王貴欣,李晨玥,黃心怡,楊柳依,韋 雙,郝虎明,敬娜娜
鎳鈷錳酸鋰電極材料改性研究進(jìn)展*
王貴欣?,李晨玥,黃心怡,楊柳依,韋 雙,郝虎明,敬娜娜
(四川大學(xué) 化學(xué)工程學(xué)院,成都 610065)
鎳鈷錳酸鋰(LiNiCoMn1??O2,NCM)是一種具有高使用容量的三元正極材料,但存在元素混排、相變、熱穩(wěn)定性差、微裂紋等缺陷,導(dǎo)致電池出現(xiàn)容量衰減和安全問題,影響其廣泛應(yīng)用。針對目前三元材料存在的問題,歸納總結(jié)了特殊結(jié)構(gòu)與形貌、摻雜、替代、包覆、修飾、復(fù)合等改性方法的最新研究進(jìn)展,探討了不同方法對材料電化學(xué)性能、循環(huán)穩(wěn)定性和安全性的影響,分析比較了不同方法的優(yōu)缺點(diǎn)。結(jié)合材料、電化學(xué)、熱和力等多學(xué)科知識及本課題組利用負(fù)熱膨脹材料對能源材料改性的研究成果,提出了原位利用電極循環(huán)過程中的熱調(diào)控形變和界面行為改善材料性能的新思路,為解決電池的熱失控和應(yīng)力等安全問題提供參考。
鎳鈷錳酸鋰;改性;熱和形變調(diào)控;電化學(xué)性能;安全
能量密度和安全性對鋰離子電池的應(yīng)用至關(guān)重要,受電極材料和電解液的影響較大。常見的LiFePO4、LiCoO2、LiNiCoM1??O2(NCM; M = Mn, Al; 0 <,< 1)等正極材料中,三元材料LiNiCoMn1??O2因可利用容量高和能量密度大而備受關(guān)注[1-5]。NCM兼有LiNiO2、LiCoO2、LiMnO2等層狀材料的優(yōu)點(diǎn),目前朝著高鎳、低鈷方向發(fā)展,市場上的常見類型及不同成分之間的相互影響見圖1。NCM具有六邊-NaFeO2型層狀巖鹽結(jié)構(gòu),空間群為[1-5],過渡金屬離子占據(jù)3b空位形成二維交替層,與O2?共同組成MO6八面體結(jié)構(gòu);O2?占據(jù)八面體的6c位形成立方密堆陣列;Li+占據(jù)剩下的3a空位,位于八面體層之間,在層間可逆地嵌入和脫出。高電壓的氧化還原對和緊湊的結(jié)構(gòu)使NCM具有較高的工作電壓和比能量[6-8]。NCM材料中,Co為+3價,Mn為+4價,Ni是主要電化學(xué)活性物質(zhì),為+2、+3價,其含量決定材料的容量,含量增加可提高容量[1-5]。但是,Ni在循環(huán)過程中會產(chǎn)生Ni2+,Ni2+與Li+半徑接近,會引發(fā)Li-Ni混排[5],導(dǎo)致循環(huán)性能下降。Co、Ni是同周期相鄰元素,Co的加入不改變?nèi)牧蠈訝罱Y(jié)構(gòu),且Co3+半徑(0.055 nm)比Ni3+的(0.056 nm)小,因此Co的加入使材料晶格參數(shù)和減少,進(jìn)而減少各向異性和陽離子混排[9],降低晶胞體積和阻抗,提高電導(dǎo)率[10],但是Co價格比Ni高,會增加成本。Mn是非電化學(xué)活性物質(zhì),在充電過程中保持+4價不變,主要起穩(wěn)定結(jié)構(gòu)的作用,抑制層狀結(jié)構(gòu)到尖晶石結(jié)構(gòu)的相變[11-13],但Mn含量過高易出現(xiàn)尖晶石相,破壞材料的層狀結(jié)構(gòu)[14-16]。Ni、Co和Mn三種元素之間存在協(xié)同作用,各有優(yōu)缺點(diǎn)且相互協(xié)調(diào),形成具有優(yōu)良性能的NCM正極材料。
圖1 NCM中不同成分間的關(guān)系及相互影響示意圖
然而,NCM仍存在LiNiO2、LiCoO2、LiMnO2的固有缺陷,在使用過程中存在元素混排、相變、熱穩(wěn)定性差、微裂紋等導(dǎo)致的庫侖效率低、容量衰減、高溫適應(yīng)性和安全差等問題,阻礙了其廣泛應(yīng)用,研究者多采用改性提高性能。本文綜述了NCM材料改性的最新研究進(jìn)展,結(jié)合多學(xué)科知識和實(shí)驗(yàn)室工作,展望了NCM的發(fā)展方向。全文導(dǎo)圖如圖2所示,一種改性措施可提高材料不同方面的性能。
圖2 NCM改性示意圖
NCM的Ni2+未完全氧化成Ni3+,部分Ni3+的位置被Ni2+占據(jù),為了維持電荷平衡,Ni2+占據(jù)部分Li+的位置。雖然Ni2+(0.068 nm)與Li+(0.076 nm)的半徑小,Ni2+占據(jù)Li+的位置時,層間距減小,但是容易產(chǎn)生鋰鎳混排[5]。另外,充電過程中Ni2+被氧化成Ni3+和Ni4+,失去電子后的離子半徑進(jìn)一步縮小,晶體空間會產(chǎn)生局部塌陷[16],阻礙Li+遷移,增大阻抗,降低循環(huán)穩(wěn)定性。NCM充電時Li+脫出形成Li+空位,放電時Li+卻不能完全嵌入,而Ni2+占據(jù)Li+空位進(jìn)一步阻礙了Li+遷移,增加不可逆容量,降低首次庫侖效率[17]。
Li+脫嵌使NCM的體積膨脹和收縮達(dá)3.9%[22],內(nèi)部晶界附近出現(xiàn)晶格膨脹和收縮裂紋,生成晶間微裂紋,造成初級粒子分離、電接觸損失,被視為陰極容量衰減的一個主要原因[21-23]。另外,NCM單晶晶胞極化過程中相鄰層之間存在平面滑移的不均勻運(yùn)動,與循環(huán)晶體和多晶NMC顆粒沿晶間邊界開裂完全不同,平面滑移導(dǎo)致材料側(cè)面出現(xiàn)寬大的晶體臺階,從4.2 V充電至4.5 V時,出現(xiàn)更多的平面滑移(約83 nm),產(chǎn)生平面滑移的微裂紋[24]。微裂紋網(wǎng)絡(luò)為電解液提供了通道與場所,滲透的電解液加速了微裂紋表面的降解,如圖3所示[25]。
