲苯甲酰胺的抗性倍數(shù)逐年增加[2-4]。對(duì)二化螟抗藥性機(jī)制的研究發(fā)現(xiàn),在對(duì)氯蟲苯甲酰胺產(chǎn)生抗性的二化螟中,P450和EST的酶活性顯著增加,使用相應(yīng)的增效劑分別抑制P450、EST和UGT的酶活性后二化螟對(duì)氯蟲苯甲酰胺的敏感性顯著增加[6,11,13]。在二化螟抗性種群中4個(gè)P450基因(、、和)和2個(gè)UGT基因(和)顯著過表達(dá),使用RNA干擾分別沉默這6個(gè)基因均能顯著增加二化螟對(duì)氯蟲苯甲酰胺的敏感性[12-13]。此外,使用亞致死劑量氯蟲苯甲酰胺處理二化螟后,多個(gè)P450基因被誘導(dǎo)表達(dá),可能參與對(duì)氯蟲苯甲酰胺的解毒代謝[15]。對(duì)阿維菌素抗性機(jī)制研究發(fā)現(xiàn),氨基酸突變導(dǎo)致的靶標(biāo)敏感性降低和解毒代謝基因過表達(dá)造成的酶活性增強(qiáng)均能夠引起昆蟲和螨對(duì)阿維菌素產(chǎn)生抗藥性,但關(guān)于二化螟對(duì)阿維菌素的抗藥性機(jī)制卻仍不清楚[18-22]。
圖2 不同物種Pgp的進(jìn)化樹分析
柱上標(biāo)有不同字母表示CsPgp在不同組織表達(dá)量差異顯著(P<0.05) Histograms with different letters indicate significant difference of CsPgp expression in different tissues (P<0.05)。腦:brain;神經(jīng)索:nerve cord;前腸:foregut;中腸:midgut;后腸:hindgut;卵巢:ovary;馬氏管:Malpighian tubule;表皮:cuticula;血淋巴:hemolymph;脂肪體:fat body
研究表明,ABC轉(zhuǎn)運(yùn)蛋白中的參與調(diào)節(jié)昆蟲、螨蟲對(duì)殺蟲劑的轉(zhuǎn)運(yùn)代謝[10,23-24]。為進(jìn)一步探索是否參與III相解毒代謝反應(yīng)對(duì)氯蟲苯甲酰胺和阿維菌素的轉(zhuǎn)運(yùn)代謝,本研究克隆了全長序列并進(jìn)行分析。開放閱讀框由23個(gè)外顯子構(gòu)成,編碼1 259個(gè)氨基酸,包含兩個(gè)跨膜區(qū)和兩個(gè)核苷酸結(jié)合區(qū),屬于典型的全轉(zhuǎn)運(yùn)蛋白,在核苷酸結(jié)合區(qū)中含有對(duì)底物轉(zhuǎn)運(yùn)具有重要功能的所有保守特征序列[10]?;虮磉_(dá)分析顯示,主要在二化螟幼蟲期表達(dá),在3—4齡幼蟲中具有最高的表達(dá)量,在蛹期和成蟲期表達(dá)量較低,與棉鈴蟲()的表達(dá)模式相似[24]。但在小菜蛾()中在不同幼蟲期和蛹期的表達(dá)量差異不顯著[25]。組織表達(dá)分析中,主要在前腸和中腸表達(dá),小菜蛾同樣在中腸中顯著高表達(dá),而棉鈴蟲則在頭部和脂肪體中具有較高的表達(dá)量[24-25]。昆蟲食性和習(xí)性的不同可能是導(dǎo)致表達(dá)模式差異的原因,進(jìn)而造成在不同昆蟲中可能具有不同功能。
*表示存在顯著差異* indicates significant difference (* P<0.05; ** P<0.01; *** P<0.001)
單下劃線標(biāo)注的為預(yù)測的轉(zhuǎn)錄因子結(jié)合位點(diǎn)(Score>0.8),雙下劃線標(biāo)注的為預(yù)測的啟動(dòng)子序列(Score=0.91),其中粗體字母為預(yù)測的轉(zhuǎn)錄起始位點(diǎn)。以CsPgp編碼區(qū)起始密碼子的第一個(gè)堿基位置標(biāo)為“+1”,其上游堿基標(biāo)為“-” The predicted transcription factors are marked by single underline, and the predicted promoter sequence is marked by double underline. The transcription start site is indicated by bold letter. The first base of initiation code of CsPgp is indicated as “+1”, and its upstream sequences are indicated as “-”
