国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

生物質炭對稻田土壤團聚體穩(wěn)定性和微生物群落的影響*

2021-11-15 05:23:00蔣雪洋張前前沈浩杰何鐵虎熊正琴
土壤學報 2021年6期
關鍵詞:句容叢枝粒級

蔣雪洋,張前前,沈浩杰,何鐵虎,熊正琴?

生物質炭對稻田土壤團聚體穩(wěn)定性和微生物群落的影響*

蔣雪洋1,張前前1,沈浩杰1,何鐵虎2,熊正琴1?

(1. 南京農業(yè)大學資源與環(huán)境科學學院,江蘇省低碳農業(yè)與溫室氣體減排重點實驗室,南京 210095;2. 土壤與可持續(xù)農業(yè)國家重點實驗室(中國科學院南京土壤研究所),南京 210008)

土壤團聚體決定著土壤功能與質量,受土壤生物與非生物因素的共同作用。本文從非生物和生物學角度解析生物質炭施用對土壤團聚體穩(wěn)定性的長期影響。以句容和南京兩個獨立施用生物質炭3年或5年后的稻田麥季土壤為研究對象,選取常規(guī)施肥(CK)和常規(guī)施肥+生物質炭(AB)處理,利用濕篩法獲得不同粒級土壤團聚體,并測定其中有機碳(SOC)、全氮、全磷含量,同時采用定量PCR技術測定土壤微生物(細菌、真菌、叢枝菌根真菌、古細菌和放線菌)豐度。結果表明:句容和南京土壤AB處理生物質炭原位老化后,土壤pH、田間持水量和大團聚體比例(>0.25)顯著增加,平均重量直徑和幾何平均直徑表現(xiàn)出增加趨勢(>0.05);土壤團聚體養(yǎng)分含量(SOC、全磷)和土壤微生物豐度發(fā)生顯著變化。與對照處理相比,句容和南京老化生物質炭處理的土壤大團聚體比例分別顯著增加93.0%和61.5%,0.002~0.053 mm和<0.002 mm粒級團聚體均呈減少趨勢;句容和南京土壤AB處理全土SOC含量分別顯著增加26.3%和26.9%,大團聚體中SOC含量分別顯著增加72.4%和52.3%,微團聚體中SOC含量分別顯著增加20.8%和30.0%,全土真菌豐度顯著增加;南京土壤全磷含量顯著增加25.4%,叢枝菌根真菌和古細菌豐度也呈增加趨勢(>0.05)。由相關性分析可知,土壤團聚體平均重量直徑與大團聚體比例、SOC含量、真菌和叢枝菌根真菌豐度極顯著正相關(<0.01),與全磷含量和古細菌豐度顯著正相關,相關系數(shù)分別為0.641和0.646。綜上所述:生物質炭可以改善土壤pH、田間持水量等理化性質,增加稻-麥輪作麥季土壤0.25~2 mm大團聚體比例和碳、磷含量,增加土壤真菌、叢枝菌根真菌和古細菌豐度,提高土壤團聚體穩(wěn)定性,具有持續(xù)性。

生物質炭;團聚體;穩(wěn)定性;微生物

土壤團聚體協(xié)調土壤水、肥、氣、熱,影響土壤微生物棲居環(huán)境和微生物群落結構的變化,進而影響土壤物質能量循環(huán);是膠體凝聚、膠結和黏結土壤原生顆粒,是生物和非生物因素共同作用的結果,其中微生物是形成土壤團聚體最活躍的生物因素之一[1-2]。

生物質炭是在無氧或缺氧條件下通過有機廢棄物(例如廢木材、有機肥、作物殘余物、畜禽糞便等)熱解產生的富炭多孔物質,具有很高的抗分解能力[3],故能在土壤中穩(wěn)定地存在數(shù)千年[4]。已有研究表明,生物質炭不僅提高土壤碳儲量和土壤養(yǎng)分含量,增加土壤pH、通氣性和持水量,降低土壤容重;還有利于微生物的生長和繁殖,豐富微生物群落結構,促進土壤團聚體結構的形成和穩(wěn)定[5-6]。Soinne等[7]指出,添加生物質炭改變土壤性質,減少土壤侵蝕,增加黏土團聚體穩(wěn)定性,減少膠體物質的分離,進而減少農田中顆粒態(tài)磷的損失。Lehmann等[8]發(fā)現(xiàn),生物質炭通過改善土壤容重、土壤持水量等土壤理化性質影響土壤微生物豐度,為微生物生長提供底物,改善微生物棲息地環(huán)境。何玉亭等[9]研究表明,煙稈炭和桑條炭均能促進紅壤大團聚體(0.25~1 mm)的形成,提高紅壤團聚體結構穩(wěn)定性,增加土壤微生物群落豐度。但也有研究發(fā)現(xiàn),施用生物質炭導致土壤團聚體穩(wěn)定性降低[10]。這可能與生物質炭的制備材料、生產條件[11]、土壤類型、老化作用或其他環(huán)境因素有關[12]。

