章歐,胡紅軍,胡剛,張丁非,戴慶偉,歐忠文
鎂合金復(fù)合細(xì)晶強(qiáng)化研究進(jìn)展
章歐1,胡紅軍1,胡剛1,張丁非2,戴慶偉3,歐忠文4
(1. 重慶理工大學(xué)材料科學(xué)與工程學(xué)院,重慶 400050;2. 重慶大學(xué) 材料科學(xué)與工程學(xué)院,重慶 400044;3. 重慶科技學(xué)院冶金與材料學(xué)院,重慶 401331;4. 陸軍勤務(wù)學(xué)院 化學(xué)與材料學(xué)院,重慶 401311)
細(xì)化鎂合金的晶??蓸O大改善其綜合力學(xué)性能,單一的細(xì)化方法包括在熔體中施加外力場(chǎng)作用、高壓和激冷作用以及大塑性變形,單一細(xì)化方法下的材料性能難以滿足實(shí)際需求,且生產(chǎn)效率低、成本高、質(zhì)量難以保證。2種及以上細(xì)化晶粒方法的結(jié)合可以實(shí)現(xiàn)鎂合金性能的極大提升,通過評(píng)述鎂合金復(fù)合加工方法,包括擠壓鑄造-固態(tài)擠壓成形、擠壓鑄造-正擠壓成形、FE-CCAE復(fù)合變形工藝、電磁脈沖結(jié)合軋制工藝、超聲振動(dòng)-擠壓加工等,詳細(xì)闡述鎂合金復(fù)合細(xì)晶強(qiáng)化工藝的研究進(jìn)展,為進(jìn)一步研究和開發(fā)更加高效綠色的鎂合金晶粒細(xì)化復(fù)合成形技術(shù)提供參考。
鎂合金;復(fù)合加工;外加場(chǎng)
鎂合金作為最輕的結(jié)構(gòu)材料,具有比強(qiáng)度和比剛度高等特點(diǎn),被譽(yù)為“21世紀(jì)綠色工程金屬”。鎂的晶體結(jié)構(gòu)為密排六方結(jié)構(gòu),滑移系少,在低溫和室溫條件下的塑性比較差,成形困難、成材率低,制約了鎂合金產(chǎn)業(yè)的發(fā)展。師昌緒等[1]認(rèn)為“開發(fā)鎂工業(yè)是一項(xiàng)既具有現(xiàn)實(shí)意義又關(guān)系到今后長(zhǎng)遠(yuǎn)發(fā)展戰(zhàn)略的事業(yè),政府部門應(yīng)給予特殊考慮”。目前鎂合金的應(yīng)用主要為鑄造產(chǎn)品,變形鎂合金材料因加工成本高、服役壽命較短、延展性差等因素,其產(chǎn)業(yè)化受到了限制,其中高成本極大制約了其大規(guī)模推廣應(yīng)用和鎂合金產(chǎn)業(yè)的發(fā)展。
激冷鑄造和壓力鑄造雖然可細(xì)化鎂合金零部件的表面組織,但心部晶粒粗大并存在大量孔洞類缺陷,因此,鎂材的綜合性能差。熱塑性變形雖然可消除這些缺陷,但易形成纖維組織和強(qiáng)烈的基面織構(gòu),且延展性低、塑性差、成形困難、成材率低,鎂材后續(xù)的加工性能及服役性能較差[2]。左鐵鏞等[3]認(rèn)為材料的制備、生產(chǎn)是一個(gè)不斷消耗資源和破壞人類賴以生存環(huán)境的過程,并會(huì)影響經(jīng)濟(jì)、社會(huì)的可持續(xù)發(fā)展。綜上所述,研發(fā)可高效調(diào)控鎂合金微觀組織和性能的低成本成形技術(shù)是提升鎂合金綜合性能亟需解決的重要科技問題。
根據(jù)Hall-Petch理論,晶粒細(xì)化可同時(shí)提高鎂合金的強(qiáng)度和塑性,各國學(xué)者普遍認(rèn)為晶粒細(xì)化和織構(gòu)優(yōu)化是提高鎂合金綜合性能的最有效途徑,主要包括3個(gè)方面[4]:合金化、外加場(chǎng)和模具激冷作用、熱變形及動(dòng)態(tài)再結(jié)晶。單獨(dú)工藝的使用已經(jīng)難以滿足現(xiàn)在對(duì)鎂合金性能調(diào)控的需求,目前多種復(fù)合工藝得到不斷發(fā)展,促進(jìn)了鎂合金各項(xiàng)性能的改善以及生產(chǎn)效率的提升。
鎂合金成形分為塑性成形和鑄造成形。當(dāng)前主要使用鑄造成形工藝,包括砂型鑄造、消失模鑄造、壓鑄、半固態(tài)鑄造等方法,近年發(fā)展起來的新技術(shù)有真空壓鑄和充氧壓鑄,鑄造鎂合金的晶粒細(xì)化主要是著眼于合金化、變質(zhì)處理[5]、外加場(chǎng)和激冷作用等方法[6—7]。
