熊立瑰,劉思慧,黃建安,劉仲華
茶的抗病毒作用研究進(jìn)展
熊立瑰,劉思慧,黃建安*,劉仲華*
國家植物功能成分利用工程技術(shù)研究中心/茶學(xué)教育部重點(diǎn)實(shí)驗(yàn)室/教育部植物功能成分利用協(xié)同創(chuàng)新中心/湖南農(nóng)業(yè)大學(xué),湖南 長沙 410128
茶是世界公認(rèn)的健康飲料,其消費(fèi)群體在不斷擴(kuò)大。近30年來,茶的抗病毒研究成果不斷涌現(xiàn)。綜述了茶葉及其功能成分(尤其是茶多酚)對流感病毒、冠狀病毒、肝炎病毒、人類免疫缺陷病毒等病毒的干預(yù)作用,并簡要闡述了其作用機(jī)制。茶葉及其功能成分的抗病毒作用主要集中于體外生化研究和細(xì)胞試驗(yàn),比較缺乏動物試驗(yàn)、人體臨床試驗(yàn),以及人體流行病學(xué)調(diào)查等研究。人們?nèi)粘o嫴柽^程中,茶葉及其功能成分能否發(fā)揮抗病毒作用尚不明確。因此,研究人員需要開展更多的大規(guī)模隨機(jī)化干預(yù)試驗(yàn)和人群流行病學(xué)調(diào)查等研究,進(jìn)一步探討茶葉及其功能成分的抗病毒作用。
茶;功能成分;病毒;抗病毒作用
病毒是一類嚴(yán)重危害人類生命健康的病原微生物,如新型冠狀病毒、SARS病毒、埃博拉病毒、人類免疫缺陷病毒和流感病毒等,一旦感染,傳播迅速,且較難控制。茶是一類具有多種生理和藥理活性的天然健康飲料,含有茶多酚(以兒茶素類及其衍生物、茶黃素類及其衍生物、黃酮類及其衍生物和酚酸類物質(zhì)為主)、游離氨基酸(以茶氨酸為主)和嘌呤堿(咖啡堿、可可堿和茶堿)等多種活性成分。早在1949年,英國的Green報道了紅茶提取物抑制雞蛋中甲型流感病毒的增殖[1]。上世紀(jì)80年代至今的研究表明,茶及其功能成分具有廣泛的抗病毒活性。本文主要綜述了近30年來國內(nèi)外關(guān)于茶及其功能成分抗病毒活性的研究進(jìn)展,以期為我國進(jìn)一步深入開展茶葉抗病毒功能研究提供參考,并為健康飲茶提供科學(xué)依據(jù)。
流感是一種由流感病毒誘發(fā)的急性、傳染性呼吸系統(tǒng)疾病。流感病毒的基因組為單股負(fù)鏈RNA,典型的病毒顆粒呈球狀,直徑為80~120?nm,粒子外包裹著由脂質(zhì)和糖蛋白組成的囊膜。根據(jù)其核蛋白和基質(zhì)蛋白抗原決定簇的不同,流感病毒可分為A、B、C型3種,屬于正黏病毒科(),其中A型(甲型)流感病毒變異頻繁,宿主廣泛,可以感染飛鳥、家禽和人類,引發(fā)全球大流行,具有極高的發(fā)病率和死亡率,如H1N1、H2N2、H3N2、H5N1和H7N9等[2]。除全球大流行外,A型和B型流感病毒引發(fā)的季節(jié)性流感每年也導(dǎo)致超過25萬人死亡[3]。局部性的高致病禽流感爆發(fā)同樣會給社會和經(jīng)濟(jì)發(fā)展帶來嚴(yán)重影響[3]。
細(xì)胞試驗(yàn)發(fā)現(xiàn),紅茶、綠茶和普洱茶均具有一定的抗流感病毒感染作用[1,4-5]。多項(xiàng)體外細(xì)胞試驗(yàn)表明,兒茶素類、茶黃素類及其衍生物能有效抑制Madin-Darby犬腎(MDCK)細(xì)胞感染流感病毒,半數(shù)抑制濃度(IC50)范圍為6.25~50?μg·mL-1[6-11]。Yang等[12]通過研究茶多酚物質(zhì)構(gòu)效關(guān)系發(fā)現(xiàn),茶多酚抑制A型流感病毒活性依次為茶黃素(Theaflavin,TF)>原青花素B2>原青花素B2雙沒食子酸>表沒食子兒茶素(Epigallocatechin,EGC)>表沒食子兒茶素沒食子酸脂(Epigallocatechin gallate,EGCG)(IC50范圍為16.2~56.5?μg·mL-1);其抑制B型流感病毒活性依次為山柰酚(Kaempferol)>EGCG>原青花素B2>EGC/甲基化EGC>TF(IC50范圍為9.0~49.7?μg·mL-1)。Noda等[13]通過體外細(xì)胞試驗(yàn)研究表明,各種兒茶素化合物對流感病毒的抑制活性依次為沒食子兒茶素沒食子酸脂(Gallocatechin gallate,GCG)/EGCG>兒茶素沒食子酸酯(Catechin gallate,CG)/表兒茶素沒食子酸酯(Epicatechin gallate,ECG)>沒食子兒茶素(Gallocatechin,GC)/EGC>兒茶素(Catechin,C)/表兒茶素(Epicatechin,EC)。之后的研究發(fā)現(xiàn),EGCG、ECG和EGC對A型流感病毒的半數(shù)有效濃度(EC50)分別為22~48、22~40?μmol·L-1和309~318?μmol·L-1[14]。在細(xì)胞試驗(yàn)中,不同兒茶素之間抑制流感病毒的活性差異顯著,但多數(shù)研究認(rèn)為沒食子化的兒茶素(如EGCG)效果優(yōu)于非沒食子化的兒茶素(如EGC)。這種結(jié)果上的差異可能與細(xì)胞模型、病毒類型、計算差異和試驗(yàn)設(shè)計有關(guān)。
EGCG和茶黃素雙沒食子酸酯(Theaflavin-3,3'-digallate,TF-DG)可能通過與血凝素結(jié)合凝集病毒粒子并組織病毒附著在細(xì)胞表面,以此抑制A型和B型流感病毒感染MDCK細(xì)胞[15]。李湘瀲等[16]研究發(fā)現(xiàn)茶黃素混合物也有相似的作用。細(xì)胞試驗(yàn)研究表明,綠茶提取物可抑制胞內(nèi)體和溶酶體等與病毒內(nèi)吞相關(guān)的細(xì)胞器酸化,繼而阻止流感病毒感染MDCK細(xì)胞[17]。Song等[14]研究表明,EGCG和ECG通過抑制病毒神經(jīng)氨酸酶活性和RNA合成抑制病毒復(fù)制,并發(fā)現(xiàn)此過程中兒茶素骨架的3-沒食子酰基比在2位的三羥基芐基中的5'-OH更重要。雙脫氧-EGCG(5,7-dideoxy-epigallocatechin gallate,通過在C3處直接引入酮基)抗流感病毒研究表明,EGCG A環(huán)上的羥基在抗流感病毒活性中作用較小[18]。
小鼠試驗(yàn)同樣表明EGCG具有抗流感病毒的作用??诜﨓GCG(40?mg·kg-1·d-1)能顯著降低H1N1感染小鼠的病死率,延長其存活時間,減輕小鼠肺組織病變程度,這種作用可能是由于EGCG減少了H1N1病毒誘導(dǎo)的宿主體內(nèi)ROS生成[9,19]。QR-435是一種以綠茶提取物為主的純天然產(chǎn)品,將其按比例溶于生理鹽水(90%、20%、4%、2%和0.4%,∶),隨后浸潤商品化面膜,將面膜貼在流感病毒H3N2表面5?min,能有效防止病毒擴(kuò)散和傳播[20-21];將其作用于H3N2感染的雪貂面部也有一定效果[22]。Lee等[23]研究發(fā)現(xiàn),綠茶茶渣對流感病毒有抑制作用,EC50為6.36?μg·mL-1,而綠茶水提物的EC50為6.72?μg·mL-1。盡管茶渣(100、10、1?mg·kg-1·d-1,共5?d)喂養(yǎng)BALB/c小鼠后,沒有降低小鼠的感染率和死亡率,但顯著減少了感染初期肺部的病毒滴度,且茶渣呈劑量依賴的方式(1、4、10?g·kg-1·d-1,共5?d)抑制流感病毒H9N2對雞的感染,最優(yōu)劑量為10?g·kg-1(茶渣∶飼料)[23]。上述結(jié)果說明,除兒茶素外,綠茶中的一些非水溶性化合物可能同樣存在抗流感病毒作用。
盡管體外試驗(yàn)和部分動物試驗(yàn)研究表明,飲茶或使用茶葉活性物質(zhì)能預(yù)防流感病毒感染,但其臨床療效的證據(jù)尚無定論。近30年來,茶葉消費(fèi)與流感的流行病學(xué)或臨床應(yīng)用研究以中日兩國為主,主要集中在以下3個方面:(1)側(cè)重于茶(主要是綠茶)的飲用與流感病毒感染之間的關(guān)聯(lián);(2)通過膳食補(bǔ)充劑攝入量評估茶的效果;(3)評估用茶漱口對預(yù)防流感感染的效果。
Leung等[24]通過一項(xiàng)877人的流行病學(xué)調(diào)查發(fā)現(xiàn),飲茶人群中僅9.7%的人出現(xiàn)流感癥狀,而非飲茶人群中出現(xiàn)流感癥狀的人占比為18.3%,兩者差異顯著。Park等[25]基于2?050名6~13歲茶園區(qū)域?qū)W齡兒童的觀察性研究(匿名問卷調(diào)查,回應(yīng)率77%)表明,與每日飲用綠茶小于1杯(每杯200?mL)的兒童相比,每日飲用綠茶1~5杯與流感感染率顯著負(fù)相關(guān)(1~3杯:校正后比值比為0.62,95%置信區(qū)間為0.41~0.95;3~5杯:校正后比值比為0.54,95%置信區(qū)間為0.30~0.95),而大于5杯相關(guān)性不顯著。