圖3 NCM材料的微裂紋容量衰減機(jī)制[25]
熱失控是目前研究較多的電池安全問題,高電壓、高溫下,電池極化程度增加,不可逆熱增大,誘發(fā)熱失控[26]。另外,NCM存在H2到H3的相變,引起有害晶格收縮或膨脹[27],微裂紋暴露在電解液中,造成電極材料粉化,并伴隨著晶格氧的逸出,晶胞參數(shù)的改變和裂紋產(chǎn)生導(dǎo)致更多內(nèi)部顆粒暴露出來[28],繼而又與電解液作用,降低材料熱穩(wěn)定性,釋放更多的熱量和氧,而且相變溫度越低,熱分解溫度越低[29],因此電解液氧化也是電池?zé)崾Э氐囊粋€重要原因[30]。
針對上述問題,目前提高NCM材料性能的主要方法是改性,通常包括特殊結(jié)構(gòu)或形貌、摻雜或替代、修飾、復(fù)合等方法。
為解決NCM在循環(huán)過程中Li+脫嵌動力學(xué)差、釋放氧、熱失控、脹氣、燃燒、爆炸等問題,可設(shè)計具有特殊結(jié)構(gòu)(如核殼結(jié)構(gòu)、濃度梯度等)和形貌(如球形、纖維等)的NCM材料[1-5,31-33]。核殼結(jié)構(gòu)以鎳為核,以錳為殼,利用非電化學(xué)活性物質(zhì)的穩(wěn)定性抑制相變與混排,既提高容量,又穩(wěn)定結(jié)構(gòu)。核殼結(jié)構(gòu)NCM811經(jīng)過500次循環(huán)后容量保持率約86%(比未改性的材料提高了29%),而且能有效降低鋰鎳混排,減少鎳與電解液間的副反應(yīng),抑制副反應(yīng)的示意圖如圖4[33]。核殼結(jié)構(gòu)雖然可以改善NCM的穩(wěn)定性,但是核殼間存在明顯界面缺陷,高溫煅燒后的核體積變化可達(dá)9% ~ 10%,而殼體積變化僅2% ~ 3%,體積變化的差異導(dǎo)致核殼結(jié)構(gòu)的核層與殼層空隙逐漸變大,最終產(chǎn)生內(nèi)應(yīng)力大、界面分離、過渡金屬組分突變等問題,無法保證長期循環(huán)穩(wěn)定性;此外,核殼結(jié)構(gòu)的空隙使Li+和電子的擴(kuò)散通道消失,Li+傳輸過程受阻,材料的電導(dǎo)率降低[31-32]。
圖4 核殼結(jié)構(gòu)抑制NCM811副反應(yīng)示意圖[33]
為了彌補(bǔ)核殼結(jié)構(gòu)的缺陷并抑制容量衰減,具有濃度梯度(以Ni為核、元素含量沿半徑由內(nèi)向外逐漸變化)的NCM引起了研究者們的重視。在從內(nèi)到外的梯度層中,Ni含量逐漸減少,Co和Mn含量逐漸增加,避免了核殼結(jié)構(gòu)成分不匹配、體積收縮比差異等問題,改善了電化學(xué)性能。全濃度梯度(full concentration gradient, FCG)的NCM顆粒示意圖如圖5所示[34],材料層狀結(jié)構(gòu)完整,從核到殼,Mn、Co含量逐漸升高,Ni含量逐漸降低。準(zhǔn)濃度梯度的多殼結(jié)構(gòu)NCM循環(huán)500次后也能保持80%的容量[35]。與非梯度NCM相比,F(xiàn)CG材料的Li+擴(kuò)散和電子轉(zhuǎn)移容易,放電容量高,循環(huán)后的容量保持率高,鋰鎳混排低,熱分解溫度高,具有優(yōu)異的結(jié)構(gòu)穩(wěn)定性、倍率性能和熱安全性能。通過微結(jié)構(gòu)調(diào)控,發(fā)展氧穩(wěn)定晶面,可以抑制微裂紋和氧的析出[31],有利于提高NCM的性能。
圖5 從內(nèi)到外鎳濃度降低、錳濃度增加的全濃度梯度鋰過渡金屬氧化物顆粒示意圖[34]
特殊結(jié)構(gòu)或形貌不需要外加其他物質(zhì),能一定程度上提高NCM的循環(huán)穩(wěn)定性和熱穩(wěn)定性,但是存在結(jié)構(gòu)、濃度等精準(zhǔn)調(diào)控難的問題。
用其他元素離子對NCM進(jìn)行體相摻雜(包括陽離子摻雜、陰離子摻雜和多種離子共摻雜)[36-45]或取代Ni2+和Li+[16,46-47],阻礙Ni2+進(jìn)入鋰位,提高材料電子電導(dǎo)率,降低混排(離子混排程度用(003)/(104)和/值評價,當(dāng)(003)/(104)> 1.2、/> 4.9時,混排程度低[3]),穩(wěn)定晶體結(jié)構(gòu)。NCM的常見摻雜陽離子元素有Mg[36,38-39]、Al[36-37]、Ti[36]、Ta[36]、W[40]、Zr[41]、Nb[45]等。Mg2+半徑(0.072 nm)大于Ni2+的半徑(0.068 nm),增大NCM的/值,易形成有序?qū)訝罱Y(jié)構(gòu),循環(huán)350次后仍有81%的容量保持率,高于改性前的67%,提高了循環(huán)穩(wěn)定性[39]。1%的W能提高不同NCM的循環(huán)穩(wěn)定性,經(jīng)過1 000次循環(huán),比容量衰減非常小[40];梯度摻雜Zr4+的NCM材料,在不降低容量的情況下,提高了倍率和循環(huán)性能,外層摻雜的Zr4+會同時占據(jù)鎳位和鋰位,在表面形成快離子導(dǎo)體,過渡層的Zr4+因Zr-O之間較強(qiáng)的化學(xué)鍵,提高了晶體結(jié)構(gòu)的穩(wěn)定性,在脫/嵌鋰過程中起支撐作用,降低陽離子混排[41]。