目前有關生物質炭改良土壤的研究主要來自短期試驗,但是生物質炭中不穩(wěn)定組分可以在短期內(數(shù)月)迅速降解[13],隨后其表面形態(tài)、比表面積、孔隙度、元素組成、表面含氧官能團和pH等均會發(fā)生一系列的變化,進而顯著改變土壤理化性質和微生物群落[8,12]。Duan等[14]研究發(fā)現(xiàn),大田原位老化5年生物質炭納米微孔結構被破壞,孔徑、比表面積和銨吸附能力增大,同時對土壤pH的提升顯著減弱。Zheng等[15]研究發(fā)現(xiàn),添加生物質炭4年后對酸性稻田土壤理化性質和微生物群落組成均有影響。也有研究表明,生物質炭在田間原位老化過程中顆粒破碎,含氧官能團增加,與黏粒結合,增加土壤團聚和養(yǎng)分固持,改善土壤結構[16-17]。生物質炭的緩慢氧化特性決定了其對土壤團聚體的長期影響[18]。有必要關注老化生物質炭對土壤團聚體結構的影響機制[12]。因此,本研究針對不同地區(qū)稻麥輪作麥季土壤原位老化生物質炭,采用團聚體濕篩法和定量PCR技術,從非生物和生物角度探究生物質炭對土壤團聚體穩(wěn)定性的長期影響,明確生物質炭在土壤結構改良上的可利用性和可持續(xù)性。

1 材料與方法

1.1 研究區(qū)概況

選取2個獨立進行的水稻-小麥輪作農田開展研究。試驗地一[19]位于江蘇省句容市茅山鎮(zhèn)(31°92′N,119°28′E),土壤類型為潴育型水稻土,土壤質地為黏壤土,基本組成為黏粒26%、粉粒34%和砂粒40%。0~20 cm土壤pH 5.3、有機碳14.6 g·kg–1和全氮1.8 g·kg–1。試驗地二[20]位于江蘇省南京市秣陵鎮(zhèn)(31°52′N,118°50′E),土壤類型為潛育型水稻土,土壤質地為黏壤土,基本組成為黏粒14%、粉粒80%和砂粒6%。0~20 cm土壤pH 5.6、有機碳14.6 g·kg–1和全氮1.3 g·kg–1。兩試驗地均位于長江中下游地區(qū),屬于北亞熱帶季風氣候區(qū),年均日照時間2 048 h,年均氣溫接近15.7℃,年均降水量約1 050 mm。

1.2 試驗設計

試驗地一、二均設置兩個處理:CK(施用NPK肥)和AB(施用NPK肥+生物質炭),每個處理均設置3個重復小區(qū),采用隨機區(qū)組設計。每個小區(qū)間均具有獨立灌水排水系統(tǒng)。試驗田周圍設有2 m保護行。種植、灌溉、施肥以及病蟲害防治等田間管理措施均遵循當?shù)爻R?guī)管理方式。

試驗地一生物質炭于2014年6月(15 t·hm–2)一次性施入句容試驗地0~20 cm土層中,后續(xù)不再施用,為小麥秸稈在高溫450℃限氧條件下制得,總碳含量513.0 g·kg–1、總氮11.3 g·kg–1、pH 10.5、表面積22.1 m2·g–1。自2014年6月開始,每個小區(qū)(3 m × 8 m)在移栽水稻當天施入化肥,施氮處理為尿素(以N計),每季用作基肥(120 kg·hm–2)、分蘗肥(120 kg·hm–2)和穗肥(60 kg·hm–2),分三次施入;每季過磷酸鈣(以P2O5計)和氯化鉀(以K2O計)均為125 kg·hm–2,作基肥一次性施入。

試驗地二生物質炭于2012年6月(20 t·hm–2)一次性施入南京試驗地0~20 cm土層中,后續(xù)不再施用,購自河南三利新能源有限公司,為小麥秸稈在高溫400℃限氧條件下制得。總碳含量467.0 g·kg–1、總氮5.6 g·kg–1、pH 9.4、表面積8.9 m2·g–1、灰分20.8%。自2012年6月開始,每個小區(qū)(5 m × 4 m)在移栽水稻前一天施入化肥,施氮處理為尿素(以N計),每季用量為250 kg·hm–2,以4︰3︰3的比例分基肥和2次追肥施用;每季鈣鎂磷肥(以P2O5計)60 kg·hm–2和氯化鉀(以K2O計)120 kg·hm–2用作基肥一次施入。

1.3 樣品采集及測定方法

兩個試驗地土壤樣品均于2017年6月小麥收獲后采集,每個處理3個重復小區(qū),每個小區(qū)使用S型采樣法采集5個0~20 cm混合土樣。混合后分成三份,一份存儲在4℃下用于土壤的基本理化特性和團聚體分析,一份土壤風干用于測定SOC、全氮和全磷含量,而另一份存儲在–80℃下進行DNA提取和定量PCR測定。