Rowe等[26]針對108名健康成人為期5個月的隨機(jī)對照研究表明,與安慰劑組(55人)相比,服用綠茶膠囊(含有EGCG和-茶氨酸,相當(dāng)于每天10杯綠茶的含量)的受試健康成人組的流感癥狀減少32.1%(=0.035),流感癥狀天數(shù)減少35.6%(<0.002)。Matsumoto等[27]對197人開展了一項(xiàng)為期5個月的茶葉防治H1N1流感的隨機(jī)、對照、雙盲臨床試驗(yàn),結(jié)果顯示,每日服用含有378?mg兒茶素、210?mg茶氨酸的膠囊組臨床流感發(fā)病率為4.1%,顯著低于安慰劑組的發(fā)病率(13.1%,校正后比值比為0.25,95%置信區(qū)間為0.07~0.76),但兩組流感患者的感染時間沒有明顯不同(校正后比值比為0.27,95%置信區(qū)間為0.09~0.84)。
Itawa等[28]通過持續(xù)5個月的小規(guī)模前瞻性隊(duì)列研究發(fā)現(xiàn),使用紅茶提取物含漱液(0.5%,質(zhì)量體積比)每天漱口兩次能夠有效預(yù)防流感感染。Noda等[29]評估了漱口水對19?595名2~6歲健康兒童預(yù)防發(fā)燒性疾病的有效性,經(jīng)20?d研究發(fā)現(xiàn),通過非漱口組校正后,使用綠茶漱口(校正后比值比為0.32,95%置信區(qū)間為0.17~0.67)的兒童發(fā)燒比例明顯低于使用自來水漱口(校正后比值比為0.70,95%置信區(qū)間為0.58~0.85)的兒童。Yamada等[30]針對124名養(yǎng)老院65歲以上老人為期3個月的小規(guī)模前瞻性隊(duì)列研究表明,使用兒茶素提取物(200?μg·mL-1,其中60%是EGCG)漱口組(76人)流感病毒感染率為1.3%,顯著低于對照組(用水漱口)的10.0%(=0.028,比值比為15.711,95%置信區(qū)間為1.883~399.658)。Ide等[31]通過包含隨機(jī)對照和前瞻性隊(duì)列研究的薈萃分析表明,在參與研究的1?890人中,用茶漱口組的流感感染率低于用水漱口和不漱口組(固定效果模型:相對風(fēng)險值為0.70,95%置信區(qū)間為0.54~0.89;隨機(jī)效果模型:相對風(fēng)險值為0.71,95%置信區(qū)間為0.54~0.89)。然而,Ide等[32]另一項(xiàng)針對中學(xué)生的隨機(jī)對照研究卻發(fā)現(xiàn),綠茶漱口組的學(xué)生與對照組相比,流感感染率并無顯著差異。因此,茶是否能有效預(yù)防流感病毒感染,需要擴(kuò)大研究規(guī)模進(jìn)一步確認(rèn)[33]。
冠狀病毒(Coronavirus)是最大的RNA病毒,屬冠狀病毒科()冠狀病毒屬,其基因組為單股正鏈RNA。冠狀病毒顆粒呈不規(guī)則球形,直徑約為60~220?nm,粒子外由脂質(zhì)和糖蛋白組成的囊膜包裹。因包膜上突起的Spike蛋白在電鏡下呈現(xiàn)類似“皇冠”的形態(tài)而被稱為“冠狀病毒”。目前報道顯示,冠狀病毒只感染脊椎動物,與人和動物的許多疾病有關(guān)。2019年底發(fā)現(xiàn)的新型冠狀病毒(SARS-CoV-2,引發(fā)COVID-19)是目前已知的第7種可以感染人的冠狀病毒,其余6種分別是HCoV-229E、HCoV-OC43、HCoV-NL63、HCoV-HKU1、SARS-CoV(引發(fā)重癥急性呼吸綜合征,致死率為10%)和MERS-CoV(引發(fā)中東呼吸綜合征,致死率為37%)[34-37]。
SARS-CoV-2引發(fā)的COVID-19引起多方關(guān)注。Wu等[38]通過比對2019-nCoV、SARS-CoV、MERS-CoV和Bat-CoVRaTG13 4種冠狀病毒來源的Spike蛋白發(fā)現(xiàn),SARS-CoV-2具有冗余的PRRA序列,是其感染性更強(qiáng)的潛在原因。序列分析顯示,該序列是SARS-CoV-2中弗林蛋白酶(Furin)特異的酶切位點(diǎn)。通過基于結(jié)構(gòu)的虛擬配體篩選發(fā)現(xiàn),EGCG和TF-DG是潛在的弗林蛋白酶小分子抑制劑[38]。預(yù)測表明,EGCG占據(jù)MI-52的前兩臂位置,在Asp258和Ala292形成氫鍵,在Pro256、Trp254和Gly294之間有弱疏水相互作用[38]。由于該研究只是計算機(jī)模擬的配體虛擬篩選研究,尚未通過細(xì)胞、動物和臨床試驗(yàn)證實(shí),并不足以說明EGCG或TF-DG能有效抵御SARS-CoV-2感染。EGCG或茶是否對新型冠狀病毒有抑制作用,需要更多的試驗(yàn)證據(jù)。
茶葉中含有預(yù)防SARS-CoV的化學(xué)成分。體外生化試驗(yàn)表明,單寧酸(Tannic acid)和茶黃素-3'-沒食子酸酯(Theaflavin-3'- monogallate,TF-3'-G)能顯著抑制SARS-CoV的3CLPro蛋白酶活性,其IC50分別為3?μmol·L-1和7?μmol·L-1,且紅茶和黑茶的提取物效果優(yōu)于綠茶和烏龍茶提取物,可能與酚酸或茶黃素含量有關(guān)[39]。與咖啡相比,每天喝茶可以活化人體的T細(xì)胞[40]。茶氨酸前體物質(zhì)乙胺是一種非肽抗體,可以活化血液中的T細(xì)胞,使其參與對乙胺再度出現(xiàn)時的記憶反應(yīng),并可產(chǎn)生免疫功能,進(jìn)而形成對微生物病原體的抵抗力。
細(xì)胞試驗(yàn)發(fā)現(xiàn),EGCG能與牛冠狀病毒相互作用,阻礙病毒吸附于MDBK細(xì)胞[41]。Clark等[42]試驗(yàn)表明,茶黃素提取物也能抑制牛冠狀病毒對宿主細(xì)胞的感染,EC50為34.7?mg·mL-1,且茶黃素混合物效果優(yōu)于單體,因此可能存在協(xié)同作用。C(10?μmol·L-1)可能通過其抗氧化性抑制病毒RNA復(fù)制減弱豬睪丸細(xì)胞中的傳播性胃腸炎冠狀病毒感染[43]。
人類免疫缺陷病毒(Human immunodeficiency virus,HIV),俗稱艾滋?。ˋIDS)病毒,誘發(fā)人類獲得性免疫缺陷綜合征。HIV基因組由兩條單鏈正鏈RNA組成,每條RNA基因組約為9.7?kb。HIV是直徑約為100?nm的球狀病毒,粒子外有兩層脂質(zhì)組成的外膜,屬反轉(zhuǎn)錄病毒科()慢病毒屬[44]。HIV-1和HIV-2是已發(fā)現(xiàn)的兩種AIDS病毒,其中HIV-1致病力很強(qiáng),是引起全球艾滋病流行的主要原因[45]。自1981年發(fā)現(xiàn)以來,HIV引起的AIDS致使全球超過6?000萬人感染,3?000萬人死亡[45]。
細(xì)胞試驗(yàn)表明,普洱茶提取物(EC50范圍為11.13~67.49?μg·mL-1)具有抗HIV感染的作用[46];茶葉中的黃酮類化合物楊梅素(100?μmol·L-1)也能有效抑制多種HIV-1病毒株[47-48]。多項(xiàng)細(xì)胞試驗(yàn)表明,茶多酚對預(yù)防HIV-1感染有較好的作用。最初在人外周血單個核細(xì)胞(PBMC)試驗(yàn)中發(fā)現(xiàn)茶多酚對HIV-1復(fù)制有抑制作用。通過分析發(fā)現(xiàn),EGCG、EGC、ECG對HIV-1逆轉(zhuǎn)錄酶有較強(qiáng)的抑制作用,降低p24抗原濃度,IC50分別為0.006?6、0.084?μmol·L-1和7.2?μmol·L-1,TF和TF-DG的IC50分別為0.5?μg·L-1和0.1?μg·L-1[49]。也有研究指出,EC可以抑制HIV-1病毒的逆轉(zhuǎn)錄酶的活性[50]。
EGCG是茶葉中預(yù)防HIV感染最有效的化合物。EGCG與非核苷逆轉(zhuǎn)錄酶抑制劑(NNRTIs)具有相似的抑制特性,因而被認(rèn)為是變構(gòu)的HIV逆轉(zhuǎn)錄酶抑制劑,可在較低的生理濃度范圍內(nèi)抑制HIV-1和HIV-2活性。進(jìn)一步分析發(fā)現(xiàn),除與NNRTIs具有相同的結(jié)合位點(diǎn)外,EGCG還能抑制HIV-2其他的結(jié)合位點(diǎn)。因此,與齊多夫定(AZT,HIV抗逆轉(zhuǎn)錄酶療法的主要藥物)聯(lián)用有協(xié)同抑制作用。盡管NNRTIs耐受的病毒同樣耐受EGCG,但EGCG與NNRTIs作用機(jī)制可能不同[51]。EGCG還能干擾HIV-1包膜,增加病毒顆粒的降解,進(jìn)而降低HIV-1感染力[52]。EGCG也可能是作用于HIV-1生命周期的每一個環(huán)節(jié),呈劑量和以時間依賴的方式破壞病毒并抑制逆轉(zhuǎn)錄酶活性,其具體方式可能是EGCG結(jié)合到病毒包膜表面,使包膜磷脂變形,促使病毒裂解[53]。HIV-1進(jìn)入宿主細(xì)胞是由包膜蛋白gp120識別宿主細(xì)胞的受體分子CD4,然后與共受體分子CCR5或CXCR4相互作用。宿主和病毒之間是借助HIV-1 gp41中的融合肽來實(shí)現(xiàn)膜融合,膜融合后,病毒將衣殼釋放到細(xì)胞質(zhì)中[54]。ECGG(25~250?μmol·L-1)與anti-CD4單克隆抗體競爭,證實(shí)了EGCG可下調(diào)CD4表達(dá),其原因可能是EGCG通過靶向gp120抗原的CD4受體D1結(jié)合域,阻斷HIV與受體CD4之間的結(jié)合,進(jìn)而削弱HIV-1病毒顆粒附著CD4+T細(xì)胞的能力。生理濃度的EGCG(0.2?μmol·L-1)可使gp120與CD4的結(jié)合降低20倍,而ECG則不具備這種作用[55-58]。體外試驗(yàn)也證實(shí)了EGCG與CD4之間的高親和力,其吸附系數(shù)kd約為10?nmol·L-1[57],但這一過程是否與CD4從細(xì)胞表面脫落或CD4的內(nèi)吞作用有關(guān),需要進(jìn)一步研究證實(shí)。HIV-1整合酶負(fù)責(zé)將HIV-1 previral DNA整合至感染的細(xì)胞基因組,EGCG等具有沒食子酰基的兒茶素能通過減少整合酶與previral DNA的相互作用而減少HIV-1整合細(xì)胞基因組[59]。茶黃素類及其衍生物也能抑制HIV包膜蛋白與靶細(xì)胞的融合,且效果要優(yōu)于兒茶素類。TF不僅能夠抑制gp41六螺旋束的形成,繼而阻礙HIV與靶細(xì)胞之間的膜融合,也可以抑制逆轉(zhuǎn)錄酶活性,IC50分別為6.25?μmol·L-1和48.67?μmol·L-1[60-62]。