與昆蟲的抗藥性機(jī)制相似,當(dāng)受到外界壓力脅迫如殺蟲劑暴露時(shí),昆蟲同樣可通過提高解毒代謝基因的表達(dá)來增加對(duì)壓力脅迫的抵抗能力[26]。與解毒代謝基因的持續(xù)過表達(dá)相比,誘導(dǎo)表達(dá)被認(rèn)為存在著一種代謝代價(jià),只有當(dāng)解毒代謝需要時(shí)才會(huì)激活解毒代謝基因的表達(dá)[27]。昆蟲中除了P450、GST等解毒代謝基因可被誘導(dǎo)表達(dá)外,ABC轉(zhuǎn)運(yùn)蛋白基因同樣可被殺蟲劑誘導(dǎo)表達(dá)[9-10,28-31]。前期研究發(fā)現(xiàn),二化螟中多個(gè)ABC轉(zhuǎn)運(yùn)蛋白基因可被亞致死劑量的氯蟲苯甲酰胺誘導(dǎo)表達(dá),其中()在處理后24 h輕微上調(diào)表達(dá)[9]。本研究發(fā)現(xiàn),使用LC30和LC70劑量氯蟲苯甲酰胺分別處理二化螟幼蟲12 h和24 h后,的表達(dá)水平未發(fā)生顯著變化。但在處理36 h后,LC30處理組試蟲顯著上調(diào)表達(dá),而在較高的藥劑濃度LC70處理組中,可能由于試蟲的生理進(jìn)程遭受嚴(yán)重破壞而導(dǎo)致顯著下調(diào)表達(dá)。說明不同藥劑濃度處理下試蟲生理進(jìn)程的不同可能造成的可誘導(dǎo)性存在差異,CsPgp可能參與二化螟對(duì)氯蟲苯甲酰胺的轉(zhuǎn)運(yùn)代謝。使用0.05 mg·L-1的阿維菌素處理二化螟12 h后顯著下調(diào)表達(dá),在處理24 h和36 h后的表達(dá)量沒有發(fā)生顯著變化,可能是使用的藥劑濃度太低,不能夠?qū)Ξa(chǎn)生有效的誘導(dǎo)作用。但使用0.15 mg·L-1的阿維菌素處理二化螟24 h和36 h后被顯著誘導(dǎo)上調(diào)表達(dá)。在小菜蛾、棉鈴蟲和朱砂葉螨()中同樣發(fā)現(xiàn)可被阿維菌素誘導(dǎo)表達(dá)[22,24,32]。此外,使用RNA干擾減少的表達(dá)顯著增加了阿維菌素對(duì)棉鈴蟲致死率[24],CRISPR/Cas9介導(dǎo)的基因敲除顯著增加了甜菜夜蛾()對(duì)阿維菌素的敏感性[33]。這些結(jié)果說明包括二化螟在內(nèi)的多種昆蟲的參與了對(duì)阿維菌素的解毒代謝。
基因的轉(zhuǎn)錄表達(dá)受到多種作用因子的影響,如反式作用因子、順式作用元件等。反式作用因子也稱轉(zhuǎn)錄因子,是一類在細(xì)胞核內(nèi)與特異靶標(biāo)基因結(jié)合激活或抑制靶標(biāo)基因轉(zhuǎn)錄的DNA結(jié)合蛋白[34]。目前在昆蟲中已發(fā)現(xiàn)多種轉(zhuǎn)錄因子參與調(diào)控昆蟲解毒代謝基因的轉(zhuǎn)錄表達(dá),如Cap ‘n’ collar isoform C(CncC)[8,35-36]。使用溴氰菊酯處理黑腹果蠅()胚胎細(xì)胞可誘導(dǎo)的表達(dá),并進(jìn)一步引起解毒代謝和抗氧化基因的上調(diào)表達(dá)從而增加細(xì)胞對(duì)殺蟲劑的解毒和耐受能力[37]。使用氯蟲苯甲酰胺或辛硫磷處理家蠶()均能引起CncC在mRNA和蛋白質(zhì)表達(dá)水平發(fā)生變化,并引起下游解毒代謝基因的上調(diào)表達(dá)進(jìn)而增加P450和GST的酶活性[38-39]。斜紋夜蛾()中,可被茚蟲威誘導(dǎo)表達(dá)并通過參與調(diào)控多個(gè)解毒代謝基因的過表達(dá)介導(dǎo)斜紋夜蛾對(duì)茚蟲威的抗藥性[40]。本研究中,通過對(duì)5′端轉(zhuǎn)錄調(diào)控區(qū)序列分析,發(fā)現(xiàn)多個(gè)轉(zhuǎn)錄因子結(jié)合位點(diǎn),其中包括5個(gè)Cnc::maf-S(即CncC)結(jié)合位點(diǎn)。此外,使用氯蟲苯甲酰胺處理顯著上調(diào)了在二化螟中的表達(dá)水平(未發(fā)表數(shù)據(jù))。這些結(jié)果說明可能受到轉(zhuǎn)錄因子CncC的轉(zhuǎn)錄調(diào)控,從而介導(dǎo)二化螟對(duì)殺蟲劑的解毒代謝。