相對于陽離子摻雜的多樣性,陰離子摻雜目前主要以Si[36]、B[42]、F[43-44]元素為主。B摻雜能改變Li[Ni0.90Co0.05Mn0.05]O2(NCM90)的表面能和次級粒子內(nèi)部的微觀結(jié)構(gòu)(圖6),緩解NCM90在鋰化/脫鋰過程中的應(yīng)變,提高循環(huán)性能[42]。當(dāng)F?取代O2?時,臨近F?的O2?將得到更少的負(fù)電荷,臨近F?的Ni2+將獲得更多的正電荷,有利于提高Li+輸運(yùn)的陽離子混合值,增大反位濃度,適量的反電勢可以提高NCM的動力學(xué)特性和顆粒界面穩(wěn)定性[43]。摻雜1% F?的NCM具有最佳倍率性能,抑制了容量快速衰減,提高了循環(huán)性能,在3.0 ~ 4.5 V循環(huán)300次后,容量保持率達(dá)81.1%,高于原先的35.1%[44]。
當(dāng)單一元素?fù)诫s不能達(dá)到預(yù)期效果時,人們嘗試多元素共摻雜或共替代的方法。Al/Mg共取代的NCM材料中,Al3+以固溶體形式溶于過渡金屬層,Mg2+占據(jù)Li+位使得Ni2+在鋰層的含量大幅降低,穩(wěn)定了晶體結(jié)構(gòu),降低了混排程度[46];Fe/Al元素共取代改性將NCM的首次放電容量提高了22%[47]; F/Mg元素共摻雜的NCM首次庫侖效率高達(dá)98.6%,100次循環(huán)后容量保持率為96.3%,循環(huán)性能優(yōu)異[48]。
圖6 硼摻雜對NCM90結(jié)構(gòu)的影響[42]
摻雜能有效提高NCM的循環(huán)性能,但由于部分摻雜元素不具備電化學(xué)活性、元素分布難調(diào)控,電池首充比容量隨著摻雜量的增加會有所下降,因此根據(jù)不同元素調(diào)配適合NCM材料的摻入量、摻雜方式及元素分布是研究的重點(diǎn)。
作為抑制NCM不可逆相變和表面副反應(yīng)的一種有效方法,將其他物質(zhì)部分或全部覆蓋在NCM表面,阻止電解液與材料接觸及微裂紋產(chǎn)生,目前應(yīng)用較廣[49-50]。修飾改性方法包括包覆、涂層、接枝等,常用氧化物(如ZrO2、WO3、SiO2等)、金屬(如Ag、Zr等)、磷酸鹽(如AlPO4、LiFePO4等)、導(dǎo)電聚合物和氟化物等作為改性材料,需要依據(jù)不同改性材料的特點(diǎn)有針對性地選擇,而且修飾改性方式也會影響NCM的性能。Zr包覆在NCM表面,部分Zr在材料表面形成均勻膜,部分Zr分布在晶格內(nèi)部,內(nèi)部與表面的雙重作用穩(wěn)定晶格結(jié)構(gòu),極大提高放電容量,100次循環(huán)后的容量保持率為92%,高于未包覆時的75%[51];ZrO2原位修飾的NCM在100次循環(huán)后達(dá)到82.5%的容量保持率,高于改性前的52.4%[52];鎢酸銨修飾NCM811,在材料表面形成鎢酸鋰,消耗產(chǎn)生的氣體,900次循環(huán)后容量僅下降20%,提高了循環(huán)性能[53];表面修飾AlPO4能有效改善NCM622與電解液的界面行為,抑制副反應(yīng),提高熱穩(wěn)定性與安全性能,表面改性機(jī)理見圖7[54];膨脹石墨中嵌入NCM622前驅(qū)體,焙燒后在石墨層間形成NCM622,將石墨層撐開,形成石墨烯/NCM622/石墨烯的多層結(jié)構(gòu),限制NCM622的顆粒生長,減少電極材料與電解液的接觸,提高了導(dǎo)電性、高溫性能和循環(huán)穩(wěn)定性[55]。
圖7 NCM622與AlPO4間的界面松弛模型和AlPO4對NCM622的可能促進(jìn)機(jī)制[54]
針對NCM循環(huán)過程中放熱嚴(yán)重及熱失控的問題,本課題組開展了利用負(fù)熱膨脹(negative thermal expansion, NTE)材料對NCM改性的研究,取得了一些原創(chuàng)性成果[54-61]。NTE材料原位吸收電極循環(huán)過程中的熱而體積縮小,為電極活性材料的體積膨脹提供空間,調(diào)和內(nèi)部陰(負(fù)熱膨脹材料)陽(能源材料),減少電極整體體積變化,降低熱失控風(fēng)險、熱引起的結(jié)構(gòu)破壞、內(nèi)應(yīng)力、形變、副反應(yīng)、燃燒、爆炸等問題,改善電極與電解液的界面行為,提高材料的熱穩(wěn)定性,通過調(diào)控?zé)?、形變和界面,提高倍率特性、高溫性能、循環(huán)穩(wěn)定性和安全性,工作原理如圖8。與常見材料的“熱脹冷縮”特性相反,負(fù)熱膨脹材料具有“熱縮冷脹”特性,在受熱時體積收縮,在一定溫度范圍內(nèi)平均線膨脹系數(shù)為負(fù)值[64],有望與其他材料復(fù)合制備低膨脹或零膨脹材料,應(yīng)用前景廣闊。眾多NTE材料中,ZrW2O8在0.3 ~ 1 050 K的熱膨脹系數(shù)為負(fù)值[65],覆蓋多數(shù)電極材料的工作溫度范圍[66],明顯提升電極材料的性能[54-61]。ZrW2O8含量極大影響電極性能,過少不足以吸收電極釋放的熱并減少形變,過多則因自身的非電化學(xué)活性而阻礙Li+和電子的轉(zhuǎn)移,有可能引起負(fù)的形變,5%的ZrW2O8能有效提高NCM622[56,58,62]和NCM811[61]在大電流和高溫下的容量及其保持率,降低極化和電荷轉(zhuǎn)移阻抗及形變,改善循環(huán)性能,提高熱穩(wěn)定性與安全。
圖8 NTE材料對能源材料改性機(jī)理圖[57]
修飾可以阻止電解液與材料的直接接觸,改善電極與電解液間的界面行為,減少副反應(yīng),利用NTE材料還可以同時調(diào)控電極循環(huán)過程中的熱和形變,減少熱引起的危害和內(nèi)應(yīng)力誘發(fā)的裂紋,保持完整結(jié)構(gòu),提高材料熱穩(wěn)定性和循環(huán)穩(wěn)定性,但是包覆層的成分、厚度、分布及修飾方式等需要重點(diǎn)關(guān)注。