精液源性病毒感染增強(qiáng)因子(SEVI)是前列腺酸性磷酸酶的肽段分泌至精液中形成的淀粉樣原纖維,能夠捕獲HIV顆粒并將其引導(dǎo)至靶細(xì)胞,是一種重要的HIV-1感染因子。EGCG能抑制淀粉樣原纖維形成[63]。研究發(fā)現(xiàn),EGCG能靶向分解SEVI,從而抑制SEVI活性并減弱HIV-1通過精液的感染能力,此過程中EGCG并不產(chǎn)生細(xì)胞毒性[64-66]。一種含2%(∶)茶黃素混合物(TFmix)的陰道凝膠也能有效抑制SEVI形成,且沒有對試驗(yàn)兔產(chǎn)生副作用[67]。
病毒性肝炎是一種威脅人類健康的世界性傳染病,引起肝炎的病毒統(tǒng)稱為肝炎病毒(Hepatitis virus)。目前已知的有甲型肝炎病毒(HAV)、乙型肝炎病毒(HBV)、丙型肝炎病毒(HCV)、丁型肝炎病毒(HDV)和戊型肝炎病毒(HEV)等5種。HBV和HCV是慢性肝病的主要病因,例如肝纖維化,肝硬化和肝細(xì)胞癌[68-69]。因此,茶及其功能成分的抗肝炎病毒研究主要集中在HBV和HCV兩類。
HBV基因組是一種有部分單鏈區(qū)的環(huán)狀雙鏈DNA分子,長鏈L為負(fù)鏈(約3.2?kb),短鏈S為正鏈(長度不確定,約為負(fù)鏈的50%~80%)。HBV完整粒子直徑約為42?nm,外膜由病毒表面抗原、多糖和脂質(zhì)組成,屬嗜肝病毒科()正嗜肝病毒屬[69]。目前,全球40%的人接觸過HBV,共有約3億人感染,多數(shù)為急性感染,可以被機(jī)體的免疫系統(tǒng)清除,無法自愈者逐漸轉(zhuǎn)變?yōu)槁砸倚透窝?。慢性乙型肝炎是引起肝硬化和肝癌等病毒感染相關(guān)并發(fā)癥的主要原因,造成每年約70萬人死亡[70]。
細(xì)胞試驗(yàn)表明,綠茶、白茶與普洱茶的提取物對HBV均有良好的抑制作用[71-73]。HepG2-N10和HepG2 2.2.15是能穩(wěn)定表達(dá)HBV的人肝癌細(xì)胞株。將綠茶提取物(GTEs)作用于該細(xì)胞株發(fā)現(xiàn),GTEs呈劑量依賴性抑制HBV特異性抗原表達(dá)并減少胞內(nèi)外HBV DNA和病毒共價閉合環(huán)狀DNA(cccDNA)水平,其中GTEs對HBV表面抗原(HBsAg)、HBV e抗原(HBeAg)、胞外HBV DNA和胞內(nèi)HBV DNA的EC50分別為5.02、5.68、19.81、10.76?μg·mL-1[71]。將茶多酚混合物(TPs,純度為98%)作用于HepG2 2.2.15發(fā)現(xiàn),TPs呈劑量和時間依賴性抑制HBeAg分泌,對HBV DNA的IC50為2.54?μg·mL-1[74]。茶中的主要兒茶素類化合物具備與GTEs和TPs相似的作用,均能顯著抑制HBV抗原表達(dá),作用效果依次為GTEs>EGCG>ECG/EGC[71,75-77]。GTEs活性優(yōu)于EGCG,說明茶中還存在其他具有抗HBV活性的成分[71],且這些物質(zhì)能夠協(xié)同抑制HBV。研究表明,兒茶素類、茶黃素類和茶氨酸對HBV具有協(xié)同作用[72];槲皮素和茶堿能抑制HBV復(fù)制[78-79]。
EGCG可能是作為肝細(xì)胞法尼酯X受體(FXR)拮抗劑從而下調(diào)HBV抗原表達(dá)和抑制HBV EnhII/core啟動子轉(zhuǎn)錄激活[75]。在能誘導(dǎo)HBV復(fù)制的HepG2.117肝細(xì)胞株研究模型上,EGCG通過破壞DNA合成過程中的HBV復(fù)制中間體來抑制HBV復(fù)制,從而降低了HBV cccDNA的形成,但并不影響前基因組RNA(pgRNA)和前核心(Precore)RNA的形成以及HBeAg的翻譯[80]。Na+-牛磺膽酸鹽轉(zhuǎn)運(yùn)蛋白(NTCP)能與HBV大表面蛋白L的preS1結(jié)構(gòu)域產(chǎn)生高親和力相互作用,從而完成HBV感染進(jìn)入細(xì)胞,在HBV靶向肝臟過程中發(fā)揮關(guān)鍵作用[81-82]。EGCG通過誘導(dǎo)細(xì)胞膜中網(wǎng)格蛋白依賴的NTCP內(nèi)吞,并調(diào)控蛋白質(zhì)降解,從而抑制不同類型的HBV感染進(jìn)入永生化的人原代肝細(xì)胞、DMSO誘導(dǎo)分化的HuS-E/2和表達(dá)HA-NTCP的Huh7細(xì)胞。此過程中,EGCG并不改變HBV結(jié)構(gòu)或與HBV進(jìn)入相關(guān)基因的表達(dá)[83]。另外,EGCG可以通過促進(jìn)溶酶體酸化從而創(chuàng)建一個不利于HBV復(fù)制的微環(huán)境,以此對抗HBV引起的不完全自噬,保護(hù)宿主細(xì)胞[84]。EGCG能夠顯著抑制HBV感染人肝嵌合型(Hu-FRG)小鼠,并依賴ERK1/2-HNF4軸抑制HBV復(fù)制從而減輕C57BL/6小鼠的HBV感染[85-86]。
HCV基因組是單正鏈RNA分子,全長約為9.6?kb。HCV粒子直徑小于80?nm,外包有含脂質(zhì)的有刺突囊膜,屬于黃病毒科()丙肝病毒屬,是丙型肝炎的致病因子[68]。全球約有2%~3%的人感染HCV,超過80%的感染者不能自發(fā)清除HCV,進(jìn)而引起持續(xù)性感染,演變成慢性肝炎、肝硬化和原發(fā)性肝細(xì)胞癌等疾病。慢性HCV感染是慢性肝病的另一個主要病因,與全世界約30%的肝癌相關(guān),并且是原位肝移植的主要適應(yīng)癥之一[87]。
在尋找抗HCV化合物的過程中發(fā)現(xiàn),EGCG能有效抑制HCV感染[88-90]。EGCG可抑制HCV必需的NS3/4A絲氨酸蛋白酶,但此結(jié)果無法在HCV復(fù)制環(huán)境中重復(fù)[88-89,91]。在Huh-7肝細(xì)胞株和人原代肝細(xì)胞模型中,EGCG都可以有效抑制不同基因型的細(xì)胞培養(yǎng)來源HCV(HCVcc)和感染性類HCV顆粒(HCVpp)進(jìn)入靶細(xì)胞,其效果顯著優(yōu)于EGC、EC和ECG,但是,病毒RNA復(fù)制和感染性顆粒的釋放均不受影響[88-90,92]。由于EGCG不影響HCV復(fù)制,可以與靶向RNA復(fù)制的抗HCV藥物聯(lián)用,如NS3/4A蛋白酶抑制劑或環(huán)孢霉素A,干擾HCV輔助因子親環(huán)蛋白,抑制HCV復(fù)制,協(xié)同抵御HCV感染[89]。CD-81是HCV進(jìn)入細(xì)胞的關(guān)鍵受體,EGCG通過增強(qiáng)miR-548m和抑制CD-81阻礙HCV進(jìn)入靶細(xì)胞[93]。在細(xì)胞培養(yǎng)過程中發(fā)現(xiàn),HCV可以細(xì)胞間傳染(Cell-to-cell transmission),而細(xì)胞間的HCV傳染可能并不需要CD-81,且這種細(xì)胞間的傳播容易對E2單克隆抗體的中和作用產(chǎn)生耐藥性,更符合肝組織的HCV感染[68,94]。當(dāng)感染的細(xì)胞被瓊脂糖覆蓋或與中和抗體一起孵育以防止細(xì)胞外感染時,EGCG能夠阻止HCV細(xì)胞間的傳播[88-89]。為確認(rèn)EGCG阻斷HCV進(jìn)入靶細(xì)胞的關(guān)鍵環(huán)節(jié),研究人員在感染早期不同時間點(diǎn)添加EGCG發(fā)現(xiàn),EGCG作用于病毒顆粒,并通過削弱病毒與細(xì)胞表面的結(jié)合來抑制病毒進(jìn)入[88-89]。EGCG預(yù)處理對靶細(xì)胞并沒有影響,但抑制了35S標(biāo)記的HCV對細(xì)胞的初步粘附[88]。進(jìn)一步研究發(fā)現(xiàn),EGCG的干預(yù)能導(dǎo)致HCV顆粒表面形成凸起,而這種結(jié)構(gòu)改變并不破壞病毒結(jié)構(gòu),也不影響病毒聚集,這可能是EGCG抑制HCV附著細(xì)胞的原因[95]。因而,EGCG可能是一種潛在的阻斷HCV進(jìn)入靶細(xì)胞的抑制劑。更重要的是,EGCG還能清除細(xì)胞培養(yǎng)基中的HCV,用50?μmol·L-1EGCG孵育感染細(xì)胞,傳代2次后能觀測到病毒部分清除,傳代3次后即低于檢測限[88,90]。綜上所述,EGCG通過阻止HCV附著在靶細(xì)胞上,有效地抑制了不同基因型的HCV進(jìn)入肝癌細(xì)胞株和人原代肝細(xì)胞。除EGCG外,EC可能通過下調(diào)Cycloxygenase-2阻礙HCV進(jìn)入靶細(xì)胞[96]。TF、TF-3'-G和TF-DG也可以有效抑制HCV進(jìn)入靶細(xì)胞,機(jī)制與EGCG相似[97]。