二化螟由23個(gè)外顯子組成,編碼的蛋白質(zhì)具有ABC轉(zhuǎn)運(yùn)蛋白家族典型的結(jié)構(gòu)特征。主要在幼蟲的前腸和重要解毒代謝組織中腸中高表達(dá),并且能夠被殺蟲劑氯蟲苯甲酰胺和阿維菌素誘導(dǎo)上調(diào)表達(dá),說明可能參與對(duì)氯蟲苯甲酰胺和阿維菌素的解毒代謝。5′端轉(zhuǎn)錄調(diào)控區(qū)中含有多個(gè)轉(zhuǎn)錄因子CncC結(jié)合位點(diǎn),可能對(duì)的轉(zhuǎn)錄表達(dá)具有重要作用。推測在殺蟲劑脅迫下二化螟可能通過CncC調(diào)控的轉(zhuǎn)錄表達(dá),從而增加其對(duì)殺蟲劑的解毒代謝。
[1] 劉萬才, 劉振東, 黃沖, 陸明紅, 劉杰, 楊清坡. 近10年農(nóng)作物主要病蟲害發(fā)生危害情況的統(tǒng)計(jì)和分析. 植物保護(hù), 2016, 42(5): 1-9.
LIU W C, LIU Z D, HUANG C, LU M H, LIU J, YANG Q P. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years. Plant Protection, 2016, 42(5): 1-9. (in Chinese)
[2] 全國農(nóng)業(yè)技術(shù)推廣服務(wù)中心. 2017年全國農(nóng)業(yè)有害生物抗藥性監(jiān)測結(jié)果及科學(xué)用藥建議. 中國植保導(dǎo)刊, 2018, 38(4): 52-56.
National Agricultural Technology Extension Service Center. Monitoring results of pesticide resistance of agricultural pests and suggestions for scientific pesticide use in China in 2017. China Plant Protection, 2018, 38(4): 52-56. (in Chinese)
[3] 全國農(nóng)業(yè)技術(shù)推廣服務(wù)中心. 2018年全國農(nóng)業(yè)有害生物抗藥性監(jiān)測結(jié)果及科學(xué)用藥建議. 中國植保導(dǎo)刊, 2019, 39(3): 63-67, 72.
National Agricultural Technology Extension Service Center. Monitoring results of pesticide resistance of agricultural pests and suggestions for scientific pesticide use in China in 2018. China Plant Protection, 2019, 39(3): 63-67, 72. (in Chinese)
[4] 全國農(nóng)業(yè)技術(shù)推廣服務(wù)中心. 2019年全國農(nóng)業(yè)有害生物抗藥性監(jiān)測結(jié)果及科學(xué)用藥建議. 中國植保導(dǎo)刊, 2020, 40(3): 64-69.
National Agricultural Technology Extension Service Center. Monitoring results of pesticide resistance of agricultural pests and suggestions for scientific pesticide use in China in 2019. China Plant Protection, 2020, 40(3): 64-69. (in Chinese)
[5] WEI Y B, YAN R, ZHOU Q L, QIAO L Y, ZHU G N, CHEN M L. Monitoring and mechanisms of chlorantraniliprole resistance in(Lepidoptera: Crambidae) in China. Journal of Economic Entomology, 2019, 112(3): 1348-1353.
[6] LU Y H, WANG G R, ZHONG L Q, ZHANG F C, BAI Q, ZHENG X S, LU Z X. Resistance monitoring of(Walker) (Lepidoptera: Crambidae) to chlorantraniliprole in eight field populations from east and central China. Crop Protection, 2017, 100: 196-202.