變質(zhì)處理就是向金屬液體中加入細(xì)小的形核劑(又稱為變質(zhì)劑),使金屬液中形成大量分散的、人工制造的非自發(fā)晶核,從而獲得細(xì)小的鑄造晶粒,達(dá)到提高材料性能的目的[8]。王欣欣等[9]研究表明,變質(zhì)劑C2Cl6對(duì)α-Mg的晶粒組織具有明顯的細(xì)化作用,且隨著加入量的增多,細(xì)化效果也愈加顯著,同時(shí)β相變得彌散細(xì)小。稀土對(duì)鎂合金具有很好的固溶強(qiáng)化作用,與α-Mg形成固溶體,偏析導(dǎo)致固液界面前沿液體的平衡溫度降低,界面的過冷度減小,使晶體的生長(zhǎng)受到抑制,從而促進(jìn)晶核的形成,細(xì)化晶粒。艾廬山等[10]研究表明,稀土元素Ce可以細(xì)化AZ91鎂合金鑄態(tài)晶粒,當(dāng)Ce的質(zhì)量分?jǐn)?shù)為1.2%時(shí),細(xì)化效果最明顯。
通過對(duì)鎂合金熔體施加脈沖磁場(chǎng)以及脈沖電流、超聲波、機(jī)械振動(dòng)、攪拌等,使鎂合金熔體中的枝晶破碎,促進(jìn)形核,從而細(xì)化晶粒,提高鎂合金性能。石文靜等[11]研究表明,電磁攪拌可以提高合金的力學(xué)性能,當(dāng)電磁攪拌的頻率為6 Hz,電流強(qiáng)度為150 A時(shí),抗拉強(qiáng)度達(dá)到了175 MPa,伸長(zhǎng)率為13.75%。在電磁攪拌作用下,β-Mg17Al12相逐漸被打碎,且晶粒得到細(xì)化。楊院生等[12]將低壓脈沖磁場(chǎng)作用于鎂合金熔體,研究發(fā)現(xiàn),二次臂的折斷和其產(chǎn)生的焦耳熱極大促進(jìn)了晶粒細(xì)化。如表1所示,低壓脈沖磁場(chǎng)對(duì)鎂合金產(chǎn)生了良好的晶粒細(xì)化作用。
表1 合金晶粒細(xì)化的統(tǒng)計(jì)結(jié)果
Tab.1 Statistical results of alloy grain refinement
超聲波在傳播時(shí)具有聲空化、聲壓和機(jī)械等效應(yīng),產(chǎn)生的攪拌可以使枝晶破碎,提高熔體形核率,減少宏觀和微觀偏析;超聲波還可以使溫度場(chǎng)變均勻,促進(jìn)結(jié)晶潛熱的散發(fā),增加過冷度,從而促進(jìn)晶粒細(xì)化。Shao等[13]、余琨等[14]和張志強(qiáng)等[15]采用不同強(qiáng)度超聲對(duì)鎂合金熔體進(jìn)行了處理,以改善合金的凝固組織。付浩等[16]研究表明,通過控制超聲熔體的處理參數(shù)與凝固條件,可以細(xì)化AZ91D-3Ca阻燃合金的凝固組織。趙宇昕等[17]研究表明,通過對(duì)AZ31鎂合金進(jìn)行超聲處理,可有效促進(jìn)合金晶粒細(xì)化,獲得均勻晶粒組織,抑制連續(xù)的Mg17Al12相析出。Guan等[18]研究表明,使用震動(dòng)的傾斜板澆注,并采用半固態(tài)鑄軋,可顯著提高形核率,形成球狀的初生晶粒。
通過對(duì)熔體施加高壓或激冷作用既可以促進(jìn)晶粒的細(xì)化,還可減少鑄造鎂合金的內(nèi)部缺陷。林小娉等[19]研究表明,在4 GPa高壓作用下,AZ91D合金凝固組織中的α-Mg基體不僅得到了顯著細(xì)化,且分布于枝晶間的β-Mg17Al12也由常壓下的“骨骼狀”連續(xù)分布轉(zhuǎn)變?yōu)榧{米級(jí)顆粒狀彌散分布,因此,使該合金的硬度得到顯著提升。激冷作用是通過不同厚度的冷鐵對(duì)合金鑄件進(jìn)行激冷或者采用金屬模鑄造,實(shí)現(xiàn)熔體金屬材料的快速冷卻,增大過冷度,最終促進(jìn)形核。Xu[20]等采用金屬模鑄造和激冷鑄造生產(chǎn)了Mg- 3.6Al-3.4Ca-0.3Mn,發(fā)現(xiàn)激冷鑄造形成的胞狀晶明顯較細(xì)。王其龍等[21]研究表明,金屬模鑄造的鎂合金晶粒組織遠(yuǎn)遠(yuǎn)比砂型鑄造的細(xì)。
使用傳統(tǒng)鑄造和壓鑄工藝批量化生產(chǎn)鎂合金時(shí),存在氣孔、偏析、晶粒粗大等缺陷,導(dǎo)致鎂合金的性能受到極大限制,無法滿足工業(yè)化要求。通過變形加工如軋制、擠壓等方法,既可以減少鑄造鎂合金的部分缺陷,也可以增強(qiáng)鎂合金的綜合性能。