人乳頭瘤病毒(Human papilloma virus,HPV)是宮頸癌發(fā)生發(fā)展的主要危險因素之一,也是頭頸部鱗狀細(xì)胞癌(HNSCC)、皮膚癌和口腔鱗狀細(xì)胞癌(OSCC)等癌癥的誘發(fā)因素之一。HPV基因組是雙鏈環(huán)狀DNA,全長約8?kb。HPV呈球形,屬乳多空病毒科()乳頭瘤空泡病毒A屬。目前,HPV共發(fā)現(xiàn)150多種亞型,其中導(dǎo)致宮頸癌的主要為HPV16和HPV18亞型[98]。
細(xì)胞試驗(yàn)發(fā)現(xiàn),EGCG能夠抑制HPV16和HPV18感染導(dǎo)致的宮頸癌細(xì)胞生長和增殖[99-100]。EGCG能抑制HPV18感染的宮頸癌細(xì)胞的端粒酶活力,靶向HIF-1抑制非小細(xì)胞肺癌細(xì)胞(A549和NCI-H460)中HPV16癌蛋白誘導(dǎo)的血管生成,呈劑量依賴性上調(diào)Hela和Me180細(xì)胞凋亡相關(guān)蛋白表達(dá)(如p21和p53),下調(diào)HPV-E7蛋白表達(dá)[99,101-102]。兒茶素類物質(zhì)能通過擾亂線粒體功能,誘導(dǎo)HPV16感染的宮頸癌細(xì)胞(SiHa細(xì)胞)凋亡,從而抑制其增殖,茶黃素類具有相似的作用[103-104]。
EGCG和其他兒茶素能有效抵御HPV持續(xù)感染引起的宮頸病變。Ahn等[105]考察了局部涂抹和口服綠茶提取物(含EGCG和其他兒茶素)對HPV感染患者宮頸病變的臨床療效,結(jié)果表明,口服綠茶提取物的患者中有69%(35/51)表現(xiàn)出療效(HPV DNA減少和減輕異型增生),而對照組中僅為10%(4/39);與口服給藥相比,局部涂抹綠茶提取物顯示出更好的療效。使用polyphenon E軟膏(分別含10%或15%綠茶提取物)治療由HPV 6和HPV 11感染引起尖銳濕疣的臨床試驗(yàn)表明,15%綠茶提取物軟膏清除率為52%~57%,顯著高于安慰劑組(33%~37.5%)[106-107]。目前,主要用于治療HPV引起的尖銳濕疣藥物Veregen(酚瑞凈,兒茶素類物質(zhì)為主要成分),已經(jīng)被美國食品和藥物管理局(FDA)和歐洲藥品管理局(EMEA)批準(zhǔn)上市。Garcia等[108]一項(xiàng)對98名患有持續(xù)性HPV感染和低度宮頸上皮內(nèi)瘤變(CIN1)的宮頸癌患者為期4個月的隨機(jī)、雙盲Ⅱ期臨床試驗(yàn)表明,口服polyphenon E(含200?mg EGCG)組的緩解率與安慰劑相比沒有顯著差異。然而,此試驗(yàn)可能沒有考慮EGCG的局部遞送和使用Veregen軟膏涂抹[109]。因此,需要更廣泛的研究以確定EGCG或綠茶提取物對預(yù)防HPV感染引起的宮頸癌的作用。
皰疹病毒(Herpes viruses)是一類較大的雙鏈DNA病毒,粒子呈球形,有包膜,直徑約為150?nm,約100多種,主要有、和3種,其感染的宿主范圍廣泛,可感染人和其他脊椎動物,主要侵害皮膚、粘膜以及神經(jīng)組織。常見的皰疹病毒有單純皰疹病毒(Herpes simplex virus,HSV)、Epstein barr病毒(EBV)和馬立克病毒等[110]。茶葉抗皰疹病毒作用主要出現(xiàn)于HSV和EBV相關(guān)研究。
HSV屬于皰疹病毒科()皰疹病毒屬,其中HSV-1與口腔、面部感染和腦炎有關(guān),HSV-2與生殖器感染相關(guān)[111]。HSV-1和HSV-2也被稱為HHV-1和HHV-2(Human herpes virus 1/2),HSV感染還被認(rèn)為是HIV感染的高危因素[109]。
綠茶兒茶素類物質(zhì)能抑制HSV-1兩種不同病毒株的活性,其中EGCG的效果優(yōu)于其他兒茶素。與阿昔洛韋(HSV腦炎藥物)相比,EGCG具有更好的效果和更高的治療系數(shù)(Selective index,SI)。針對不同的病毒株,兒茶素類化合物的SI范圍為1.3~13[112]。通過比較兒茶素類化合物對不同臨床病毒樣本的作用發(fā)現(xiàn),EGCG處理HIV-1 40?min可以使培養(yǎng)基中的病毒滴度降低3個數(shù)量級以上,而且處理HIV-2僅需10~20?min。EGCG對不同HSV-1的EC99范圍為16~49?μmol·L-1,對不同HSV-2的EC99范圍為12.5~25?μmol·L-1,且在100?μmol·L-1時沒有細(xì)胞毒性[113]。也有研究表明,EGCG抑制HSV-1和HSV-2的EC50為0.1~2.6?μmol·L-1[114]。在pH=8.0時,EGCG有抗HSV-1和HSV-2的作用,但當(dāng)pH<7.4時則沒有[115]。EGCG雙酯型二聚體(如Theasinensin A)在酸性或中性條件下也具有抗HSV活性,且比EGCG效果更好;與較高pH環(huán)境下相同,TF-DG在pH=5.7時有較好的抗HSV活性,且效果優(yōu)于EGCG和其他茶黃素類物質(zhì),即使在pH=4的環(huán)境下,TF-DG仍然有抗HSV的效果[116]。100?μmol·L-1TF-DG對Vero細(xì)胞沒有顯著毒性,可以降低HSV-1顆粒數(shù)目致使HSV-1感染力降低5倍,說明TF-DG可能直接作用于病毒本身[116]。進(jìn)一步研究發(fā)現(xiàn),兒茶素能夠通過結(jié)合HSV表面聚糖(如硫酸肝素和唾液酸)阻礙病毒和宿主細(xì)胞結(jié)合,此作用方式同樣適用于HCV、鼠巨細(xì)胞病毒、牛痘病毒、水泡性口炎病毒、呼腸孤病毒、腺病毒和流感病毒[114]。EGCG也可能與病毒包膜糖蛋白結(jié)合繼而抑制病毒感染[113]。另外,茶多酚抗HSV活力在小鼠試驗(yàn)中也得到證實(shí)[115]。
人類皰疹病毒4型病毒(HHV-4),又稱EB病毒(Epstein barr virus,EBV),是一種廣泛存在的-皰疹病毒,與多種腫瘤發(fā)生發(fā)展密切相關(guān),如霍奇金淋巴瘤、鼻咽癌和胃癌等。目前EBV主要有1和2兩個亞型[110]。
研究人員在不同細(xì)胞模型中分析了EGCG抗EBV效果。結(jié)果顯示,EGCG(>50?μmol·L-1)能夠從轉(zhuǎn)錄水平和蛋白水平阻礙EBV進(jìn)入裂解周期,如抑制EBV和基因或裂解周期蛋白Rta、Zta和EA-D的表達(dá)等[117-118];EGCG誘導(dǎo)EBV裂解可能還與抑制MEK、ERK1/2和PI3K/Akt信號通路有關(guān)[119]。體外和體內(nèi)試驗(yàn)均發(fā)現(xiàn),50?μmol·L-1EGCG能抑制EBV核抗原(EBNA1)與oriP-DNA結(jié)合,誘導(dǎo)EBNA1相關(guān)的附加體維護(hù)和轉(zhuǎn)錄增強(qiáng)失效,最終破壞EBV的隱形感染[120]。
輪狀病毒(Rotavirus)是一種雙鏈RNA病毒,是引起嬰幼兒腹瀉的主要病原體之一。紅茶、烏龍茶和黑茶對人輪狀病毒W(wǎng)a株有抑制作用,抑制效果與茶多酚含量正相關(guān),這可能與茶多酚沉淀蛋白質(zhì)作用有關(guān)[121];茶黃素提取物能有效抑制牛輪狀病毒感染[42]。
腸病毒71(EB71)是單鏈RNA病毒,是手足口?。℉FMD)的致病因素之一。EGCG能抑制EB71復(fù)制和傳染性子代病毒的形成,兒茶素物質(zhì)的抗EB71活性與其抗氧化性正相關(guān)[33,122]。這些結(jié)果說明,EGCG可能通過調(diào)節(jié)細(xì)胞氧化還原環(huán)境抑制病毒復(fù)制[33]。
腺病毒(Adenovirus)是雙鏈DNA病毒,無包膜,可感染呼吸道、胃腸道、尿道和膀胱、眼、肝臟等,已發(fā)現(xiàn)的有52種。在受腺病毒感染的Hep2細(xì)胞培養(yǎng)基中分別加入4種兒茶素后發(fā)現(xiàn),100?μmol·L-1ECGG可使病毒滴度減少兩個數(shù)量級,EGCG的IC50為25?μmol·L-1,其SI為22;EGCG對腺病毒內(nèi)肽酶活性抑制效果最佳,IC50為109?μmol·L-1;ECGG滅活純腺病毒顆粒的IC50為250?μmol·L-1,EC、ECG和EGC的IC50為245~3?095?μmol·L-1[123]。