土壤團聚體分級采用濕篩法[21]。干燥和重新潤濕在稻麥輪作系統(tǒng)中非常普遍,故水穩(wěn)性團聚體可以反映土壤結構和微生物群落的真實狀態(tài)[16,22]。四種團聚體粒級,包括0.25~2 mm(大團聚體)、0.053~0.25 mm(微團聚體)、0.002~0.053 mm(粉砂粒)和<0.002 mm(黏粒),分別使用2、0.25和0.053 mm篩組和離心方法獲得。將相當于100 g干土的新鮮土壤放置在2 mm篩上面,并在去離子水

中浸泡10 min,通過手動上下晃動篩子3 cm,2 min內重復50次實現(xiàn)團聚體分離,使所有土樣通過2 mm篩子。篩子上殘留的團聚體(>2 mm)數(shù)量有限,使用鑷子收集清洗>2 mm篩上面漂浮的植物殘渣和石礫等。將通過2 mm篩子的土樣傾倒通過0.25 mm篩子,從而得到大團聚體,將留在篩上的大團聚體轉移到預先稱重的燒杯中干燥。使用相同的方法將通過0.25 mm篩子的土樣分多次通過0.053 mm篩,保留篩網(wǎng)上的微團聚體,同樣將其轉移到預先稱重的燒杯中干燥。將通過0.053 mm篩子的土樣轉移到離心瓶中,通過逐步離心(600 r·min–1,15℃,4 min)分離出砂粒,并且將<0.002 mm粒級的上清液轉移到其他離心瓶進行離心(4 200 r·min–1,15℃,36 min)得到黏粒。將不同粒級團聚體風干、稱重,同時記錄殘渣和石礫質量,計算各粒級團聚體比例和回收率,同時用風干樣品進一步測定不同粒級團聚體SOC、全氮和全磷含量。

土壤團聚體穩(wěn)定性評價指標采用平均重量直徑(MWD)、幾何平均直徑(GMD)、>0.25 mm大團聚體比例(>0.25)衡量,分別按以下公式計算[23-24]:

土壤容重和田間持水量分別采用環(huán)刀法和環(huán)刀浸水法測定[25]。土壤pH和電導率按水土比5︰1浸提后,分別用pH計(PHS-3C,上海)和電導率儀(FE30-K,上海)測定。土壤有機碳用外加熱重鉻酸鉀氧化容量法測定;全氮用凱氏法測定;全磷用HClO4-H2SO4消煮、鉬銻抗比色法測定[26]。

土壤樣品DNA使用Fast DNA SPIN試劑盒(MP Biomedicals,美國)提取,取0.5 g土壤樣品,用NanoDrop ND-1000分光光度計(Nano Drop Technologies,美國)測定DNA濃度和質量,在0.8%瓊脂糖電泳測定土壤DNA質量和大小。定量PCR擴增引物和反應條件如表1所示。使用iCycler iQ5(美國Bio-Rad)進行實時定量PCR,擴增在20 μL反應混合物中進行,其中包括10 μL SYBR Green(日本TaKaRa),0.2 μL Rox DYEII,1 μL模板,0.4 μL前后引物(10 μmol–1)和8 μL無菌液。通過定量PCR估算土壤微生物豐度,描述為每克干土壤的基因拷貝數(shù)。

表1 熒光實時定量PCR擴增引物和反應條件

1.4 數(shù)據(jù)分析

統(tǒng)計分析前將土壤微生物拷貝數(shù)進行l(wèi)g轉換為歸一化處理。采用IBM SPSS 22.0軟件對土壤理化性質、土壤團聚體組成以及養(yǎng)分分布、微生物群落進行單因素方差分析(One-way ANOVA),Duncan法多重比較(α=0.05),結果以“平均值±標準差”形式表示,對平均重量直徑與大團聚體比例、SOC、全磷、真菌、叢枝菌根真菌和古細菌的關系進行Pearson相關性分析。采用Origin Pro 2018軟件繪圖。

2 結 果

2.1 原位老化生物質炭對土壤理化性質的影響

如表2所示,生物質炭原位老化后對土壤性質產生顯著影響。句容和南京土壤AB處理pH較CK分別顯著增加0.19和0.24個pH單位,土壤田間持水量顯著增加,大團聚體比例分別顯著增加93.0%和61.5%,平均重量直徑和幾何平均直徑表現(xiàn)出增加趨勢(>0.05)。句容土壤容重顯著降低,南京土壤容重也呈降低趨勢(>0.05)。綜上所述,原位老化生物質炭改善土壤質量。

表2 原位老化生物質炭對土壤理化性質的影響

注:數(shù)據(jù)均以平均值±標準差顯示,=3。不同小寫字母表示不同處理之間差異顯著(<0.05)。Note:Data are displayed as mean ± standard deviation,=3. Different small letters indicate significant differences between different treatments(<0.05).