變形鎂合金主要采用熱塑性變形來細(xì)化晶粒[22],并對(duì)變形織構(gòu)進(jìn)行優(yōu)化[23],如輪轂新型擠壓法[24]、擠壓軋制[25]、反復(fù)鐓粗[26]、等通道擠壓[27]、熱軋[28]、連續(xù)擠壓[29]、異步軋制[30]、純剪切擠壓[31]、雙向連續(xù)擠壓[32]等成形方法。大量實(shí)驗(yàn)表明,大塑性變形是細(xì)化鎂合金晶粒更加有效的方法,如等通道轉(zhuǎn)角擠壓、劇烈熱軋、累積疊軋、高壓扭轉(zhuǎn)法[33]等。
累積疊軋(ARB)是在一定溫度下,對(duì)經(jīng)表面處理后尺寸相等的兩塊及以上金屬板進(jìn)行疊軋結(jié)合,反復(fù)軋制,產(chǎn)生大累積應(yīng)變,使內(nèi)部晶粒在大應(yīng)變下破碎,得到均勻細(xì)小的組織,同時(shí)材料性能也發(fā)生突變,有利于提高板材強(qiáng)度及延伸率[34—35]。張兵等[36]研究表明,累積復(fù)合軋制可有效細(xì)化鎂合金晶粒,經(jīng)過4道次后,平均晶粒尺寸由17.8 μm減小到近1.2 μm,且強(qiáng)度和硬度都有所增加,組織均勻性也得到提高。為解釋晶粒細(xì)化機(jī)制的轉(zhuǎn)變對(duì)板材微觀組織的影響,有學(xué)者對(duì)ARB后的AZ31鎂合金板材進(jìn)行了深入研究。據(jù)Trojanova等[37]報(bào)道,在400 ℃下累積疊軋兩道次后,晶粒發(fā)生持續(xù)旋轉(zhuǎn)動(dòng)態(tài)再結(jié)晶,晶粒細(xì)化。
等通道轉(zhuǎn)角擠壓(ECAP)是在擠壓前后材料的截面面積和形狀不發(fā)生改變的前提下發(fā)生大塑性變形,使晶粒細(xì)化到微米、亞微米及納米尺度,可顯著提高M(jìn)g合金的綜合性[38—39]。ECAP在制備高強(qiáng)度輕合金的應(yīng)用上受到越來越多研究人員的關(guān)注?;鹫昭嗟萚40]對(duì)LA14鎂鋰合金進(jìn)行等通道轉(zhuǎn)角擠壓變形后,合金強(qiáng)度得到大幅提升,且隨著等通道轉(zhuǎn)角擠壓道數(shù)的增加,其強(qiáng)韌性和塑性變形能力增強(qiáng)。楊寶成等[41]研究發(fā)現(xiàn),AZM63-1Si鎂合金經(jīng)等通道轉(zhuǎn)角擠壓后,α-Mg基體和片層狀MgZn相得到有效細(xì)化,隨著道次的增加,漢字狀Mg2Si逐漸破碎成顆粒狀,并逐步均勻地分布到細(xì)化后的α-Mg基體中,合金的力學(xué)性能顯著提高。楊杰等[42]研究表明,采用160°大角度等通道轉(zhuǎn)角擠壓對(duì)AZ61進(jìn)行處理,一定條件下可以獲得平均尺寸為1 μm的晶粒組織,細(xì)化機(jī)理以動(dòng)態(tài)再結(jié)晶為主。需要進(jìn)行多道次擠壓才能得到超細(xì)晶組織,擠壓效率低下、成本較高,不利于工業(yè)化應(yīng)用[43]。如何進(jìn)一步提高材料的各方面性能,提高加工效率,需要對(duì)不同的材料采用不同的工藝進(jìn)行研究,同時(shí)也需要對(duì)等通道轉(zhuǎn)角擠壓的模具與擠壓方式進(jìn)一步優(yōu)化。
往復(fù)擠壓是集擠壓和鐓粗為一體的劇烈塑性變形工藝,能有效細(xì)化晶粒,克服傳統(tǒng)軋制和擠壓后的材料裂紋和各向異性等缺陷,使材料內(nèi)部組織均勻化,十分有望實(shí)現(xiàn)商業(yè)化應(yīng)用。夏顯明等[44]研究表明,在往復(fù)擠壓過程中,ZK60鎂合金晶粒得到顯著細(xì)化,隨著道次增加,晶粒等軸傾向明顯,晶粒分布趨于均勻。程正翠[45]研究表明,隨著ZK30鎂合金往復(fù)擠壓次數(shù)增加,合金晶粒慢慢細(xì)化,當(dāng)ZK30往復(fù)擠壓變形道次超過8次后,其力學(xué)性能變化不大。韓飛等[46]研究表明,鑄態(tài)ZK60鎂合金在一定范圍內(nèi)增加擠壓比和往復(fù)擠壓的次數(shù),均有利于組織細(xì)化,雖然擠壓道次對(duì)晶粒細(xì)化效果不明顯,但有利于晶粒的均勻化,因此,選用合理的擠壓比和擠壓道次可以獲得均勻細(xì)小的組織。