蟲媒病毒(Arboviruses)指通過吸血節(jié)肢動物(如蚊子、白蛉和蜱等)傳播的一類病毒,包括登革熱病毒(Dengue virus,DENV)、西尼羅河病毒(West Nile virus,WNV)、寨卡病毒(Zika virus,ZIKV)和基孔肯雅病毒(Chikungunya virus,CHIKV)等。在CHIKV-mCherry-490模型(體外模型)中發(fā)現(xiàn),EGCG能夠削弱CHIKV進(jìn)入靶細(xì)胞并輕微抑制病毒復(fù)制,阻礙病毒感染[124]。另有研究顯示,EGCG能阻礙ZIKVBR和MR766(兩種ZIKV株)進(jìn)入Vero E6細(xì)胞,但EGCG并沒有影響病毒進(jìn)入時的細(xì)胞受體表達(dá),可能直接作用于病毒包膜[125]。
茶及其功能成分還有很多抗不同類型病毒的報道,如柯薩奇病毒B(Coxsackievirus group B,CVB)、人類T細(xì)胞淋巴病毒1(Human T-cell lymphotropic virus-1,HTLV-1)、埃博拉病毒(Ebola virus,EBOV)、出血性敗血病病毒(Hemorrhagic septicemia virus,VHSV)、造血壞死病毒(Hematopoietic necrosis virus,IHNV)、春季病毒血癥鯉魚病毒(Spring viremia carpvirus,SVCV)、豬繁殖與呼吸綜合征病毒(Porcine reproductive and respiratory syndrome virus,PRRSV)和鼠諾如病毒(Murine norovirus)等[5,33,109,126],表明茶及其功能成分具有廣譜抗病毒作用。
現(xiàn)有研究表明,茶及其功能成分具有廣泛的抗病毒作用,其主要作用方式有以下幾種:(1)削弱病毒對靶細(xì)胞的附著,阻止病毒進(jìn)入靶細(xì)胞,這是最主要的作用機(jī)制;(2)主要作用于有包膜的病毒,與病毒表面蛋白相互作用,導(dǎo)致病毒和靶細(xì)胞膜融合失??;(3)抑制病毒基因組復(fù)制,干擾病毒增殖環(huán)節(jié),如抑制復(fù)制過程中的信號傳遞物質(zhì)(酪氨酸激酶、磷脂酰肌醇-3激酶、AKT和絲裂素活化蛋白激酶等)[127];(4)酶的競爭性抑制,如抑制HIV-1逆轉(zhuǎn)錄酶;(5)增強(qiáng)宿主免疫力,如對干擾素Th-1和細(xì)胞因子IL-4的調(diào)節(jié)作用[128];(6)幫助宿主抵御病毒引發(fā)的副作用,如清除過量ROS。茶及其功能成分主要是作用于病毒還是宿主,或者兩者兼有,需要更多的動物試驗(yàn)和臨床研究證實(shí)。因此,茶及其功能成分的抗病毒作用及其機(jī)制需要更深入細(xì)致的研究。
近30年,茶葉抗病毒的實(shí)驗(yàn)室研究取得了許多有意義的結(jié)果,但來自于臨床試驗(yàn)和流行病學(xué)調(diào)查的研究結(jié)果仍然很少,因而人們飲茶是否能有效抵御病毒感染,結(jié)果尚不明確,仍有待深入研究。茶葉活性成分在生物體組織內(nèi)的濃度是其抗病毒活性的重要因素,而其濃度取決于它們的生物利用度,以及飲茶的類型、方式和數(shù)量。茶多酚生物利用度較低,是阻礙其臨床應(yīng)用的重要因素。以EGCG為例,健康志愿者連續(xù)4周每日口服800?mg EGCG(相當(dāng)于每天8~16杯綠茶中的含量),血漿中濃度為0.13~3.4?μg·mL-1[129]。盡管達(dá)到了EGCG抗HCV的IC50,但是并不能完全清除病毒[89,95]。EGCG化學(xué)性質(zhì)不穩(wěn)定、膜透性差以及代謝快等影響了其進(jìn)一步的應(yīng)用。與其他化合物聯(lián)用、結(jié)構(gòu)修飾和EGCG運(yùn)輸載藥系統(tǒng)是增加EGCG生物利用度的主要手段。對EGCG進(jìn)行一系列?;揎?,能顯著增強(qiáng)其抗流感病毒和皰疹病毒活性[130-131];EGCG-單棕櫚酸鹽比EGCG的抗流感病毒效果更好、更廣譜[132];EGCG棕櫚酸酯比EGCG有更好的抑制HSV-1活性,能更有效阻止病毒增殖和對細(xì)胞的吸附[131]。EGCG-PUFA是用長鏈不飽和脂肪酸(PUFA)修飾EGCG,與EGCG相比,其清除過氧自由基、螯合金屬離子以及抑制HCV蛋白酶活性均顯著增強(qiáng),且發(fā)現(xiàn)該衍生物是-葡萄糖苷酶抑制劑[133]。
茶葉及其功能成分的抗病毒感染研究以茶多酚為主,目前主要集中在細(xì)胞試驗(yàn),且因試驗(yàn)設(shè)計、操作步驟和病毒類型致使茶及其功能成分的抗感染活性存在較大差異,因此,體外細(xì)胞試驗(yàn)設(shè)計應(yīng)該盡量做到標(biāo)準(zhǔn)化,方便比對不同茶類和不同茶葉功能成分的體外抗病毒效果及其作用機(jī)制。同時,未來需要進(jìn)行更多動物試驗(yàn)來探討茶及其功能成分的抗病毒效果,及其在體內(nèi)與體外試驗(yàn)作用機(jī)制的異同。由于動物試驗(yàn)的結(jié)果并不能無條件地推論于人體,因此,在實(shí)驗(yàn)室研究基礎(chǔ)上,更需要大規(guī)模隨機(jī)性的臨床干預(yù)試驗(yàn)以及人群流行病學(xué)調(diào)查來進(jìn)一步明確飲茶或膳食補(bǔ)充茶葉提取物抗病毒感染的作用。
從天然植物中尋找安全、高效的抗病毒化合物,具有十分重要的理論價值和現(xiàn)實(shí)意義。目前,疫苗仍然是預(yù)防病毒感染最有效的方式,但疫苗的開發(fā)與應(yīng)用面臨諸多挑戰(zhàn)。茶是一種綠色健康的飲料,保持良好的飲茶習(xí)慣是促進(jìn)人類健康的生活方式,對預(yù)防多種疾病和抗病毒感染具有積極的作用。
[1] Green R H. Inhibition of multiplication of influenza virus by extracts of tea [J]. Proceedings of the Society for Experimental Biology and Medicine, 1949, 71(1): 84-85.
[2] Eisfeld A J, Neumann G, Kawaoka Y. At the centre: Influenza A virus ribonucleoproteins [J]. Nature Reviews Microbiology, 2014, 13(1): 28-41.
[3] Paules C I, Sullivan S G, Subbarao K, et al. Chasing seasonal influenza: the need for a universal influenza vaccine [J]. New England Journal of Medicine, 2018, 378(1): 7-9.
[4] Chen G H, Lin Y L, Hsu W L, et al. Significant elevation of antiviral activity of strictinin from Pu'er tea after thermal degradation to ellagic acid and gallic acid [J]. Journal of Food & Drug Analysis, 2015, 23(1): 116-123.
[5] Xu J, Xu Z, Zheng W. A review of the antiviral role of green tea catechins [J]. Molecules, 2017, 22(8): 1337. doi: 10.3390/molecules22081337.
[6] 黃深惠, 湯有志, 周雪夢, 等. 茶多酚體內(nèi)外抗流感病毒作用研究[J]. 茶葉科學(xué), 2010, 30(4): 302-308. Huang S H, Tang Y Z, Zhou M X, et al. Study on anti-influenza virus effect of tea polyphenolsand[J]. Journal of Tea Science, 2010, 30(4): 302-308.
[7] 彭慧琴, 蔡衛(wèi)民, 項(xiàng)哨. 茶多酚體外抗流感病毒A3的作用[J]. 茶葉科學(xué), 2003, 23(1): 79-81. Peng H Q, Cai W M, Xiang S.anti-influenza virus effect of tea polyphenols [J]. Journal of Tea Science, 2003, 23(1): 79-81.