2.2 原位老化生物質炭對土壤團聚體組成及養(yǎng)分分布的影響

如圖1a所示,各處理團聚體主要由0.002~0.053 mm粒級構成,該粒級約占團聚體總量70.0%。句容和南京土壤AB處理的大團聚體比例較CK分別顯著增加93.0%和61.5%,0.002~0.053 mm和<0.002 mm粒級團聚體均呈減少趨勢。由圖1b可知,與對照相比,句容和南京土壤AB處理全土SOC含量分別顯著增加26.3%和26.9%,大團聚體中SOC含量分別顯著增加72.4%和52.3%,微團聚體中SOC含量分別顯著增加20.8%和30.0%。由圖1c可知,與對照相比,句容土壤全土全氮含量顯著增加21.9%,大團聚體和微團聚體分別顯著增加42.9%和18.2%。南京土壤全氮含量僅在全土中表現(xiàn)增加趨勢(>0.05)。由圖1d可知,與CK處理相比,句容土壤全磷含量無顯著變化,而南京土壤全土全磷含量顯著增加25.4%。該結果表明,原位老化生物質炭有利于土壤大、微團聚體粒級形成和土壤碳、氮、磷養(yǎng)分增加。

2.3 原位老化生物質炭對微生物群落的影響

原位老化生物質炭對土壤微生物豐度的影響如表3所示。與對照相比,句容和南京土壤真菌豐度均顯著增加,放線菌豐度表現(xiàn)出增加趨勢;同時,南京土壤叢枝菌根真菌和古細菌豐度也顯著增加(<0.05)。綜上說明,原位老化生物質炭增加部分土壤微生物豐度。

2.4 平均重量直徑與土壤養(yǎng)分和微生物豐度的相關性

土壤平均重量直徑與大團聚體比例、SOC、全磷、真菌、叢枝菌根真菌和古細菌的相關性分析如圖2所示。平均重量直徑與大團聚體比例、SOC含量、真菌和叢枝菌根真菌豐度極顯著正相關(<0.01);與全磷和古細菌豐度顯著正相關(<0.05)。該結果表明,土壤團聚體穩(wěn)定性與土壤碳、磷養(yǎng)分和真菌、叢枝菌根真菌和古細菌豐度顯著正相關。

表3 原位老化生物質炭對土壤微生物豐度(lg copies·g–1)的影響

注:數(shù)據(jù)均以平均值±標準差顯示,=6。不同小寫字母表示不同處理之間差異顯著(<0.05)。Note:Data are displayed as mean ± standard deviation,=6. Different small letters indicate significant differences between different treatments(<0.05).

3 討 論

3.1 土壤團聚體組分特征對原位老化生物質炭的響應及其與養(yǎng)分分布關系

土壤團聚體平均重量直徑、幾何平均直徑和大團聚體比例是表示土壤團聚體穩(wěn)定性的關鍵指標,其值越高,代表土壤對侵蝕和耕作的抵抗力越好[16]。本研究表明,句容和南京兩地原位老化生物質炭仍可提高稻麥輪作土壤pH、大團聚體比例和平均重量直徑(表2);大、微團聚體比例顯著增加,0.002~0.053 mm和<0.002 mm粒級團聚體比例均呈減少趨勢(圖1),改善土壤結構。生物質炭隨著老化過程其表面部分芳香碳結構被(含氧)烷基碳取代,羧基、羰基等酸性官能團增多,與陽離子結合形成羧酸鹽和酚鹽,釋放出H+,導致生物質炭老化后pH降低,對土壤的堿性效應下降[12],土壤pH增加減少。生物質炭通過與礦物顆粒結合增加其內部黏結力,提高土壤團聚體的抗碎裂性,還刺激土壤微生物分泌物及膠結物質,從而有利于大團聚體的形成并增強團聚體穩(wěn)定性[33]。在相對溫和的模擬老化過程中,生物質炭比表面積較新鮮生物質炭增大一倍以上[34],對土壤稀釋作用增強;Liang等[35]發(fā)現(xiàn),添加生物質炭后,小麥在返青期生長急劇增加,根系分泌物增多,土壤微生物和動物呼吸作用增強,使土壤疏松,從而改善土壤結構。這可能還與老化生物質炭刺激土壤微生物活性,通過菌絲纏繞或分泌膠結物質等方式促進小粒級團聚體向大粒級團聚體轉化有關[9]。

本研究也表明,土壤團聚體平均重量直徑與大團聚體、SOC含量和全磷含量呈顯著正相關(圖2a)。生物質炭可與土壤團聚體結合,減少其與外界接觸面積,降低土壤有機質礦化速率,促進土壤固碳[36]。從污泥、豬糞和麥草制取的生物質炭,也可通過一定的物理吸附效應和化學作用抑制土壤CO2排放[37],提高土壤固碳潛力[12]。或者通過增強土壤團聚體膠結作用,使微團聚體黏結在一起,再通過菌絲體纏繞等形成大團聚體[38]。生物質炭還可以吸附磷酸鹽[39],利于微生物和植物根系活動,促進土壤有機質合成,增強土壤抗侵蝕能力,提高團聚體穩(wěn)定性[40],從而減輕農田顆粒態(tài)磷的損失,增強對磷的吸收并且降低溶解態(tài)磷地表徑流損失風險[7]。