復(fù)合工藝成形就是將2種及以上的細(xì)晶強(qiáng)化手段結(jié)合,實(shí)現(xiàn)快速、高效的鎂合金生產(chǎn)。細(xì)化鑄造鎂合金和變形鎂合金晶粒的方法雖然均有獨(dú)有的強(qiáng)化機(jī)制,但各自也有一定的局限性。有研究人員通過將2種及以上的細(xì)化方法相結(jié)合,綜合利用各自優(yōu)勢(shì)實(shí)現(xiàn)了鎂合金綜合性能的最優(yōu)化,如外力場(chǎng)鑄造與擠壓成形相結(jié)合[47—48]、激冷鑄造與軋制成形相結(jié)合、外加場(chǎng)與塑性變形結(jié)合等復(fù)合成形工藝。
激冷鑄造[49]和外力場(chǎng)作用雖可有效細(xì)化晶粒,但鑄坯內(nèi)部總是存在一些空洞類缺陷和粗大晶粒,降低了鎂合金結(jié)構(gòu)件的力學(xué)性能,因此,學(xué)者們采用特種鑄造和塑性變形相結(jié)合的復(fù)合工藝改善鎂合金的性能。哈爾濱工業(yè)大學(xué)的Jiang等[50]開發(fā)了一種鎂合金壓鑄-鍛造雙控設(shè)備生產(chǎn)摩托車汽缸體,與壓鑄相比,此工藝生產(chǎn)的鎂合金材料極限抗拉強(qiáng)度和伸長(zhǎng)率大大增加,同時(shí)鑄造缺陷顯著減少。Chen等[51]發(fā)現(xiàn),擠壓鑄造-固態(tài)擠壓成形AZ91D-RE的拉伸力學(xué)性能優(yōu)于觸變鍛造AZ91D-RE。
為了減少鑄造鎂合金氣孔、夾雜等缺陷,同時(shí)縮短熱擠壓的加熱時(shí)間,Chen等[51]利用擠壓鑄造和正擠壓兩步工藝生產(chǎn)AZ91D-RE鎂合金半固態(tài)坯料,如圖1所示;然后采用觸變鍛造生產(chǎn)無孔洞缺陷的復(fù)雜零件。Zhao等[52]開發(fā)了一種改善AZ31合金晶粒和性能的新型連續(xù)擠壓鑄造-擠壓工藝,無需進(jìn)行嚴(yán)重的塑性變形和熱處理即可細(xì)化晶粒、強(qiáng)化結(jié)構(gòu),且高效節(jié)能。馮靖凱等[53]研究了一種固液兩相區(qū)的復(fù)合擠壓工藝,如圖2所示。由于是固液兩相共存,擠壓引起的枝晶破碎和壓力會(huì)影響過冷度,因此,既可細(xì)化晶粒,又可促進(jìn)組織均勻化,且液相的存在降低了擠壓織構(gòu)的強(qiáng)度,后續(xù)的剪切變形進(jìn)一步細(xì)化了晶粒,最終提升了其綜合力學(xué)性能。該工藝既提升了鎂合金的綜合性能,降低了擠壓的難度,還進(jìn)一步縮短了制備的工藝流程。
圖1 連續(xù)擠壓鑄造工藝示意
圖2 擠壓模具及坐標(biāo)系示意
2種大塑性變形加工工藝結(jié)合可以增強(qiáng)鎂合金的累積變形和晶粒細(xì)化效果。于彥東等[54]在變通道轉(zhuǎn)角擠壓(CCAE)工藝和正擠壓工藝(FE)的基礎(chǔ)上設(shè)計(jì)出一套正擠壓-變通道轉(zhuǎn)角擠壓復(fù)合擠壓模具(見圖3),發(fā)現(xiàn)FE-CCAE復(fù)合變形工藝后的累積變形量大于分別進(jìn)行FE和CCAE的累積變形量之和,晶粒細(xì)化顯著。劉雁峰[55]設(shè)計(jì)出一種新型的大塑性變形方法,即正擠壓和彎曲剪切結(jié)合的連續(xù)成形新工藝(DEBS),既可以顯著細(xì)化晶粒,又可弱化典型的強(qiáng)基面織構(gòu),鎂合金綜合性能得到極大提升,且該工藝效率高、生產(chǎn)成本低、可一道次成形,具有極大的發(fā)展前景。尹振入[56]采用預(yù)變形和正擠壓扭轉(zhuǎn)變形的方法改善AQ80鎂合金的綜合性能,該方法可以很好地弱化AQ80鎂合金(002)基面織構(gòu),力學(xué)性能也得到明顯改善。
圖3 FE-CCAE模具