目前單一策略不能有效解決NCM的所有問題,需要組合多種方法或材料進(jìn)行復(fù)合改性,但是與NCM不一定形成復(fù)合物,目前很多報道沒有嚴(yán)格區(qū)分修飾和復(fù)合[44,67-71]。耦合摻雜與特殊結(jié)構(gòu)方面,用Mg2+摻雜核殼結(jié)構(gòu)CS-NCM622,減少陽離子混排,循環(huán)100次后的容量保持率為86%[67];將表面包覆ZrO2薄膜的NCM材料進(jìn)行700℃熱處理,部分Zr4+從包覆涂層中滲入NCM內(nèi)部,離子摻雜和包覆的協(xié)同效應(yīng)使NCM在150次循環(huán)后容量保持率高達(dá)98.5%[68];用Co氧化包覆與Ti摻雜對NCM進(jìn)行改性,材料表面產(chǎn)生了由Co和Li組成的尖晶石結(jié)構(gòu)涂層,有效保護(hù)了表面,提高了界面穩(wěn)定性,Ti抑制了陽離子混排,增加層間間距,強(qiáng)化鋰離子擴(kuò)散,抑制不可逆相變的發(fā)生,顯著提高電化學(xué)性能[69];結(jié)構(gòu)重構(gòu)與化學(xué)演化可以降低容量衰減和阻抗[70];Mg2+體相摻雜和聚吡咯包覆可以提高倍率性能和循環(huán)壽命[71]。NCM復(fù)合改性可以利用多種方法或材料的優(yōu)點(diǎn),多方面提高材料性能,是一種有前景的改性措施,但是組成分布與精準(zhǔn)調(diào)控難。
綜上可知,改性方法各有千秋,既有無需外加元素的素化內(nèi)部改性,也有添加不同元素的外部改性。內(nèi)部改性通過調(diào)控結(jié)構(gòu)或形貌實(shí)現(xiàn),外部改性從單一元素、單一維度發(fā)展到多元素、多維度的復(fù)合方式,其優(yōu)缺點(diǎn)如表1所示。
表1 NCM材料改性方法比較
從混排、相變、微裂紋和熱等方面剖析了NCM存在的問題,從組成、結(jié)構(gòu)、形貌、表面、界面等方面綜述了最新改性進(jìn)展,歸納分析了不同改性方法的優(yōu)缺點(diǎn),指出了今后的發(fā)展方向。不同改性方法各有優(yōu)缺點(diǎn),能不同程度提高NCM材料的性能,有些方法可同時促進(jìn)多方面的性能:特殊結(jié)構(gòu)或形貌無需其他元素,推動能源材料素化,主要通過結(jié)構(gòu)或形貌調(diào)控改變元素或粒徑分布;摻雜側(cè)重外加不同陽或陰離子,聚焦用其他元素替換相關(guān)元素,主要改變晶格結(jié)構(gòu);修飾側(cè)重表面涂層、包覆、接枝等,主要改善電極表面和電極與電解液之間的界面行為;復(fù)合兼有不同方法的優(yōu)勢,彌補(bǔ)單一方法的不足,發(fā)展前景廣闊。
雖然不同改性方法能不同程度地提高NCM性能,但是在使用過程中仍存在一定的容量衰減和安全問題。素化措施無法滿足NCM的應(yīng)用要求,需要結(jié)合其他的措施提高綜合性能。今后需要進(jìn)一步針對NCM內(nèi)應(yīng)力、熱失控和容量衰減的問題,從結(jié)構(gòu)、形變、內(nèi)應(yīng)力、產(chǎn)熱、表面、界面、副產(chǎn)物、導(dǎo)電性、衰減機(jī)理和修復(fù)等方面出發(fā),對熱和形變進(jìn)行有效調(diào)控,降低熱和形變的不利影響,也可以開發(fā)新型低膨脹或零膨脹能源材料消除熱和形變的影響。負(fù)熱膨脹材料能有效調(diào)控NCM的結(jié)構(gòu)、熱、形變和界面行為等,在大電流、高溫及長循環(huán)過程等放熱較多的條件下優(yōu)勢更加明顯。利用負(fù)熱膨脹、相變、熱縮等材料,調(diào)控結(jié)構(gòu)、熱、形變和界面行為,降低熱危害和內(nèi)應(yīng)力,將會是鎳鈷錳酸鋰今后的一個重要改性方向。
[1] WANG X X, DING Y L, DENG Y P, Chen, et al. Ni-rich/Co-poor layered cathode for automotive Li-ion batteries: promises and challenges[J]. Advanced Energy Materials 2020, 10: 1903864. DOI: 10.1002/aenm. 201903864.
[2] CHOI J U, VORONINA N, SUN Y K, et al. Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion batteries: yesterday, today, and tomorrow[J]. Advanced Energy Materials 2020, 10, 2002027. DOI: 10.1002/aenm.202002027.
[3] SUN H H, RYU H H, KIM U H, et al. Beyond doping and coating: prospective strategies for stable high-capacitylayered Ni-rich cathodes[J]. ACS energy letters, 2020, 5(4):1136-1146. DOI: 10.1021/ACSENERGYLETT.0C00191.