3.2 土壤微生物豐度對原位老化生物質炭的響應及其與土壤團聚體穩(wěn)定性的關系

生物質炭通過改變土壤理化性質直接影響微生物活動,進而改變土壤微生物群落豐度[6]。本研究結果顯示,老化生物質炭能顯著增加土壤真菌豐度,而放線菌豐度無顯著變化(表3)。有研究發(fā)現(xiàn),生物質炭有利于增加蛋白水解酶(L-亮氨酸氨基肽酶)活性以及氨基酸和胺的利用,從而增加微生物代謝活性[41]。Zhu等[42]研究也表明,生物質炭通過其表面官能團(羧酸基等含氧基團)吸附并提供土壤微生物生長所需要的養(yǎng)分。Yao等[43]利用定量PCR發(fā)現(xiàn),生物質炭的高孔隙度和大表面積可以改善土壤通氣和持水能力,促進真菌菌絲生長,為土壤真菌提供良好的棲息地。此外,真菌能降解生物質炭中的頑固性碳[8]。Watzinger等[44]研究表明,放線菌豐度在酸性黏磐土比在鈣質黑土中增加更顯著,因為生物質炭對酸性黏磐土pH影響更大,而放線菌對酸性土壤比較敏感。Zheng等[15]則發(fā)現(xiàn),酸性稻田中添加生物質炭4年后,放線菌豐度顯著減少。這可能受土壤質地影響。

土壤團聚體和微生物不可分割,前者是后者生存的場所,后者是前者形成的主要因素之一[2]。本試驗條件下土壤平均重量直徑與真菌豐度極顯著相關,相關系數(shù)為0.712(圖2b)。李景等[45]研究發(fā)現(xiàn),耕作土壤細菌和古菌香農指數(shù)與平均重量直徑顯著相關,而真菌香農指數(shù)與平均重量直徑相關性不顯著。相反,何玉亭等[9]研究發(fā)現(xiàn)平均重量直徑與真菌相關系數(shù)為0.890,支持本研究結果。同時,叢枝菌根真菌對植物與土壤理化性質變化反應靈敏,能夠與80%以上陸生植物形成共生體,能夠利用植物光合產物在土壤中形成根外菌絲,該菌絲體可為解磷細菌提供營養(yǎng)元素,促進解磷菌的生長,從而提高植物對磷的吸收[46]。而且叢枝菌根真菌在土壤碳、氮固存中起著關鍵作用,其菌絲的纏繞及其分泌的糖蛋白(球囊霉素)和多糖物質有利于土壤團聚體形成和結構穩(wěn)定[47]。因此,老化生物質炭可能通過增加真菌和叢枝菌根真菌豐度,提高團聚體穩(wěn)定性,促進植物對土壤碳、氮、磷養(yǎng)分的吸收。

4 結 論

老化生物質炭改善土壤pH和田間持水量等理化性質,增加0.25~2 mm大團聚體比例以及SOC和全磷含量,提高土壤團聚體穩(wěn)定性。定量PCR結果表明,句容、南京兩地稻田土壤微生物豐度均有不同程度的增加。老化生物質炭有利于土壤微生物的生長,增加真菌和叢枝菌根真菌豐度,促進土壤團聚體形成,間接提高土壤團聚體穩(wěn)定性。綜上表明,老化生物質炭能提高稻麥輪作麥季土壤團聚體穩(wěn)定性,增加土壤微生物豐度。

[1] Hemkemeyer M,Christensen B T,Martens R,et al. Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants[J]. Soil Biology & Biochemistry,2015,90:255—265.

[2] Li N,Han X Z,You M Y,et al. Research review on soil aggregates and microbes[J]. Ecology and Environmnet,2013,22(9):1625—1632. [李娜,韓曉增,尤孟陽,等. 土壤團聚體與微生物相互作用研究[J]. 生態(tài)環(huán)境學報,2013,22(9):1625—1632.]

[3] Leng L J,Huang H J,Li H,et al. Biochar stability assessment methods:A review[J]. Science of the Total Environment,2019,647:210—222.

[4] Sun X,Han X G,Ping F,et al. Effect of rice-straw biochar on nitrous oxide emissions from paddy soils under elevated CO2and temperature[J]. Science of the Total Environment,2018,628:1009—1016.

[5] Gomez J D,Denef K,Stewart C E,et al. Biochar addition rate influences soil microbial abundance and activity in temperate soils[J]. European Journal of Soil Science,2014,65(1):28—39.

[6] Palansooriya K N,Wong J T F,Hashimoto Y,et al. Response of microbial communities to biochar-amended soils:A critical review[J]. Biochar,2019,1(1):3—22.

[7] Soinne H,Hovi J,Tammeorg P,et al. Effect of biochar on phosphorus sorption and clay soil aggregate stability[J]. Geoderma,2014,219/220:162—167.

[8] Lehmann J,Rillig M C,Thies J,et al. Biochar effects on soil biota – A review[J]. Soil Biology & Biochemistry,2011,43(9):1812—1836.

[9] He Y T,Wang C Q,Shen J,et al. Effects of two biochars on red soil aggregate stability and microbial community[J]. Scientia Agricultura Sinica,2016,49(12):2333—2342. [何玉亭,王昌全,沈杰,等. 兩種生物質炭對紅壤團聚體結構穩(wěn)定性和微生物群落的影響[J]. 中國農業(yè)科學,2016,49(12):2333—2342.]