外加場(chǎng)既可以降低塑性變形的難度,還能促進(jìn)鎂合金的動(dòng)態(tài)再結(jié)晶。Su等[57]將靜磁場(chǎng)引入鎂合金鑄軋中,成功得到晶粒細(xì)小的鎂合金薄板。Kuang等[58]研究表明,電磁脈沖結(jié)合軋制可以使AZ31鎂合金的變形晶粒產(chǎn)生TD劈裂織構(gòu),該織構(gòu)可以提高鎂合金板材的軋制性能。Yan等[59]研究表明,脈沖磁場(chǎng)產(chǎn)生的洛侖磁力和焦耳熱可以使軋制后的AZ31鎂合金殘余應(yīng)力下降26.6%~30.3%。曹秒艷等[60]研究表明,在超聲振動(dòng)條件下,AZ31B鎂合金的流動(dòng)應(yīng)力下降量與超聲振幅呈正比,變形難度降低。在塑性變形后期,超聲作用可以增強(qiáng)位錯(cuò)的增殖和再分布,使材料得到硬化。何勁松等[61]研究表明,將超聲振動(dòng)和擠壓結(jié)合,超聲波可使ZK60合金發(fā)生動(dòng)態(tài)再結(jié)晶,變形應(yīng)力下降,變形能力提高,晶粒由原始的132 μm下降到19 μm。
要提高鎂合金的綜合性能需要綜合利用外加溫度場(chǎng)、磁場(chǎng)、應(yīng)力場(chǎng)等多場(chǎng)耦合作用,充分考慮鎂合金晶粒細(xì)化的工藝和裝備因素,實(shí)現(xiàn)低成本、高效、快速的鎂合金加工,對(duì)如今鎂合金的商業(yè)化發(fā)展極其重要。目前對(duì)鎂合金復(fù)合成形方法的研究較少,新型復(fù)合成形方法及強(qiáng)化機(jī)理還需進(jìn)一步探索,主要包括以下3個(gè)方面。
1)研發(fā)外加場(chǎng)如電磁場(chǎng)、溫度場(chǎng)、超聲波等與大塑性變形工藝相結(jié)合的多場(chǎng)條件下的變形鎂合金晶粒復(fù)合強(qiáng)化工藝,將其應(yīng)用于高性能變形鎂合金的工業(yè)化生產(chǎn)。目前,許多復(fù)合工藝在生產(chǎn)高性能鎂合金方面具有巨大潛力,且在實(shí)際情況下,設(shè)備開發(fā)及參數(shù)控制優(yōu)化較難,因此,需要進(jìn)行更加深入的研究,以開發(fā)適合企業(yè)生產(chǎn)應(yīng)用的復(fù)合工藝。
2)完善新型鑄造工藝與塑性成形工藝結(jié)合的鎂合金復(fù)合加工技術(shù)。特種鑄造和各種塑性成形工藝在細(xì)化晶粒方面均具有優(yōu)劣勢(shì),如能夠更多地將2種及以上的晶粒細(xì)化工藝聯(lián)合起來,可極大提升鎂合金材料性能。
3)加強(qiáng)晶粒組織對(duì)各項(xiàng)性能影響的研究。目前,越來越多的學(xué)者重點(diǎn)對(duì)鎂合金的強(qiáng)化機(jī)制進(jìn)行研究探討,以尋找晶粒組織與鎂合金性能的關(guān)系,進(jìn)而更好更快地實(shí)現(xiàn)鎂合金性能的優(yōu)化。
[1] 師昌緒, 李恒德, 王淀佐, 等. 加速我國金屬鎂工業(yè)發(fā)展的建議[J]. 材料導(dǎo)報(bào),2001, 15(4): 5—7.
SHI Chang-xu, LI Heng-de, WANG Dian-zuo, et al. Suggestions on Accelerating the Development of China’s Magnesium Industry[J]. Materials Review, 2001, 15(4): 5—7.
[2] 柯偉, 陳榮石. 深閨待嫁鎂合金[J].科學(xué)中國人, 2013(5): 16—19.
KE Wei, CHEN Rong-shi. Bestie Magnesium Alloy[J]. Scientific Chinese, 2013(5): 16—19.
[3] 左鐵鏞, 戴鐵軍.有色金屬材料可持續(xù)發(fā)展與循環(huán)經(jīng)濟(jì)[J]. 中國有色金屬學(xué)報(bào), 2008, 18(5): 755—763.
ZUO Tie-yong, DAI Tie-jun. Nonferrous Metal Material Sustainable Development and Circular Economy[J]. Chinese Journal of Nonferrous Metals, 2008, 18(5): 755—763.