[7] MAO K K, LI W H, LIAO X, LIU C Y, QIN Y, REN Z J, QIN X Y, WAN H, SHENG F, LI J H. Dynamics of insecticide resistance in different geographical populations of(Lepidoptera: Crambidae) in China 2016-2018. Journal of Economic Entomology, 2019, 112(4): 1866-1874.
[8] KALSI M, PALLI S R. Cap n collar transcription factor regulates multiple genes coding for proteins involved in insecticide detoxification in the red flour beetle,. Insect Biochemistry and Molecular Biology, 2017, 90: 43-52.
[9] MENG X K, YANG X M, WU Z L, SHEN Q W, MIAO L J, ZHENG Y, QIAN K, WANG J J. Identification and transcriptional response of ATP-binding cassette transporters to chlorantraniliprole in the rice striped stem borer,. Pest Management Science, 2020, 76(11): 3626-3635.
[10] DERMAUW W, VAN LEEUWEN T. The ABC gene family in arthropods: Comparative genomics and role in insecticide transport and resistance.Insect Biochemistry and Molecular Biology, 2014, 45: 89-110.
[11] SUN Y, XU L, CHEN Q, QIN W J, HUANG S J, JIANG Y, QIN H G. Chlorantraniliprole resistance and its biochemical and new molecular target mechanisms in laboratory and field strains of(Walker). Pest Management Science, 2018, 74(6): 1416-1423.
[12] XU L, ZHAO J, SUN Y, XU D J, XU G C, XU X L, ZHANG Y L,HUANG S J, HAN Z J, GU Z Y. Constitutive overexpression of cytochrome P450 monooxygenase genes contributes to chlorantraniliprole resistance in(Walker). Pest Management Science, 2019, 75(3): 718-725.
[13] ZHAO J, XU L, SUN Y, SONG P P, HAN Z J. UDP-glycosyltransferase genes in the striped rice stem borer,(Walker), and their contribution to chlorantraniliprole resistance. International Journal of Molecular Sciences, 2019, 20(5): 1064.
[14] 李波, 韓蘭芝, 彭于發(fā). 二化螟人工飼養(yǎng)技術(shù). 應(yīng)用昆蟲學(xué)報(bào), 2015, 52(2): 498-503.
LI B, HAN L Z, PENG Y F. Development of a standardized artificial diet and rearing technique for the striped stem borer,Walker (Lepidoptera: Crambidae). Chinese Journal of Applied Entomology, 2015, 52(2): 498-503. (in Chinese)
[15] MENG X K, DONG F, QIAN K, MIAO L J, YANG X M,GE H C,WU Z L, WANG J J. Transcriptome analysis reveals global gene expression changes ofin response to sublethal dose of chlorantraniliprole. Chemosphere, 2019, 234: 648-657.
[16] 徐紅星, 王國榮, 魯艷輝, 楊亞軍, 鄭許松, 田俊策, 呂仲賢. 二化螟實(shí)時(shí)熒光定量PCR內(nèi)參基因篩選和表達(dá)穩(wěn)定性評(píng)價(jià). 中國水稻科學(xué), 2019, 33(1): 75-84.
XU H X, WANG G R, LU Y H, YANG Y J, ZHENG X S, TIAN J C, Lü Z X. Screening reference genes and evaluating of their expression stability for qRT-PCR normalization in(Lepidoptera: Pyralididae). Chinese Journal of Rice Science, 2019, 33(1): 75-84.(in Chinese)
[17] XU J, LU M X, CUI Y D, DU Y Z. Selection and evaluation of reference genes for expression analysis using qRT-PCR in(Lepidoptera: Pyralidae). Journal of Economic Entomology, 2017, 110(2): 683-691.
[18] DERMAUW W, ILIAS A, RIGA M, Tsagkarakou A, GRBIC M, TIRRY L, VAN LEEUWEN T, VONTAS J. The cys-loop ligand-gated ion channel gene family of: Implications for acaricide toxicology and a novel mutation associated with abamectin resistance. Insect Biochemistry and Molecular Biology, 2012, 42(7): 455-465.
[19] LIAO C Y, XIA W K, FENG Y C, LI G, LIU H, DOU W, WANG J J. Characterization and functional analysis of a novel glutathione-transferase gene potentially associated with the abamectin resistance in(McGregor). Pesticide Biochemistry and Physiology, 2016, 132: 72-80.