[10] Ye L L,Wang C H,Zhou H,et al. Effects of rice straw-derived biochar addition on soil structure stability of an ultisol[J]. Soils,2012,44(1):62—66. [葉麗麗,王翠紅,周虎,等. 添加生物質黑炭對紅壤結構穩(wěn)定性的影響[J]. 土壤,2012,44(1):62—66.]

[11] Gundale M J,DeLuca T H. Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal[J]. Forest Ecology and Management,2006,231(1/2/3):86—93.

[12] Yuan H J,Deng G S,Zhou S G,et al. Biochar ageing and its effects on greenhouse gases emissions:A review[J]. Ecology and Environmental Sciences,2019,28(9):1907—1914. [袁海靜,鄧桂森,周順桂,等. 生物炭的老化及其對溫室氣體排放影響的研究進展[J]. 生態(tài)環(huán)境學報,2019,28(9):1907—1914.]

[13] Kuzyakov Y,Subbotina I,Chen H Q,et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by14C labeling[J]. Soil Biology & Biochemistry,2009,41(2):210—219.

[14] Duan P P,Zhang X,Zhang Q Q,et al. Field-aged biochar stimulated N2O production from greenhouse vegetable production soils by nitrification and denitrification[J]. Science of the Total Environment,2018,642:1303—1310.

[15] Zheng J F,Chen J H,Pan G X,et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China[J]. Science of the Total Environment,2016,571:206—217.

[16] Zhang Q Q,Song Y F,Wu Z,et al. Effects of six-year biochar amendment on soil aggregation,crop growth,and nitrogen and phosphorus use efficiencies in a rice-wheat rotation[J]. Journal of Cleaner Production,2020,242:118435. https://doi.org/10.1016/j.jclepro.2019.118435.

[17] Luo S S,Wang S J,Tian L,et al. Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland[J]. Applied Soil Ecology,2017,117/118:10—15.

[18] Verheijen F G A,Jeffery S,Bastos A,et al. Biochar application to soils:A critical scientific review of effects on soil properties,processes and functions[M]. Luxembourg:European Commission Publication Office, 2010

[19] He T H,Liu D Y,Yuan J J,et al. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field[J]. Agriculture,Ecosystems & Environment,2018,264:44—53.

[20] Wu Z,Zhang X,Dong Y B,et al. Biochar amendment reduced greenhouse gas intensities in the rice-wheat rotation system:Six-year field observation and meta-analysis[J]. Agricultural and Forest Meteorology,2019,278:107625.

[21] Six J,Elliott E,Paustian K,et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal,1998,62(5):1367—1377.

[22] Bach E M,Hofmockel K S. Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity[J]. Soil Biology & Biochemistry,2014,69:54—62.

[23] Hou X N,Li H,Zhu L B,et al. Effects of biochar and straw additions on lime concretion black soil aggregate composition and organic carbon distribution[J]. Scientia Agricultura Sinica,2015,48(4):705—712. [侯曉娜,李慧,朱劉兵,等. 生物炭與秸稈添加對砂姜黑土團聚體組成和有機碳分布的影響[J]. 中國農業(yè)科學,2015,48(4):705—712.]

[24] Shang J,Geng Z C,Zhao J,et al. Effects of biochar on water thermal properties and aggregate stability of Lou soil[J]. Chinese Journal of Applied Ecology,2015,26(7):1969—1976. [尚杰,耿增超,趙軍,等. 生物炭對塿土水熱特性及團聚體穩(wěn)定性的影響[J]. 應用生態(tài)學報,2015,26(7):1969—1976.]

[25] Wang Y L. Analysis of experimental results of measuring soil field water holding capacity by ring knife method[J]. Ground Water,2016,38(3):55—57. [王艷麗. 環(huán)刀法測定土壤田間持水量實驗結果分析[J]. 地下水,2016,38(3):55—57.]

[26] Lu R K. Analytical methods for soil and agro- chemistry[M]. Beijing:China Agricultural Science and Technology Press,2000. [魯如坤. 土壤農業(yè)化學分析方法[M]. 北京:中國農業(yè)科技出版社,2000.]

[27] Muyzer G,de Waal E C,Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology,1993,59(3):695—700.

[28] May L A,Smiley B,Schmidt M G. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage[J]. Canadian Journal of Microbiology,2001,47(9):829—841.

[29] P?aza G A,Upchurch R,Brigmon R,et al. Rapid DNA extraction for screening soil filamentous fungi using PCR amplification[J]. Polish Journal of Environmental Studies,2004,13(3):315—318.

[30] Lumini E,Orgiazzi A,Borriello R,et al. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach[J]. Environmental Microbiology,2010,12(8):2165—2179.

[31] Vetriani C,Jannasch H W,MacGregor B J,et al. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments[J]. Applied and Environmental Microbiology,1999,65(10):4375—4384.

[32] Heuer H,Krsek M,Baker P,et al. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients[J]. Applied and Environmental Microbiology,1997,63(8):3233—3241.