[4] LEE W, MUHAMMAD S, SERGEY C, et al. Advances in the cathode materials for lithium rechargeable batteries[J], Angewandte Chemie International Edition, 2020, 59: 2578-2605. DOI: 10.1002/anie.201902359.
[5] XIAO Y G, LIU T C, LIU J J, et al. Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2cathode materials, Nano Energy, 2018, 49: 77-85. DOI: 10.1016/j.nanoen.2018.04.020.
[6] NEGI R S, CELIK E, PAN R J, et al. Insights into the positive effect of post-annealing on the electrochemical performance of Al2O3-coated Ni-rich NCM cathodes for lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(4): 3369-3380. DOI: 10.1021/acsaem.0c03135.
[7] ZHAO W G, ZOU L F, JIA H P, et al. Optimized Al doping improves both interphase stability and bulk structural integrity of Ni-Rich NMC cathode materials[J]. ACS applied energy materials, 2020, 3(4): 3369-3377. DOI: 10.1021/acsaem.9b02372.
[8] LI R, ZHANG P, HUANG J, et al. Enhanced high voltage performance of LiNi0.5Mn0.3Co0.2O2cathodethe synergistic effect of LiPO2F2and FEC in fluorinated electrolyte for lithium-ion batteries[J]. RSC advances, 2021, 11(14): 7886-7895. DOI: 10.1039/D0RA10280F.
[9] YUE P, WANG Z X, PENG W J, et al. Preparation and electrochemical properties of submicron LiNi0.6Co0.2Mn0.2O2as cathode material for lithium ion batteries[J]. Scripta materialia, 2011, 65(12): 1077-1080. DOI: 10.1016/j. scriptamat.2011.09.020.
[10] KOSOVA N V, DEVYATKINA E T, KAICHEV V V. Optimization of Ni2+/Ni3+ratio in layered Li(Ni,Mn,Co)O2cathodes for better electrochemistry[J]. Journal of power sources, 2007, 174(2): 965-969. DOI: 10.1016/j.jpowsour. 2007.06.051.
[11] SUN H H, CHOI W, LEE J K, et al. Control of electrochemical properties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio[J]. Journal of power sources, 2015, 275: 877-883. DOI: 10.1016/j.jpowsour.2014.11.075.
[12] XIAO Z, LIU P, SONG L, et al. The correlation between structure and thermal properties of nickel-rich ternary cathode materials: a review[J]. Ionics, 2021, 27: 3207-3217. DOI: 10.1007/s11581-021-04103-z.
[13] PAN C C, ZHU Y R, YANG Y C, et al. Influences of transition metal on structural and electrochemical properties of Li[NiCoMn]O2(0.6≤≤0.8) cathode materials for lithium-ion batteries[J]. Transactions of nonferrous metals society of China, 2016, 26(5): 1396-1402. DOI: 10.1016/S1003-6326(16)64244-9.
[14] LI T, YUAN X Z, ZHANG L, et al. Degradation mechanisms and mitigation strategies of nickel-rich NMC- based lithium-ion batteries[J]. Electrochemical Energy Reviews, 2020, 3: 43-80. DOI: 10.1007/s41918-019-00053-3.