[4] 楊素媛, 才鴻年, 王富恥. 動(dòng)態(tài)加載條件下細(xì)晶鎂合金的組織特征及形成機(jī)制[J].北京理工大學(xué)學(xué)報(bào), 2009, 29(2): 168—172.
YANG Su-yuan, CAI Hong-nian, WANG Fu-chi. Microstructure Characteristics and Formation Mechanism of Fine Grain Magnesium Alloy under Dynamic Loading Conditions[J]. Journal of Beijing Institute of Technology, 2009, 29(2): 168—172.
[5] 張坤敏, 敬學(xué)銳, 何雄江川, 等. 對(duì)Mg-4Zn變形鎂合金組織與性能的影響[J]. 精密成形工程, 2020, 12(5): 46—52.
ZHANG Kun-min, JING Xue-rui, HE Xiong-jiang- chuan, et al. Effect on Microstructure and Properties of Wrought Mg-4Zn Magnesium Alloy[J]. Journnal of Netshape Forming Engineering, 2020, 12(5): 46—52.
[6] DAI J, ZHU S, EASTON M A, et al. Precipitation Process in a Mg-Gd-Y Alloy Grain-Refined by Al Addition[J]. Materials Characterization, 2014, 88: 7—14.
[7] 徐河, 劉靜安, 謝水生. 鎂合金制備與加工技術(shù)[M].北京: 冶金工業(yè)出版社, 2007: 120—180.
XU He, LIU Jing-an, XIE Shui-sheng. Magnesium Alloy Preparation and Processing Technology[M]. Beijing: Metallurgical Industry Press, 2007: 120—180.
[8] 萬迪慶, 袁艷平, 周新建. 高強(qiáng)鎂合金組織細(xì)化方法研究現(xiàn)狀[J]. 材料導(dǎo)報(bào), 2015, 29(9): 76—80.
WANG Di-qing, YUAN Yan-ping, ZHOU Xin-jian. Research Status of Microstructure Refinement Methods for High Strength Magnesium Alloys[J]. Material Guide, 2015, 29(9): 76—80.
[9] 王欣欣, 袁森, 曾書峰, 等.C2Cl6對(duì)AM60合金組織與性能的影響[J].熱加工工藝, 2008(13): 17—20.
WANG Xin-xin, YUAN Sen, ZENG Shu-feng, et al. Effect of C2Cl6on the Structure and Properties of AM60 Alloy[J]. Thermal Processing Technology, 2008(13): 17—20.
[10] 艾廬山, 袁森, 康彥, 等. 添加稀土元素Ce對(duì)AZ91D鎂合金組織的影響[J]. 稀有金屬快報(bào), 2006(2): 31—35.
AI Lu-shan, YUAN Sen, KANG Yan, et al. Effect of Adding Rare Earth Element Ce on the Microstructure of AZ91D Magnesium Alloy[J]. Rare Metals Express, 2006(2): 31—35.
[11] 石文靜, 卞健從, 王冰, 等. 電磁攪拌AZ31鎂合金固溶處理研究[C]// 2017中國鑄造活動(dòng)周論文集, 2017: 7.
SHI Wen-jing, BIAN Jian-cong, WANG Bing, et al. Study on Electromagnetic Stirring AZ31 Magnesium Alloy Solution Treatment[C]// 2017 China Foundry Activity Week Proceedings, 2017: 7.
[12] 楊院生, 付俊偉, 羅天驕, 等. 鎂合金低壓脈沖磁場(chǎng)晶粒細(xì)化[J]. 中國有色金屬學(xué)報(bào), 2011, 21(10): 2639—2649.
YANG Yuan-sheng, FU Jun-wei, LUO Tian-jiao, et al. Magnesium Alloy Low-Voltage Pulsed Magnetic Field Grain Refinement[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2639—2649.
[13] SHAO Z W, LE Q C, ZHANG Z Q, et al. Numerical Simulation of Acoustic Pressure Field for Ultrasonic Grain Refinement of AZ80 Magnesium Alloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(11): 2476—2483.
[14] 余琨, 薛新穎, 毛大恒, 等. 超聲鑄造對(duì)AZ31鎂合金鑄錠及熱軋板材組織與性能的影響[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011, 42(7): 1918—1923.
XU Kun, XUE Xin-ying, MAO Da-heng, et al. Effect of Ultrasonic Casting on the Microstructure and Properties of AZ31 Magnesium Alloy Ingot and Hot Rolled Sheet[J]. Journal of Central South University (Natural Science Edition), 2011, 42(7): 1918—1923.
[15] 張志強(qiáng), 樂啟熾, 崔建忠, 等. 超聲場(chǎng)作用下Mg-4Al-1Si合金凝固組織[J]. 稀有金屬材料與工程, 2013, 42(3): 574—578.