[20] RIGA M, TSAKIRELI D, ILIAS A, MOROU E, MYRIDAKIS A, STEPHANOU E G, NAUEN R, DERMAUW W, VAN LEEUWEN T, PAINE M, VONTAS J. Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in. Insect Biochemistry and Molecular Biology, 2014, 46: 43-53.
[21] WANG X L, PUINEAN A M, O’REILLY A O, WILLIAMSON M S, SMELT C L C, MILLAR N S, WU Y D. Mutations on M3 helix ofglutamate-gated chloride channel confer unequal resistance to abamectin by two different mechanisms. Insect Biochemistry and Molecular Biology, 2017, 86: 50-57.
[22] YIN Q, QIAN L, SONG P P, JIAN T Y, HAN Z J. Molecular mechanisms conferring asymmetrical cross-resistance between tebufenozide and abamectin in. Journal of Asia-Pacific Entomology, 2019, 22(1): 189-193.
[23] LUO L, SUN Y J, WU Y J. Abamectin resistance inis related to increased expression of P-glycoprotein via the dEGFR and dAkt pathways. Insect Biochemistry and Molecular Biology, 2013, 43(8): 627-634.
[24] XIANG M, ZHANG L, LU Y, TANG Q L, LIANG P, SHI X Y, SONG D L, GAO X W. A P-glycoprotein gene serves as a component of the protective mechanisms against 2-tridecanone and abamectin in. Gene, 2017, 627: 63-71.
[25] TIAN L X, YANG J Q, HOU W J, XU B Y, XIE W, WANG S L, ZHANG Y J, ZHOU X G, WU Q J. Molecular cloning and characterization of a P-glycoprotein from the diamondback moth,(Lepidoptera: Plutellidae). International Journal of Molecular Sciences, 2013, 14(11): 22891-22905.
[26] ENDERS L S, RAULT L C, HENG-MOSS T M, SIEGFRIED B D, MILLER N J. Transcriptional responses of soybean aphids to sublethal insecticide exposure. Insect Biochemistry and Molecular Biology, 2020, 118: 103285.
[27] TERRIERE L C. Induction of detoxication enzymes in insects.Annual Review of Entomology, 1984, 29: 71-88.
[28] HE C, LIANG J J, LIU S N, WANG S L,WU Q J, XIE W, ZHANG Y J. Changes in the expression of four ABC transporter genes in response to imidacloprid inQ (Hemiptera: Aleyrodidae). Pesticide Biochemistry and Physiology, 2019, 153: 136-143.
[29] JIN M H, LIAO C Y, CHAKRABARTY S, ZHENG W G, WU K M, XIAO Y T. Transcriptional response of ATP-binding cassette (ABC) transporters to insecticides in the cotton bollworm,. Pesticide Biochemistry and Physiology, 2019, 154: 46-59.
[30] MERZENDORFER H. ABC transporters and their role in protecting insects from pesticides and their metabolites//COHEN E. Target Receptors in the Control of Insect Pests: Part II. 2014, 46: 1-72.
[31] SUN H, PU J, CHEN F, WANG J D, HAN Z J. Multiple ATP-binding cassette transporters are involved in insecticide resistance in the small brown planthopper,. Insect Molecular Biology, 2017, 26(3): 343-355.
[32] XU Z F, SHI L, PENG J F, SHEN G M, WEI P, WU Q, HE L. Analysis of the relationship between P-glycoprotein and abamectin resistance in(Boisduval). Pesticide Biochemistry and Physiology, 2016, 129:75-82.
[33] ZUO Y Y, HUANG J L, WANG J, FENG Y, HAN T T, WU Y D, YANG Y H. Knockout of a P-glycoprotein gene increases susceptibility to abamectin and emamectin benzoate in. Insect Molecular Biology, 2018, 27(1): 36-45.
[34] BAKSHI M, OELMüLLER R. WRKY transcription factors: Jack of many trades in plants. Plant Signaling and Behavior, 2014, 9(2): e27700.
[35] HU B, HU S Z, HUANG H, WEI Q, REN M M, HUANG S F, TIAN X R, SU J Y. Insecticides induce the co-expression of glutathione-transferases through ROS/CncC pathway in. Pesticide Biochemistry and Physiology, 2019, 155: 58-71.
[36] WILDING C S. Regulating resistance: CncC:Maf, antioxidant response elements and the overexpression of detoxification genes in insecticide resistance. Current Opinion in Insect Science, 2018, 27: 89-96.