[15] KWON S N, SONG J H, MUMM D R. Effects of cathode fabrication conditions and cycling on the electrochemical performance of LiNiO2synthesized by combustion and calcination[J]. Ceramics international, 2011, 37(5): 1543-1548. DOI: 10.1016/j.ceramint.2011.01.028.
[16] CHEN H, DAWSON J A, HARDING J H. Effects of cationic substitution on structural defects in layered cathode materials LiNiO2[J]. Journal of materials chemistry A, 2014, 2(21): 7988-7996. DOI: 10.1039/c4ta00637b.
[17] SHI J L, ZHANG J N, HE M, et al. Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries[J]. ACS applied materials & interfaces, 2016, 8(31): 20138-20146. DOI: 10.1021/acsami.6b06733.
[18] ZHENG J M, KAN W H, MANTHIRAM A. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O (0.0 ≤≤ 0.08) cathodes for lithium-ion batteries[J]. ACS applied materials & interfaces, 2015, 7(12): 6926-6934. DOI: 10.1021/acsami.5b00788.
[19] BAK S M, NAM K W, CHANG W N Y N, et al. Correlating structural changes and gas evolution during the thermal decomposition of charged LiNi0.8Co0.15Al0.05O2cathode materials[J]. Chemistry materials, 2013, 25(3): 337-351. DOI: 10.1021/CM303096E.
[20] MAKIMURA Y, ZHENG S J, IKUHARA Y, et al. Microstructural observation of LiNi0.8Co0.15Al0.05O2after charge and discharge by scanning transmission electron microscopy[J]. Journal of the electrochemical society, 2012, 159(7): A1070-A1073. DOI: 10.1149/2.073207jes.
[21] SUN H H, MANTHIRAM A. Impact of microcrack generation and surface degradation on a nickel-rich layeredLi[Ni0.9Co0.05Mn0.05]O2cathode for lithium-ion batteries[J]. Chemistry of materials, 2017, 29(19): 8486-8493. DOI: 10.1021/ACS.CHEMMATER.7B03268.
[22] YIN S, DENG W, CHEN J, et al. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries[J], Nano Energy, 2021, 83: 105854, DOI: 10.1016/j.nanoen.2021.105854.
[23] LI J, ZHOU Z, LUO Z, et al. Microcrack generation and modification of Ni-rich cathodes for Li-ion batteries: A review[J]. Sustainable Materials and Technologies, 2021, 29: e00305. DOI: 10.1016/j.susmat.2021.e00305.
[24] BI Y J, TAO J H, WU Y Q, et al. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode[J]. Science, 2020, 370(6522): 1313-1317. DOI: 10.1126/science.abc3167.
[25] RYU H H, PARK K J, YOON C S, et al.Capacity fading of Ni-Rich Li[NiCoMn1-x-y]O2(0.6<≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?[J]. Chemistry of Material, 2018, 30: 1155-1163. DOI: org/10.1021/acs.chemmater.7b05269.
[26] YOU L Z, TANG J T, WU Q, et al. LiFePO4-coated LiNi0.6Co0.2Mn0.2O2for lithium-ion batteries with enhanced cycling performance at elevated temperatures and high voltages[J]. RSC advances, 2020, 10(62): 37916-37922. DOI: 10.1039/D0RA07764J.
[27] YOON C S, JUN D W, MYUNG S T, et al. Structural stability of LiNiO2cycled above 4.2V[J]. ACS energy letters, 2017, 2(5): 1150-1155. DOI: 10.1021/acsenergylett. 7B00304.
[28] WOO S U, YOON C S, AMINE K, et al. Significant improvement of electrochemical performance of AlF3-coated Li[Ni0.8Co0.1Mn0.1]O2cathode materials[J]. Journal of the Electrochemical Society, 2007, 154(11): A1005. DOI: 10.1149/1.2776160.
[29] LIU H S, ZHANG Z R, GONG Z L, et al. Origin of deterioration for LiNiO2cathode material during storage in air[J]. Electrochemical and solid-state letters, 2004, 7(7): A190. DOI: 10.1149/1.1738471.
[30] MAHESH K C, SURESH G S, BHATTACHARYYA A J, et al. Synthesis and electrochemical characterization of LiNi0.8Co0.2O2as cathode material for aqueous rechargeablelithium batteries[J]. Journal of the Electrochemical Society, 2012, 159(5): A571-A578. DOI: 10.1149/2.075205jes.
[31] JUNG C H, KIM D H, EUM D, et al. New insight into microstructure engineering of Ni-rich layered oxide cathode for high performance lithium ion batteries[J]. Advanced Functional Materials, 2021, 31: 2010095. DOI: 10.1002/adfm.202010095.
[32] ZAHNOW J, BERNGES T, WAGNER A, et al. Impedance analysis of NCM cathode materials: electronic and ionic partial conductivities and the influence of microstructure[J]. ACS Applied Energy Materials, 2021, 4(2): 1335-1345. DOI: 10.1021/acsaem.0c02606.
[33] WU K, LI Q, DANG R B, et al. A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0.1Co0.1O2at high cut-off voltages through core-shell structuring[J]. Nano Research, 2019, 12(10): 2460-2467. DOI: 10.1007/ s12274-019-2469-6.
[34] SUN Y K, CHEN Z, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11: 942-947. DOI: 10.1038/nmat3435.
[35] LIANG M, SUN Y M, SONG D W, et al. Superior electrochemical performance of quasi-concentration- gradient LiNi0.8Co0.15Al0.05O2cathode material synthesized with multi-shell precursor and new aluminum source[J]. Electrochimica Acta, 2019, 300: 426-436. DOI: 10.1016/ j.electacta.2019.01.125.