[33] Sun F F,Lu S G. Biochars improve aggregate stability,water retention,and pore‐space properties of clayey soil[J]. Journal of Plant Nutrition and Soil Science,2014,177(1):26—33.

[34] Liu Y Y,Sohi S P,Jing F Q,et al. Oxidative ageing induces change in the functionality of biochar and hydrochar:Mechanistic insights from sorption of atrazine[J]. Environmental Pollution,2019,249:1002—1010.

[35] Liang B Q,Lehmann J,Sohi S P,et al. Black carbon affects the cycling of non-black carbon in soil[J]. Organic Geochemistry,2010,41(2):206—213.

[36] Li J Z,Dai K,Zhang L M,et al. Effects of biochar application on soil organic carbon distribution and soil aggregate composition of red soils in Yunnan tobacco planting area[J]. Acta Scientiae Circumstantiae,2016,36(6):2114—2120. [李江舟,代快,張立猛,等. 施用生物炭對云南煙區(qū)紅壤團聚體組成及有機碳分布的影響[J]. 環(huán)境科學學報,2016,36(6):2114—2120.]

[37] Xu X Y,Kan Y,Zhao L,et al. Chemical transformation of CO2during its capture by waste biomass derived biochars[J]. Environmental Pollution,2016,213:533—540.

[38] Xiao J J,Xing D,Mao M M,et al. Mechanism of arbuscular mycorrhizal fungal affecting soil aggregates in rhizosphere of mulberry()[J]. Acta Pedologica Sinica,2020,57(3):773—782. [肖玖軍,邢丹,毛明明,等. AM真菌對桑樹根圍土壤團聚體的影響機制[J].土壤學報,2020,57(3):773—782.]

[39] Lehmann J. Bio-energy in the black[J]. Frontiers in Ecology & the Environment,2007,5(7):381—387.

[40] Zhu Q L,Wang C,Yan J H,et al. Effects of straw and waste application on soil aggregates and soil carbon,nitrogen and phosphorus in the jasmine garden[J]. Journal of Soil and Water Conservation,2017,31(4):191—197. [朱秋麗,王純,嚴錦華,等. 施加秸稈與廢棄物對茉莉園土壤團聚體及碳氮磷含量的影響[J]. 水土保持學報,2017,31(4):191—197.]

[41] Tian J,Wang J Y,Dippold M,et al. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil[J]. Science of the Total Environment,2016,556:89—97.

[42] Zhu X M,Chen B L,Zhu L Z,et al. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation:A review[J]. Environmental Pollution,2017,227:98—115.

[43] Yao Q,Liu J J,Yu Z H,et al. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China[J]. Soil Biology & Biochemistry,2017,110:56—67.

[44] Watzinger A,F(xiàn)eichtmair S,Kitzler B,et al. Soil microbial communities responded to biochar application in temperate soils and slowly metabolized13C-labelled biochar as revealed by13C PLFA analyses:Results from a short-term incubation and pot experiment[J]. European Journal of Soil Science,2014,65(1):40—51.

[45] Li J,Wu H J,Wu X P,et al. Effects of long-term tillage measurements on soil aggregate characteristic and microbial diversity[J]. Chinese Journal of Applied Ecology,2014,25(8):2341—2348. [李景,吳會軍,武雪萍,等. 長期不同耕作措施對土壤團聚體特征及微生物多樣性的影響[J]. 應用生態(tài)學報,2014,25(8):2341—2348.]

[46] Yue F X,Li J W,Wang Y F,et al. Mechanism of the improvement effect by biochar and AM fungi on the availability of soil nutrients in coal mining area[J]. Journal of Plant Nutrition and Fertilizer,2019,25(8):1325—1334. [悅飛雪,李繼偉,王艷芳,等. 生物炭和AM真菌提高礦區(qū)土壤養(yǎng)分有效性的機理[J]. 植物營養(yǎng)與肥料學報,2019,25(8):1325—1334.]

[47] Peng S L,Guo T,Liu G C. The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China[J]. Soil Biology & Biochemistry,2013,57:411—417.

Effects of Biochar on Soil Aggregate Stability and Microbial Community in Paddy Field

JIANG Xueyang1, ZHANG Qianqian1, SHEN Haojie1, HE Tiehu2, XIONG Zhengqin1?

(1. Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; 2. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China)