[8] Zu M, Yang F, Zhou W, et al.anti-influenza virus and anti-inflammatory activities of theaflavin derivatives [J]. Antiviral Research, 2012, 94(3): 217-224.
[9] 肖瀟, 楊占秋, 石麗橋, 等. 表沒食子兒茶素沒食子酸酯抗流感病毒作用的研究[J]. 中國中藥雜志, 2008, 33(22): 2678-2682. Xiao X, Yang Z Q, Shi L Q, et al. Antiviral effect of epigallocatechin gallate (EGCG) on influenza A virus [J]. China Journal of Chinese Materia Medica, 2008, 33(22): 2678-2682.
[10] 譚文界, 石麗橋, 祝汪洋, 等. (-)表沒食子兒茶素-3--沒食子酸酯(EGCG)的抗流感病毒實(shí)驗(yàn)[J]. 中國醫(yī)院藥學(xué)雜志, 2009, 29(5): 376-378. Tan W J, Shi L Q, Zhu W Y, et al. Study on the effect of anti-influenza virus of EGCG [J]. Chinese Journal of Hospital Pharmacy, 2009, 29(5): 376-378.
[11] 謝慧珺, 劉妮, 丁偉, 等. 茶多酚主要成分EGCG體外抗流感病毒FM1株作用[J]. 廣州中醫(yī)藥大學(xué)學(xué)報, 2012, 29(2): 172-175, 224. Xie H J, Liu N, Ding W, et al. Antiviral effect of tea catechin EGCG on influenza virus FM1 strain in vitro [J]. Journal of Guangzhou University of Traditional Chinese Medicine, 2012, 29(2): 172-175, 224.
[12] Yang Z F, Bai L P, Huang W B, et al. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure–activity relationship analysis [J]. Fitoterapia, 2014, 93: 47-53.
[13] Noda M, Toda M, Endo W, et al. The anti-influenza virus activities of catechins [J]. Jpn J Bacteriol, 1994, 49: 117.
[14] Song J M, Lee K H, Seong B L. Antiviral effect of catechins in green tea on influenza virus [J]. Antiviral Research, 2005, 68(2): 66-74.
[15] Nakayama M, Suzuki K, Toda M, et al. Inhibition of the infectivity of influenza virus by tea polyphenols [J]. Antiviral Research, 1993, 21(4): 289-299.
[16] 李湘瀲, 劉叔文, 楊潔. 茶黃素衍生物抗甲型流感病毒的作用研究[J]. 中草藥, 2013, 44(17): 2437-2441. Li X L, Liu S W, Yang J. Effect of theaflavin derivatives on influenza A virus [J]. Chinese Traditional and Herbal Drugs, 2013, 44(17): 2437-2441.
[17] Imanishi N, Tuji Y, Katada Y, et al. Additional inhibitory effect of tea extract on the growth of influenza A and B viruses in MDCK cells [J]. Microbiology & Immunology, 2002, 46(7): 491-494.
[18] Furuta T, Hirooka Y, Abe A, et al. Concise synthesis of dideoxy-epigallocatechin gallate (DO-EGCG) and evaluation of its anti-influenza virus activity [J]. Cheminform, 2007, 38(40): 3095-3098.
[19] Ling J X, Wei F, Li N, et al. Amelioration of influenza virus-induced reactive oxygen species formation by epigallocatechin gallate derived from green tea [J]. Acta Pharmacologica Sinica, 2012, 33(12): 1533-1541.
[20] Oxford J S, Lambkin R, Guralnik M, et al. Preclinical in vitro activity of QR-435 against influenza A virus as a virucide and in paper masks for prevention of viral transmission [J]. American Journal of Therapeutics, 2007, 14(5): 455-461.
[21] Sriwilaijaroen N, Fukumoto S, Kumagai K, et al. Antiviral effects ofLinn. (guava) tea on the growth of clinical isolated H1N1 viruses: Its role in viral hemagglutination and neuraminidase inhibition [J]. Antiviral Research, 2012, 94(2): 139-146.
[22] Oxford J S, Lambkin R, Guralnik M, et al. In vivo prophylactic activity of QR-435 against H3N2 influenza virus infection [J]. American Journal of Therapeutics, 2007, 14(5): 462-468.
[23] Lee H J, Lee Y N, Youn H N, et al. Anti-influenza virus activity of green tea by-products in vitro and efficacy against influenza virus infection in chickens [J]. Poultry Science, 2011, 91(1): 66-73.
[24] Leung P C. Antibacterial and antiviral effects of tea-from influenza to SARS [J]. Protective Effects of Tea on Human Health, 2006(16): 158-171.
[25] Park M, Yamada H, Matsushita K, et al. Green tea consumption is inversely associated with the incidence of influenza infection among schoolchildren in a tea plantation area of Japan [J]. Journal of Nutrition, 2011, 141(10): 1862-1870.
[26] Rowe C, Nantz M, Bukowski J, et al. Specific formulation ofprevents cold and flu symptoms and enhances gamma, delta t cell function: A randomized, double-blind, placebo-controlled study [J]. Journal of the American College of Nutrition, 2007, 26(5): 445-452.
[27] Matsumoto K, Yamada H, Takuma N, et al. Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: a randomized controlled trial [J]. BMC Complementary and Alternative Medicine, 2011, 11: 15. doi: 10.1186/1472-6882-11-15.
[28] Iwata M, Toda M, Nakayama M, et al. Prophylactic effect of black tea extract as gargle against influenza [J]. Kansenshōgaku Zasshi the Journal of the Japanese Association for Infectious Diseases, 1997, 71(6): 487-494.
[29] Noda T, Ojima T, Hayasaka S, et al. Gargling for oral hygiene and the development of fever in childhood: a population study in Japan [J]. Journal of Epidemiology, 2012, 22(1): 45-49.
[30] Yamada H, Takuma N, Daimon T, et al. Gargling with tea catechin extracts for the prevention of influenza infection in elderly nursing home residents: a prospective clinical study [J]. Journal of Alternative and Complementary Medicine, 2006, 12(7): 669-672.
[31] Ide K, Yamada H, Kawasaki Y. Effect of gargling with tea and ingredients of tea on the prevention of influenza infection: A meta-analysis [J]. BMC Public Health, 2016, 16: 396. doi: 10.1186/s12889-016-3083-0.
[32] Ide K, Yamada H, Matsushita K, et al. Effects of green tea gargling on the prevention of influenza infection in high school students: a randomized controlled study [J]. Plos One, 2014, 9: e96373. doi: 10.1371/journal.pone.0096373.
[33] Steinmann, Buer, Pietschmann, et al. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea [J]. British Journal of Pharmacology, 2013, 168: 1059-1073.
[34] Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019 [J]. New England Journal of Medicine, 2020, 382: 727-733.
[35] Cui J, Li F, Shi Z L. Origin and evolution of pathogenic coronaviruses [J]. Nature Reviews Microbiology, 2019, 17: 181-192.
[36] Jiang Y, Xu J, Zhou C, et al. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome [J]. American Journal of Respiratory and Critical Care Medicine, 2005, 171(8): 850-857.
[37] Peihua N, Guangyu Z, Yao D. A novel human mAb (MERS-GD27) provides prophylactic and postexposure efficacy in MERS-CoV susceptible mice [J]. Science China, 2018, 61(10): 148-150.
[38] Wu C R, Zheng M Z, Yang Y, et al. Furin, a potential therapeutic target for COVID-19 [J]. iScience, 2020, 23(10): 101642. doi: 10.1016/j.isci.2020.101642.
[39] Chen C N, Lin C P C, Huang K K, et al. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3,3'-digallate (TF3) [J]. Evidence-Based Complementary and Alternative Medicine, 2005, 2(2): 209-215.
[40] Kamath A B, Wang L, Das H, et al. Antigens in tea-beverage prime human Vγ2Vδ2 T cells in vitro and in vivo for memory and nonmemory antibacterial cytokine responses [J]. PNAS, 2003, 100(10): 6009-6014.
[41] Matsumoto M, Mukai T, Furukawa S, et al. Inhibitory effects of epigallocatechin gallate on the propagation of bovine coronavirus in Madin-Darby bovine kidney cells [J]. Animal Science Journal, 2005, 76: 507-512.
[42] Clark K J, Grant P G, Sarr A B, et al. An in vitro study of theaflavins extracted from black tea to neutralize bovine rotavirus and bovine coronavirus infections [J]. Veterinary Microbiology, 1998, 63(2/4): 147-157.
[43] Liang W L, He L, Ning P B, et al. (+)-Catechin inhibition of transmissible gastroenteritis coronavirus in swine testicular cells is involved its antioxidation [J]. Research in Veterinary Science, 2015, 103: 28-33.
[44] Deeks S G, Overbaugh J, Phillips A, et al. HIV infection [J]. Nature Reviews Disease Primers, 2015, 1: 15035. doi: 10.1038/nldp.2015.35.
[45] Fauci A S, Redfield R R, Sigounas G, et al. Ending the HIV epidemic: a plan for the United States [J]. The Journal of the American Medical Association, 2019, 321: 844-845.
[46] Huang N, Yang L M, Li X L et al. Anti-HIV activities of extracts from Pu-erh tea [J]. Chinese Journal of Natural Medicines, 2012, 10(5): 347-352.
[47] Pasetto S, Pardi V, Murata R M. Anti-HIV-1 activity of flavonoid myricetin on HIV-1 infection in a dual-chamber in vitro model [J]. Plos One, 2014, 9(12): e115323. doi: 10.1371/journal.pone.0115323.
[48] Su Y L, Rhim J Y, Park W B. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro [J]. Archives of Pharmacal Research, 2005, 28(11): 1293-1301.
[49] Nakane H, Ono K. Differential inhibition of HIV-reverse transcriptase and various DNA and RNA polymerases by some catechin derivatives [J]. Nucleic Acids Symp Ser, 1989, 21(21): 115-116.