[36] WEIGEL T, SCHIPPER F, ERICKSON E M, et al. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2cathode materials doped by various cations[J]. ACS Energy Lett. 2019, 4, 2, 508-516. DOI: 10.1021/acsenergylett. 8b02302.
[37] DUAN J G, HU G R, CAO Y B, et al. Enhanced electrochemical performance and storage property of LiNi0.815Co0.15Al0.035O2via Al gradient doping[J]. Journal of power sources, 2016, 326: 322-330. DOI: 10.1016/j. jpowsour.2016.07.008.
[38] ZHANG Y D, LI H, LIU J X, et al. LiNi0.90Co0.07Mg0.03O2cathode materials with Mg-concentration gradient for rechargeable lithium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(36): 20958-20964. DOI: 10.1039/ C9TA02803J.
[39] LIU X L, WANG S, WANG L, et al. Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2cathode material by Mg doping[J]. Journal of Power Sources,2019, 438: 227017. DOI: 10.1016/j.jpowsour.2019.227017.
[40] KIM U H, JUN D W, PARK K J, et al. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries[J]. Energy & Environmental Science, 2018, 11(5): 1271-1279. DOI: 10.1039/C8EE00227D.
[41] HE T, LU Y, SU Y F, et al. Sufficient utilization of zirconium ions to improve the structure and surface properties of Nickel-rich cathode materials for lithium-ion batteries[J]. ChemSusChem, 2018, 11(10): 1639-1648. DOI: 10.1002/cssc.201702451.
[42] PARK K J, JUNG H G, KUO L Y, et al. Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2through microstructure modification by boron doping for Li-Ion batteries[J]. Advanced Energy Materials, 2018, 8(25): 1801202. DOI: 10.1002/aenm.201801202.
[43] LI C L, KAN W H, XIE H L, et al. Inducing favorable cation antisite by doping halogen in Ni-rich layered cathode with ultrahigh stability[J]. Advanced science, 2019, 6(4): 1801406. DOI: 10.1002/advs.201801406.
[44] LIU K, ZHANG Q Q, DAI S, et al. Synergistic effect of F-doping and LiF coating on improving the high-voltage cycling stability and rate capacity of LiNi0.5Co0.2Mn0.3O2cathode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34153-34162. DOI: 10.1021/acsami.8b10016.
[45] CHU M, HUANG Z, ZHANG T, et al. Enhancing the electrochemical performance and structural stability of Ni-Rich layered cathode materials via dual-site doping. ACS Appl. Mater. Interfaces 2021, 13, 17, 19950-19958. DOI: 10.1021/acsami.1c00755.
[46] WOO S W, MYUNG S T, BANG H, et al. Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2positive electrode materials by multiple metal (Al, Mg) substitution[J]. Electrochimica acta, 2009, 54(15): 3851- 3856. DOI: 10.1016/j.electacta.2009.01.048.
[47] ELMOFID W, IVANOV S, KONKIN A, et al. A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution[J]. Journal of power sources, 2014, 268: 414-422. DOI: 10.1016/j.jpowsour.2014.06.048.
[48] CHEN Q C, YAN G J, LUO L M, et al. Enhanced cycling stability of Mg-F co-modified LiNi0.6Co0.2Mn0.2-yMgO2-zFfor lithium-ion batteries[J]. Transactions of nonferrous metals society of China, 2018, 28(7): 1397-1403. DOI: 10.1016/S1003-6326(18)64778-8.
[49] SU Y, CHEN G, CHEN L, et al. Advances and prospects of surface modification on Nickel-Rich materials for lithium-ion batteries[J]. Chinese Journal of Chemistry, 2020, 38: 1817-1831. DOI: 10.1002/cjoc.202000385
[50] WEBER D, TRIPKOVI??, KRETSCHMER K, et al. Surface modification strategies for improving the cycling performance of Ni-rich cathode materials[J]. European Journal of Inorganic Chemistry, 2020, 3117-3130. DOI: 10.1002/ejic.202000408.
[51] LI X, ZHANG K J, WANG M S, et al. Dual functions of zirconium modification on improving the electrochemicalperformance of Ni-rich LiNi0.8Co0.1Mn0.1O2[J]. Sustainable energy & fuels, 2018, 2(2): 413-421. DOI: 10.1039/ C7SE00513J.
[52] YAO L, LIANG F Q, JIN J, et al. Improved electrochemical property of Ni-rich LiNi0.6Co0.2Mn0.2O2cathode via in-situ ZrO2coating for high energy density lithium ion batteries[J]. Chemical engineering journal, 2020, 389: 124403. DOI: 10.1016/j.cej.2020.124403.
[53] BECKER D, B?RNER M, N?LLE R, et al. Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18404-18414. DOI: 10.1021/acsami.9b02889.
[54] TANG W J, PENG Z F, SHI Y L, et al. Enhanced cyclability and safety performance of LiNi0.6Co0.2Mn0.2O2at elevated temperature by AlPO4modification[J]. Journal of Alloys and Compounds, 2019, 810: 151834. DOI: 10.1016/j.jallcom.2019.151834.
[55] PENG Z F, TANG W J, PENG Y J, et al. Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2by expanded graphite[J]. Energy technology, 2019, 7(11): 1900614. DOI: 10.1002/ente.201900614.
[56] 彭振鋒. 膨脹石墨和鎢酸鋯對LiNi0.6Co0.2Mn0.2O2的改性研究[D]. 四川大學(xué)碩士研究生論文, 2020.