ZHANG Zhi-qiang, LE Qi-chi, CUI Jian-zhong, et al. Solidified Structure of Mg-4Al-1Si Alloy under Ultrasonic Field[J]. Rare Metal Materials and Engineering, 2013, 42(3): 574—578.
[16] 付浩, 周全. 超聲處理對(duì)AZ91D-3Ca鎂合金凝固組織的影響[J]. 特種鑄造及有色合金, 2013, 33(2): 178— 181.
FU Hao, ZHOU Quan. The Effect of Ultrasonic Treatment on the Solidification Structure of AZ91D-3Ca Magnesium Alloy[J]. Special Casting and Nonferrous Alloys, 2013, 33(2): 178—181.
[17] 趙宇昕, 王朝輝, 李淑波, 等. 超聲處理對(duì)AZ31鎂合金組織和性能的影響[J]. 特種鑄造及有色合金, 2010, 30(7): 674—677.
ZHAO Yu-xin, WANG Chao-hui, LI Shu-bo, et al. The Effect of Ultrasonic Treatment on the Structure and Properties of AZ31 Magnesium Alloy[J]. Special Casting and Nonferrous Alloys, 2010, 30(7): 674—677.
[18] GUAN R G, ZHAO Z Y, ZHANG H, et al. Microstructure Evolution and Properties of Mg-3Sn-1Mn Alloy Strip Processed by Semisolid Rheo-Rolling[J]. Journal of Materials Processing Technology, 2012, 212(6): 1430—1436.
[19] 林小娉, 徐瑞, 樊志斌, 等. 鋁、鎂合金高壓凝固及高壓凝固理論研究進(jìn)展[J]. 精密成形工程, 2016, 8(6): 1—7.
LIN Xiao-pin, XU Rui, FAN Zhi-bin, et al. Research Progress in High-Pressure Solidification and High-Pressure Solidification Theory of Aluminum and Magnesium Alloys[J]. Journal of Netshape Forming Engineering, 2016, 8(6): 1—7.
[20] XU S W, OH-ISHI K, KAMADO S, et al. Effects of Different Cooling Rates during Two Casting Processes on the Microstructures and Mechanical Properties of Extruded Mg-Al-Ca-Mn Alloy[J]. Materials Science & Engineering A, 2012, 542(4): 71—78.
[21] WANG Q-L, WU G H, HOU Z Q, et al. A Comparative Study of Mg-Gd-Y-Zr Alloy Cast by Metal Mould and Sand Mould[J]. China Foundry, 2010, 7(1): 6—12.
[22] 杜文博, 秦亞靈, 嚴(yán)振杰, 等. 大塑性變形對(duì)鎂合金微觀組織與性能的影響[J]. 稀有金屬材料與工程, 2009, 38(10): 1870—1876.
DU Wen-bo, QIN Ya-ling, YAN Zhen-jie, et al. The Effect of Large Plastic Deformation on the Microstructure and Properties of Magnesium Alloys[J]. Rare Metal Materials and Engineering, 2009, 38(10): 1870—1876.
[23] 丁文江, 靳麗, 吳文祥, 等. 變形鎂合金中的織構(gòu)及其優(yōu)化設(shè)計(jì)[J]. 中國有色金屬學(xué)報(bào), 2011, 21(10): 2371—2381.
DIN Wen-jiang, JIN Li, WU Wen-xiang, et al. Texture and Optimization Design in Wrought Magnesium Alloy[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10): 2371—2381.
[24] WANG Q, ZHANG Z M, ZHANG X, et al. New Extrusion Process of Mg Alloy Automobile Wheels[J]. Transactions of Nonferrous Metals Society of China, 2010, 20: s599—s603.
[25] 李秀蓮, 王茂銀, 辛仁龍, 等. AZ31鎂合金擠壓軋制過程微觀織構(gòu)演變[J]. 材料熱處理學(xué)報(bào), 2010, 31(5): 61—65.
LI Xiu-lian, WANG Mao-yin, XIN Ren-long, et al. Micro-Texture Evolution of AZ31 Magnesium Alloy during Extrusion Rolling[J]. Journal of Materials and Heat Treatment, 2010, 31(5): 61—65.
[26] LIU J F, WANG Q D, ZHOU H, et al. Microstructure and Mechanical Properties of NZ30K Magnesium Alloy Processed by Repetitive Upsetting[J]. Journal of Alloys and Compounds, 2014, 589(3): 372—377.
[27] JAHADI R, SEDIGHI M, JAHED H. ECAP Effect on the Micro-Structure and Mechanical Properties of AM30 Magnesium Alloy[J]. Materials Science & Engineering A, 2014, 593(1): 178—184.
[28] SHI B Q, CHEN R S, KE W. Effects of Yttrium and Zinc on the Texture, Microstructure and Tensile Properties of Hot-Rolled Magnesium Plates[J]. Materials Science and Engineering: A, 2013, 560(1): 62—70.
[29] GUAN R G, ZHAO Z Y, CHAO R Z, et al. Effects of Technical Parameters of Continuous Semisolid Rolling on Microstructure and Mechanical Properties of Mg-3Sn-1Mn Alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(1): 73—79.