【Objective】Soil aggregates, subjected to the joint impact of soil biological and non-biological factors, play a crucial role in determining soil functions and ecosystem services. Soil microorganisms are one of the most active biological factors that affect the formation of soil aggregates. This study is aimed to explore long-term effects of biochar application on stability of paddy soil aggregates in paddy soil at two locations from abiotic and biological perspectives.【Method】From two long-term field experiments under the wheat-rice rotation system, located in Jurong and Nanjing, separately, 3 and 5 years old in history, and consisting of two treatments each, i.e. CK (Conventional fertilization) and AB (Conventional fertilization + biochar), soil samples were collected after harvesting wheat in the annual rice-wheat rotations for particle size fractionation of soil aggregates using the wet sieve method, and for analysis of contents of organic carbon, total nitrogen and total phosphorus as well as abundance of soil microorganisms (bacteria, fungi, arbuscular mycorrhizal fungi, archaea and actinobacteria) in each fraction of soil aggregates using the quantitative PCR technique.【Result】Treatments AB in the two field experiments were significantly higher in soil pH, field soil water holding capacity macro aggregate ratio (>0.25) after biochar getting aged, and exhibited increase trends in both mean weight diameter and geometric mean diameter (>0.05). Soil nutrient contents (SOC, total phosphorus) and soil microbial abundance in soil aggregates changed significantly, too. Compared with Treatment CK, Treatment AB was 93.0% and 61.5% higher in content of macro aggregates, respectively, in the Jurong and Nanjing experiments, but exhibited a decreasing trend in both the 0.002–0.053 mm and <0.002 mm fractions of soil aggregates; besides, Treatment AB was significantly or 26.3% and 26.9% higher in SOC content of the bulk soil, 72.4% and 52.3% higher in SOC content of the macro aggregates, and 20.8% and 30.0% higher in SOC content of the micro aggregates, respectively, in the Jurong and Nanjing experiments, significantly higher in fungi abundance of the bulk soil in both experiments, significantly or 25.4% higher in total phosphorus in the Nanjing experiment; and also exhibited an increasing trend in abundance of the arbuscular mycorrhizal fungi and archaea (>0.05). Correlation analysis showed that the soil aggregate mean weight diameter was very significantly and positively related to macro aggregate ratio, SOC content, abundance of fungi and arbuscular mycorrhizal fungi (<0.01). The total phosphorus content and archaea abundance were significantly and positively correlated, with correlation coefficient being 0.641 and 0.646, respectively.【Conclusion】Aging biochar improves soil pH, field water holding capacity, other physical and chemical properties, increases the proportion of 0.25–2 mm macro aggregates, SOC and total phosphorus content, and stabilizes soil aggregates. Moreover, it increases abundance of the soil microbes in the rice fields in Jurong and Nanjing to a varying degree. Aging biochar is beneficial to the growth of soil microorganisms, increases the abundance of fungi and arbuscular mycorrhizal fungi, promotes the formation of soil aggregates, and indirectly improves the stability of soil aggregates. To sum up, biochar demonstrates sustained effects of increasing macro aggregate ratio, carbon and phosphorus contents, and fungal, arbuscular mycorrhizal fungal and archaeal abundances, and improving soil aggregate stability during the wheat season of the rice-wheat rotation system.

Biochar; Aggregate; Stability; Microorganism

S152.4+7

A

10.11766/trxb202005280258

蔣雪洋,張前前,沈浩杰,何鐵虎,熊正琴. 生物質炭對稻田土壤團聚體穩(wěn)定性和微生物群落的影響[J]. 土壤學報,2021,58(6):1564–1573.

JIANG Xueyang,ZHANG Qianqian,SHEN Haojie,HE Tiehu,XIONG Zhengqin. Effects of Biochar on Soil Aggregate Stability and Microbial Community in Paddy Field[J]. Acta Pedologica Sinica,2021,58(6):1564–1573.

*國家自然科學基金項目(41977078)資助 Supported by the National Natural Science Foundation of China(No. 41977078)

Corresponding author,E-mail:zqxiong@njau.edu.cn

蔣雪洋(1994—),女,河南省鄭州人,碩士研究生,主要從事土壤碳氮循環(huán)研究。E-mail:2018103087@njau.edu.cn

2020–05–28;

2020–08–24;

2020–10–07

(責任編輯:盧 萍)

猜你喜歡
句容叢枝粒級
國外某大型銅礦選礦廠流程考查與分析①
礦冶工程(2022年6期)2023-01-12 02:15:10
江蘇省句容經濟開發(fā)區(qū)中心小學
山地暗棕壤不同剖面深度的團聚體分布
從句容的“容”到茅山的“隱士哲學”
華人時刊(2020年17期)2020-12-14 08:12:56
心系句容百姓的徐九經
公民與法治(2020年2期)2020-05-30 12:28:52
解放思想,推動句容農業(yè)提質增效
活力(2019年17期)2019-11-26 00:41:44
叢枝蓼化學成分的研究
中成藥(2018年3期)2018-05-07 13:34:24
不同粒級再生骨料取代的混凝土基本性能試驗研究
長期不同施肥對土壤各粒級組分中氮含量及分配比例的影響
供硫和叢枝菌根真菌對洋蔥生長和品質的影響
宾阳县| 大关县| 长岛县| 永嘉县| 正安县| 新郑市| 枣阳市| 静乐县| 嘉峪关市| 贵溪市| 宾川县| 都昌县| 八宿县| 黔南| 二手房| 当阳市| 开阳县| 开江县| 古蔺县| 客服| 霍邱县| 沈阳市| 新建县| 扎兰屯市| 监利县| 湖北省| 丹棱县| 普兰店市| 鸡西市| 舟曲县| 马山县| 凤城市| 确山县| 宜阳县| 多伦县| 阳山县| 大洼县| 宜兴市| 高州市| 白银市| 新晃|