[57] 魏云. 三種無機(jī)鹽對LiNi0.8Co0.15Al0.05O2電池電化學(xué)性能與安全的影響研究[D]. 四川大學(xué)碩士研究生論文, 2020.
[58] 徐升. 三種負(fù)熱膨脹材料對單晶LiNi0.6Co0.2Mn0.2O2電池的電化學(xué)性能影響研究[D]. 四川大學(xué)碩士研究生論文, 2021.
[59] 敬娜娜. 四種負(fù)熱膨脹材料對Si基鋰離子電池電化學(xué)性能和安全的影響研究[D]. 四川大學(xué)碩士研究生論文, 2021.
[60] JING N N, XU S, WANG Z Q, et al. Enhanced electrochemical performance and safety of silicon by a negative thermal expansion material of ZrW2O8[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30468- 30478. DOI: 10.1021/ACSAMI.1C01088.
[61] HAO H M, XU S, JING N N, et al. Negative thermal expansion material: promising for improving electrochemical performance and safety of lithium-ion batteries[J]. The Journal of Physical Chemistry Letters, 2021, 12(26): 6134-6142. DOI: 10.1021/ACS.JPCLETT.1C01332.
[62] XU S, JING N N, HAO H M, et al. Enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2by a negative-thermal-expansion material at elevated temperature[J]. Energy Technology, 2021, 9(8): 2100183. DOI: 10.1002/ente.202100183.
[63] WANG M Y, WEI Y, XU S, et al. Simultaneously adjusting deformation and heat using a negative thermal expansion material to enhance electrochemical performanceand safety of lithium-ion batteries[J]. Chemical EngineeringJournal, 2021, 425: 131434. DOI: 10.1016/j.cej.2021.131434.
[64] CHEN J, HU L, DENG J X, et al. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications[J]. Chemical Society Reviews, 2015, 44(11): 3522-3567. DOI: 10.1039/ C4CS00461B.
[65] MARY T A, EVANS J S O, VOGT T, et al. Negative thermal expansion from 0.3 to 1050 kelvin in ZrW2O8[J]. Science, 1996, 272(5258): 90-92. DOI: 10.1126/science. 272.5258.90.
[66] MA S, JIANG M D, TAO P, et al. Temperature effect and thermal impact in lithium-ion batteries: a review[J]. Progress in Natural Science: Materials International, 2018, 28(6): 653-666. DOI: 10.1016/j.pnsc.2018.11.002.
[67] ZHANG N S, AI L, MAO L P, et al. Understanding the role of Mg-doped on core-shell structured layered oxide LiNi0.6Co0.2Mn0.2O2[J]. Electrochimica acta, 2019, 319: 822-831. DOI: 10.1016/j.electacta.2019.07.048.
[68] BAO W D, QIAN G N, ZHAO L Q, et al. Simultaneous enhancement of interfacial stability and kinetics of single-crystal LiNi0.6Mn0.2Co0.2O2through optimized surface coating and doping[J]. Nano Letters, 2020, 20(12): 8832-8840. DOI: 10.1021/acs.nanolett.0c03778.
[69] ZHANG X Y, QIU Y G, CHENG F Y, et al. Realization of a high-voltage and high-rate nickel-rich NCM cathode material for LiBs by Co and Ti dual modification[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17707-17716. DOI: 10.1021/acsami.1c03195.
[70] LIN F, MARKUS I M, NORDLUND D, et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries[J]. Nature communications, 2014, 5(1): 3529. DOI: 10.1038/ ncomms4529.
[71] YU H, ZHU H, YANG Z, et al. Bulk Mg-doping and surface polypyrrole-coating enable high-rate and long-lifefor Ni-rich layered cathodes, Chemical Engineering Journal, 2021, 412: 128625. DOI: 10.1016/j.cej.2021.128625.
Advances in the Improvement of Lithium Nickel Manganese Cobalt Oxide Electrode Materials
WANG Gui-xin, LI Chen-yue, HUANG Xin-yi, YANG Liu-yi, WEI Shuang, HAO Hu-ming, JING Na-na
(School of Chemical Engineering, Sichuan University, Chengdu 610065, China)
LiNiCoMn1??O2(NCM) is a ternary cathode material with high practical capacity. However, its wide application is affected by capacity fade and safety problems caused by factors such as mixing elements, phase transition, poor thermal stability, microcracks, etc. Considering current problems of the ternary materials, recent progress in improving methods were reviewed, including special structure and morphology, doping, substituting, coating, modifying, and combining. Effects of different methods on the electrochemical performance, cyclability and safety of NCM were discussed as well as their advantages and disadvantages. Combining multidisciplinary knowledge of materials, electrochemistry, heat, stress, and the improvements of energy materials using negative thermal expansion (NTE) materials in our laboratory, some novel strategies were developed by simultaneously adjusting deformation and interface behaviors viausing the generated heat during cycles, which paves the way for solving the safety problems like thermal runaway and stress of batteries.
lithium nickel manganese cobalt oxide; improvement; adjusting heat and deformation; electrochemical performance; safety
2095-560X(2021)05-0359-09
TK02;TM911.11;TQ131.11;O646.21
A
10.3969/j.issn.2095-560X.2021.05.001
王貴欣(1978-),男,博士,研究員,主要從事新能源過程與材料、裝備失效與防腐防污、工業(yè)三廢資源化利用的研究。
收稿日期:2021-07-10
2021-09-11
國家自然科學(xué)基金項(xiàng)目(21978179)
王貴欣,E-mail:guixin66@scu.edu.cn