[37] CHEN L, ZHANG T T, GE M Y, LIU Y H, XING Y P, LIU L, LI F L,CHENG L G. The Nrf2-Keap1 pathway: A secret weapon against pesticide persecution inKc cells.Pesticide Biochemistry and Physiology, 2020, 164: 47-57.
[38] CHENG X Y, HU J H, LI J X, CHEN J, WANG H, MAO T T, XUE B, Li B. The silk gland damage and the transcriptional response to detoxifying enzymes-related genes ofunder phoxim exposure. Chemosphere, 2018, 209: 964-971.
[39] MAO T T, LI F C, FANG Y L, WANG H, CHEN J, LI M X, LU Z T, QU J W, LI J X, HU J H, CHENG X Y, NI M, LI B. Effects of chlorantraniliprole exposure on detoxification enzyme activities and detoxification-related gene expression in the fat body of the silkworm,. Ecotoxicology and Environmental Safety, 2019, 176: 58-63.
[40] SHI L, SHI Y, LIU M F, ZHANG Y, LIAO X L. Transcription factor CncC potentially regulates the expression of multiple detoxification genes that mediate indoxacarb resistance in. Insect Science, 2021, https://doi.org/10.1111/1744-7917.12860.
Cloning and Analysis of P-glycoprotein gene and its transcriptional response to insecticide in
MENG Xiangkun, WU Zhaolu, YANG Xuemei, GUAN Daojie, WANG Jianjun
College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu
【】Thewas cloned from, and the molecular characteristics and expression profiles ofwere analyzed. Transcriptional responses as well as the potential transcriptional regulation mechanism ofto two common used insecticides (chlorantraniliprole and abamectin) were also studied.【】The full length ofwas cloned fromusing the gene cloning technology. The molecular characteristics and the transcription factor binding sites in 5′ transcriptional regulatory region ofwere analyzed employing the bioinformatics technologies. Expression profiles ofin different stages and tissues of, and the transcriptional responses ofto different doses of chlorantraniliprole and abamectin treatment were determined using the real-time quantitative PCR.【】The full length ofcdna is 4 584 bp and consists of 23 exons. The encoding protein has 1 259 amino acids containing two transmembrane regions and two nucleotide binding domains and the typical structural features of ABC transporter family such as the Walker A, Walker B and D, H, P, Q-Loop which have important function in substrate transfer.was mainly expressed in larval stage of, especially in the 3rd and 4th instar larvae, whileshowed low expression levels in the pupal and adult stages. Analysis of the tissue expressions showed thatwas predominately expressed in the foregut and midgut, and had very low expression levels in other tissues including hindgut, fat body and malpighian tubule. No significant change ofexpression was found in the 3rd instar larvae ofafter treated with LC30and LC70of chlorantraniliprole for 12 and 24 h, respectively, when compared with the control groups. However, the expressions ofwere significantly up-regulated in larvae after treated with LC30of chlorantraniliprole for 36 h, while the expressions ofwere significantly down-regulated in larvae after treated with LC70of chlorantraniliprole for 36 h. In the 0.05 mg·L-1of abamectin treatment,was remarkably down-regulated at 12 h post-treatment, while the expressions ofwere not significantly changed at 24 and 36 h post-treatment, respectively. However,was significantly induced in larvae after treated with 0.15 mg·L-1of abamectin for 24 and 36 h, respectively. Sequence analysis of the 5′ transcriptional regulatory region ofshowed that multiple transcription factor binding sites were predicted in the 5′ transcriptional regulatory region of, including five potential CncC binding sites.【】was highly expressed in the midgut ofand could be induced by chlorantraniliprole and abamectin, which indicated thatmight involve in the detoxification metabolism of chlorantraniliprole and abamectin in. Multiple CncC binding sites were found in the 5′ transcriptional regulatory region ofwhich might have important regulatory effects on the expression of. It was speculated thatmight be regulated by transcription factor CncC and participated in the detoxification metabolism of chlorantraniliprole or abamectin whenwas exposed to chlorantraniliprole or abamectin.
; P-glycoprotein; molecular characteristic; insecticide induction; transcriptional regulation
10.3864/j.issn.0578-1752.2021.19.008
2021-02-06;
2021-02-27
國家自然科學(xué)基金青年基金(31701807)、江蘇省自然科學(xué)基金青年基金(BK20170491)
孟祥坤,E-mail:mxk@yzu.edu.cn。通信作者王建軍,E-mail:wangjj@yzu.edu.cn
(責(zé)任編輯 岳梅)