[50] Chang C, Hsu F, Lin J. Inhibitory effects of polyphenolic catechins from Chinese green tea on HIV reverse transcriptase activity [J]. Journal of Biomedical Science, 1994, 1(3): 163-166.
[51] Li S, Hattori T, Kodama E N. Epigallocatechin gallate inhibits the HIV reverse transcription step [J]. Antiviral Chemistry and Chemotherapy, 2011, 21(6): 239-243.
[52] Fassina G, Buffa A, Benelli R, et al. Polyphenolic antioxidant (-)-epigallocatechin-3-gallate from green tea as a candidate anti-HIV agent [J]. Aids, 2002, 16(6): 939-941.
[53] Yamaguchi K, Honda M, Ikigai H, et al. Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1) [J]. Antiviral Research, 2002, 53(1): 19-34.
[54] Freed E O. HIV-1 assembly, release and maturation [J]. Nature Reviews Microbiology, 2015, 13(8): 484-496.
[55] Hamza A, Zhan C G. How can (-)-epigallocatechin gallate from green tea prevent HIV-1 infection? Mechanistic insights from computational modeling and the implication for rational design of anti-HIV-1 entry inhibitors [J]. Journal of Physical Chemistry B, 2006, 110(6): 2910-2917.
[56] Kawai K, Tsuno N H, Kitayama J, et al. Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding [J]. Journal of Allergy & Clinical Immunology, 2003, 112(5): 951-957.
[57] Williamson M, Mccormick T, Nance C, et al. Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: potential for HIV-1 therapy [J]. Journal of Allergy & Clinical Immunology, 2006, 118(6): 1369-1374.
[58] Nance C L, Siwak E B, Shearer W T. Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy [J]. Journal of Allergy & Clinical Immunology, 2009, 123(2): 459-465.
[59] Jiang F, Chen W, Yi K, et al. The evaluation of catechins that contain a galloyl moiety as potential HIV-1 integrase inhibitors [J]. Clinical Immunology, 2010, 137(3): 347-356.
[60] Liu S, Lu H, Zhao Q, et al. Theaflavin derivatives in black tea and catechin derivatives in green tea inhibit HIV-1 entry by targeting gp41 [J]. Biochimica et Biophysica Acta General Subjects, 2005, 1723(1/3): 270-281.
[61] Yang J, Li L, Tan S, et al. A natural theaflavins preparation inhibits HIV-1 infection by targeting the entry step: potential applications for preventing HIV-1 infection [J]. Fitoterapia, 2012, 83(2): 348-355.
[62] Liu S W, Wu S G, Jiang S B. HIV entry inhibitors targeting gp41: from polypeptides to small-molecule compounds [J]. Current Pharmaceutical Design, 2007, 13(2): 143-162.
[63] Ehrnhoefer D E, Bieschke J, Boeddrich A, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers [J]. Nature Structural & Molecular Biology, 2008, 15(6): 558-566.
[64] Hauber I, Hohenberg H, Holstermann B, et al. The main green tea polyphenol epigallocatechin-3-gallate counteracts semen-mediated enhancement of HIV infection [J]. PNAS, 2009, 106(22): 9033-9038.
[65] Hartjen P, Frerk S, Hauber I, et al. Assessment of the range of the HIV-1 infectivity enhancing effect of individual human semen specimen and the range of inhibition by EGCG [J]. Aids Research & Therapy, 2012, 9: 2. doi: 10.1186/1742-6405-9-2.
[66] Popovych N, Brender J R, Soong R, et al. Site specific interaction of the polyphenol EGCG with the SEVI amyloid precursor peptide PAP(248–286) [J]. Journal of Physical Chemistry B, 2012, 116(11): 3650-3658.
[67] Yang J, Li L, Jin H, et al. Vaginal gel formulation based on theaflavin derivatives as a microbicide to prevent HIV sexual transmission [J]. AIDS Research and Human Retroviruses, 2012, 28(11): 1498-1508.
[68] Manns M P, Buti M, Gane E, et al. Hepatitis C virus infection [J]. Nature reviews Disease primers, 2017, 3: 17006. doi: 10.1038/nrdp.2017.6.
[69] Yuen M F, Chen D S, Dusheiko G M, et al. Hepatitis B virus infection [J]. Nature Reviews Disease Primers, 2018, 338(18): 1312-1313.
[70] Razavi-Shearer D, Gamkrelidze I, Nguyen M H, et al. Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study [J]. Lancet Gastroenterol Hepatol, 2018, 3(6): 383-403.
[71] Xu J, Wang J, Deng F, et al. Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus in vitro [J]. Antiviral Research, 2008, 78(3): 242-249.
[72] Pei S, Zhang Y, Xu H, et al. Inhibition of the replication of hepatitis B virus in vitro by Pu-erh tea extracts [J]. Journal of Agricultural & Food Chemistry, 2011, 59(18): 9927-9934.
[73] 廖銀武. 白茶提取物抗乙型肝炎病毒的研究[D]. 福州: 福建農(nóng)林大學(xué), 2010. Liao Y W. The study of anti-HBV effect of white tea extract [D]. Fuzhou: Fujian Agriculture and Forestry University, 2010.
[74] Ye P, Zhang S, Zhao L, et al. Tea polyphenols exerts anti-hepatitis B virus effects in a stably HBV-transfected cell line [J]. Journal of Huazhong University of Science and Technology (Medical Sciences), 2009, 29(2): 169-172.
[75] Xu J, Gu W, Li C, et al. Epigallocatechin gallate inhibits hepatitis B virus via farnesoid X receptor alpha [J]. Journal of Natural Medicines, 2016, 70(3): 584-591.
[76] Pang J Y, Zhao K J, Wang J B, et al. Green tea polyphenol, epigallocatechin-3-gallate, possesses the antiviral activity necessary to fight against the hepatitis B virus replication in vitro [J]. Journal of Zhejiang University-Science B, 2014, 15(6): 533-539.
[77] Karamese M, Aydogdu S, Karamese S A, et al. Preventive effects of a major component of green tea, epigallocathechin-3-gallate, on hepatitis-B virus DNA replication [J]. Asian Pacifc Journal of Cancer Prevention, 2015, 16(10): 4199-4202.
[78] Cheng Z K, Sun G, Guo W, et al. Inhibition of hepatitis B virus replication by quercetin in human hepatoma cell lines [J]. Virologica Sinica, 2015, 30: 261-268.
[79] Zheng Z, Li J, Sun J, et al. Inhibition of HBV replication by theophylline [J]. Antiviral Research, 2011, 89(2): 149-155.
[80] He W, Lx LX, Liao QJ, et al. Epigallocatechin gallate inhibits HBV DNA synthesis in a viral replication-inducible cell line [J]. World Journal of Gastroenterology, 2011, 17(11): 1507-1514.
[81] Yan H, Zhong G C, Xu G W, et al. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus [J]. Elife Sciences, 2012, 1: e00049. doi: 10.7554/eLife.00049.
[82] Yan H, Peng B, He W, et al. Molecular determinants of hepatitis B and D virus entry restriction in mouse sodium taurocholate cotransporting polypeptide [J]. Journal of Virology, 2013, 87(14): 7977-7991.
[83] Huang H C, Tao M H, Hung T M, et al. (-)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes [J]. Antiviral Research, 2014, 111: 100-111.
[84] Zhong L, Hu J, Shu W, et al. Epigallocatechin-3-gallate opposes HBV-induced incomplete autophagy by enhancing lysosomal acidification, which is unfavorable for HBV replication [J]. Cell Death & Disease, 2015, 6(5): e1770. doi: 10.1038/cddis.2015.136.
[85] Lai Y H, Sun C P, Huang H C, et al. Epigallocatechin gallate inhibits hepatitis B virus infection in human liver chimeric mice [J]. BMC Complementary and Alternative Medicine, 2018, 18: 248. doi: 10.1186/s12906-018-2316-4.
[86] Wang Z Y, Li Y Q, Guo Z W, et al. ERK1/2-HNF4α axis is involved in epigallocatechin-3-gallate inhibition of HBV replication [J]. Acta Pharmacologica Sinica, 2020, 41(2): 278-285.
[87] Thrift A P, El-Serag H B, Kanwal F. Global epidemiology and burden of HCV infection and HCV-related disease [J]. Nat Rev Gastroenterol Hepatol, 2016, 14(2): 122-132.
[88] Calland N, Albecka A, Belouzard S, et al. (-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry [J]. Hepatology, 2012, 55(3): 720-729.
[89] Ciesek S, Hahn T V, Che C C, et al. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry [J]. Hepatology, 2011, 54(6): 1947-1955.
[90] Chen C, Qiu H, Gong J, et al. (-)-Epigallocatechin-3-gallate inhibits the replication cycle of hepatitis C virus [J]. Archives of Virology, 2012, 157(7): 1301-1312.
[91] Zuo G, Li Z, Chen L, et al. Activity of compounds from Chinese herbal medicine(Regel) maxim against HCV NS3 serine protease [J]. Antiviral Research, 2007, 76(1): 86-92.
[92] Fukazawa H, Suzuki T, Wakita T, et al. A cell-based, microplate colorimetric screen identifies 7,8-benzoflavone and green tea gallate catechins as inhibitors of the hepatitis C virus [J]. Biological & Pharmaceutical Bulletin, 2012, 35(8): 1320-1327.
[93] Mekky R Y, El-Ekiaby N, Sobky S A E, et al. Epigallocatechin gallate (EGCG) and miR-548m reduce HCV entry through repression of CD81 receptor in HCV cell models [J]. Archives of Virology, 2019, 164(6): 1587-1595.
[94] Witteveldt J, Evans M J, Bitzegeio J, et al. CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells [J]. The Journal of General Virology, 2009, 90(1): 48-58.
[95] Calland N, Sahuc M E, Belouzard S, et al. Polyphenols inhibit hepatitis C virus entry by a new mechanism of action [J]. Journal of Virology, 2015, 89: 10053-10063.
[96] Lin Y T, Wu Y H, Chin-Kai T, et al. Green tea phenolic epicatechins inhibit hepatitis C virus replication via cycloxygenase-2 and attenuate virus-induced inflammation [J]. Plos One, 2013, 8(1): e54466. doi: 10.1371/journal.pone.0054466.
[97] Chowdhury P, Sahuc Me, Rouillé Y, et al. Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture [J]. Plos One, 2018, 13(11): e0198226. doi: 10.1371/journal.pone.0198226.
[98] Crosbie E J, Einstein D H, Franceschi S, et al. Human papillomavirus and cervical cancer [J]. The Lancet, 2013, 382: 889-899.
[99] Zou C, Liu H, Feugang J M, et al. Green tea compound in chemoprevention of cervical cancer [J]. International Journal of Gynecologic Cancer, 2010, 20(4): 617-624.
[100]Qiao Y, Cao J, Xie L, et al. Cell growth inhibition and gene expression regulation by (-)-epigallocatechin-3-gallate in human cervical cancer cells [J]. Archives of Pharmacal Research, 2009, 32(9): 1309-1315.
[101]Yokoyama M, Noguchi M, Nakao Y, et al. The tea polyphenol, (-)-epigallocatechin gallate effects on growth, apoptosis, and telomerase activity in cervical cell lines [J]. Gynecologic Oncology, 2004, 92(1): 197-204.
[102]He L, Zhang E, Shi J, et al. (-)-Epigallocatechin-3-gallate inhibits human papillomavirus (HPV)-16 oncoprotein-induced angiogenesis in non-small cell lung cancer cells by targeting HIF-1α [J]. Cancer Chemotherapy & Pharmacology, 2013, 71(3): 713-725.
[103]Singh M, Tyagi S, Bhui K, et al. Regulation of cell growth through cell cycle arrest and apoptosis in HPV 16 positive human cervical cancer cells by tea polyphenols [J]. Investigational New Drugs, 2010, 28(3): 216-224.
[104]Singh M, Singh R, Bhui K, et al. Tea polyphenols induce apoptosis through mitochondrial pathway and by inhibiting nuclear factor-κB and Akt activation in human cervical cancer cells [J]. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 2011, 19: 245-257.
[105]Ahn W S, Yoo J, Huh S W, et al. Protective effects of green tea extracts (polyphenon E and EGCG) on human cervical lesions [J]. European Journal of Cancer Prevention, 2003, 12(5): 383-390.
[106]Tatti S, Stockfleth E, Beutner K R, et al. Polyphenon E: a new treatment for external anogenital warts [J]. British Journal of Pharmacology, 2010, 162(1): 176-184.
[107]Stockfleth E, Meyer T. The use of sinecatechins (polyphenon E) ointment for treatment of external genital warts [J]. Expert Opinion on Biological Therapy, 2012, 12(6): 783-793.
[108]Garcia F A, Cornelison T, Nu?o T, et al. Results of a phase II randomized, double-blind, placebo-controlled trial of Polyphenon E in women with persistent high-risk HPV infection and low-grade cervical intraepithelial neoplasia [J]. Gynecologic Oncology, 2013, 132: 377-382.
[109]Date A A, Destache C J. Natural polyphenols: potential in the prevention of sexually transmitted viral infections [J]. Drug Discovery Today, 2016, 21(2): 333-341.
[110]Johnson D C, Baines J D. Herpesviruses remodel host membranes for virus egress [J]. Nature Reviews Microbiology, 2011, 9(5): 382-394.
[111]Molloy S. Back to the HSV drawing board [J]. Nature Reviews Microbiology, 2012, 10: 82. doi:10.1038/nrmicro2744.
[112]Savi L A, Barardi C R, Sim?es C M. Evaluation of antiherpetic activity and genotoxic effects of tea catechin derivatives [J]. Journal of Agricultural & Food Chemistry, 2006, 54(7): 2552-2557.
[113]Isaacs C E, Wen G Y, Xu W, et al. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus [J]. Antimicrobial Agents & Chemotherapy, 2008, 52(3): 962-970.
[114]Colpitts C C, Schang L M. A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans [J]. Journal of Virology, 2014, 88(14): 7806-7817.
[115]Daikoku T, Horiba K, Miyata K, et al. Polyphenols including catechin from green tea with in vitro antiviral activity exhibited anti-herpes simplex virus activity but not anti-influenza virus activity in mice [J]. Journal of Traditional Medicines, 2011, 28(2): 63-72.
[116]Isaacs C E, Xu W, Merz G, et al. Digallate dimers of (-)-epigallocatechin gallate inactivate herpes simplex virus [J]. Antimicrobial Agents & Chemotherapy, 2011, 55(12): 5646-5653.
[117]Chang L K, Wei T T, Chiu Y F, et al. Inhibition of Epstein–Barr virus lytic cycle by (-)-epigallocatechin gallate [J]. Biochemical & Biophysical Research Communications, 2003, 301(4): 1062-1068.
[118]Yan Z, Hai W, Zhao X R, et al. Epigallocatechin-3-gallate interferes with EBV-encoding AP-1 signal transduction pathway [J]. Zhonghua Zhong Liu Za Zhi, 2004, 26(7): 393-397.
[119]Liu S, Li H, Chen L, et al. (-)-Epigallocatechin-3-gallate inhibition of Epstein-Barr virus spontaneous lytic infection involves ERK1/2 and PI3-K/Akt signaling in EBV-positive cells [J]. Carcinogenesis, 2012, 34(3): 627-637.
[120]Chen Y L, Tsai H L, Peng C W. EGCG debilitates the persistence of EBV latency by reducing the DNA binding potency of nuclear antigen 1 [J]. Biochemical and Biophysical Research Communications, 2012, 417(3): 1092-1099.
[121]張國營, 何麗娜. 紅茶,青茶,黑茶抗人輪狀病毒的實(shí)驗(yàn)研究[J]. 中國病毒學(xué), 1993, 8(2): 151-153. Zhang G Y, He L N. An experimental study on antiviral activities of black tea, blue tea and dark tea against rotavirus [J]. Virologica Sinica, 1993, 8(2): 151-153.
[122]Ho H Y, Cheng M L, Weng S F, et al. Antiviral effect of epigallocatechin gallate on enterovirus 71 [J]. Journal of Agricultural and Food Chemistry, 2009, 57(14): 6140-6147.
[123]Weber J M, Ruzindana-Umunyana A, Imbeault L, et al. Inhibition of adenovirus infection and adenain by green tea catechins [J]. Antiviral Research, 2003, 58(2): 167-173.
[124]Weber C, Sliva K, Von Rhein C, et al. The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection [J]. Antiviral Research, 2015, 113: 1-3.
[125]Carneiro B M, Batista M N, Braga A C S, et al. The green tea molecule EGCG inhibits Zika virus entry [J]. Virology, 2016, 496: 215-218.
[126]Bansal S, Choudhary S, Sharma M, et al. Tea: a native source of antimicrobial agents [J]. Food Research International, 2013, 53(2): 568-584.
[127]Evers D L, Chao C F, Wang X, et al. Human cytomegalovirus-inhibitory flavonoids: studies on antiviral activity and mechanism of action [J]. Antiviral Research, 2005, 68(3): 124-134.
[128]NAIR M P N, Kandaswami C, Mahajan S, et al. The flavonoid, quercetin, differentially regulates Th-1 (IFNγ) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells [J]. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2002, 1593(1): 29-36.
[129]Chow H H, Cai Y, Hakim I A, et al. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals [J]. Clinical Cancer Research, 2003, 9(9): 3312-3319.
[130]Mori S, Miyake S, Kobe T, et al. Enhanced anti-influenza A virus activity of (-)-epigallocatechin-3--gallate fatty acid monoester derivatives: effect of alkyl chain length [J]. Bioorganic & Medicinal Chemistry Letters, 2008, 18(14): 4249-4252.
[131]De Oliveira A, Adams S D, Lee L H, et al. Inhibition of herpes simplex virus type 1 with the modified green tea polyphenol palmitoyl-epigallocatechin gallate [J]. Food & Chemical Toxicology, 2013, 52: 207-215.
[132]Kaihatsu K, Mori S, Matsumura H, et al. Broad and potent anti-influenza virus spectrum of epigallocatechin-3--gallate-monopalmitate [J]. Journal of Molecular & Genetic Medicine, 2009, 3(2): 195-197.
[133]Zhong Y, Ma C M, Shahidi F. Antioxidant and antiviral activities of lipophilic epigallocatechin gallate (EGCG) derivatives [J]. Journal of Functional Foods, 2012, 4(1): 87-93.
The Antiviral Properties of Tea
XIONG Ligui, LIU Sihui, HUANG Jian'an*, LIU Zhonghua*
National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Key Lab of Education Ministry for Tea Science, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
Tea () is known as a global health beverage, and global tea consumption increases due to its biological activities. In the last 30 years, antiviral activities of tea and its components, especially tea polyphenols, with different modes of action were demonstrated on diverse families of viruses, such as influenza virus, coronavirus, hepatitis virus, and human immunodeficiency virus,. This review summarized the current knowledge on the antiviral activities of tea and its components. Most of these studies demonstrated antiviral properties of tea and its components bybiochemical or cell experiments with little rodent and clinical studies. Therefore, it is still unclear whether the antiviral effects of daily tea consumptionare available. More large-scale randomized intervention and epidemiological/clinical studies are needed to confirm clinical efficacy of tea and its components.
tea, functional components, virus, antiviral activities
S571.1;R373
A
1000-369X(2021)02-143-16
2020-03-06
2020-12-27
國家重點(diǎn)研發(fā)計劃(2017YFD0400803、2018YFC1604405)、國家自然科學(xué)基金(31801574)、現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-19)
熊立瑰,男,講師,主要從事茶葉資源高效利用研究。*通信作者:jian7513@sina.com,larkin-liu@163.com
(責(zé)任編輯:黃晨)