[30] YANG Q S, JIANG B, ZHOU G Y, et al. Influence of an Asymmetric Shear Deformation on Microstructure Evolution and Mechanical Behavior of AZ31 Magnesium Alloy Sheet[J]. Materials Science Engineering A, 2014, 590(1): 440—447.
[31] TORK N B, PARDIS N, EBRAHIMI R. Investigation on the Feasibility of Room Temperature Plastic Deformation of Pure Magnesium by Simple Shear Extrusion Process[J]. Materials Science & Engineering A, 2013, 560(1): 34—39.
[32] HUANG H, YUAN G Y, CHU Z H, et al. Microstructure and Mechanical Properties of Double Continuously Extruded Mg-Zn-Gd-Based Magnesium Alloys[J]. Materials Science & Engineering A , 2013, 560(1): 241—248.
[33] 丁春慧, 李萍, 丁永根, 等. 基于高壓扭轉(zhuǎn)工藝的Al-Zn-Mg-Cu合金強(qiáng)韌化機(jī)理研究[J]. 精密成形工程, 2018, 10(4): 126—131.
DING Chun-hui, LI Ping, DING Yong-gen, et al. Research on the Mechanism of Strengthening and Toughening of Al-Zn-Mg-Cu Alloy Based on High-Pressure Torsion Process[J]. Journal of Netshape Forming Engineering, 2018, 10(4): 126—131.
[34] 汪程鵬, 李付國, 陸紅亞, 等. 劇烈塑性變形制備微納米材料的變形細(xì)化機(jī)理[J]. 金屬熱處理, 2012, 37(2): 14—19.
WANG Cheng-peng, LI Fu-guo, LU Hong-ya, et al. Deformation Refinement Mechanism of Micro-Nano Materials Prepared by Severe Plastic Deformation[J]. Heat Treatment of Metals, 2012, 37(2): 14—19.
[35] 郭俊卿, 丁祎, 陳拂曉, 等. AZ63鎂合金累積疊軋界面結(jié)合機(jī)制的研究[J]. 塑性工程學(xué)報(bào), 2018, 25(1): 60—65.
GUO Jun-qing, DIN Wei, CHEN Fu-xiao, et al. Study on the Interface Bonding Mechanism of AZ63 Magnesium Alloy Cumulative Rolling[J]. Chinese Journal of Plasticity Engineering, 2018, 25(1): 60—65.
[36] 張兵, 袁守謙, 張西鋒, 等. 累積復(fù)合軋制對(duì)鎂合金組織和力學(xué)性能的影響[J]. 中國有色金屬學(xué)報(bào), 2008, 18(9): 1607—1612.
ZHANG Bing, YUAN Shou-qian, ZHANG Xi-feng, et al. Effect of Cumulative Composite Rolling on Microstructure and Mechanical Properties of Magnesium Alloys[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(9): 1607—1612.
[37] TROJANOVA, DROZ D, LUKá P, et al. Amplitude-Dependent Internal Friction in AZ31 Alloy Sheets Submitted to Accumulative Roll Bonding[J]. Low Temperature Physics: Simultaneous Russian-English publication, 2018, 44(9): 966—972.
[38] ENZE C, LAURENT D, ANNE M H, et al. Multiscale Modeling of Back-Stress Evolution in Equal-Channel Angular Pressing: from One Pass to Multiple Passes[J]. Journal of Materials Science, 2010, 45(17): 4696—4704.
[39] 葛佳琪, 楊文朋, 王詩蒙, 等. 鎂合金等通道轉(zhuǎn)角擠壓的研究進(jìn)展[J]. 熱加工工藝, 2020, 527(1): 13—16.
GE Jia-qi, YANG Wen-peng, WANG Shi-meng, et al. Research Progress of Equal Channel Angular Extrusion of Magnesium Alloy[J]. Hot Working Technology, 2020, 527(1): 13—16.
[40] 火照燕, 馬勤, 完彥少君. 等通道轉(zhuǎn)角擠壓對(duì)LA141鎂鋰合金顯微組織及力學(xué)性能的影響[J]. 熱加工工藝, 2019, 48(7): 32—35. HUO Zhao-yan, MA Qin, WANYAN Shao-jun. Effect of Equal Channel Angular Extrusion on the Microstructure and Mechanical Properties of LA141 Magnesium-Lithium Alloy[J]. Hot Working Technology, 2019, 48(7): 32—35.
[41] 楊寶成, 韓富銀, 馬盈, 等. 等通道轉(zhuǎn)角擠壓ZAM63-1Si鎂合金的組織和性能[J]. 輕合金加工技術(shù), 2018, 488(4): 38—42.YANG Bao-cheng, HAN Fu-yin, MA Ying, et al. Microstructure and Properties of ZAM63-1Si Magnesium Alloy by Equal Channel Angular Extrusion[J]. Light alloy Processing Technology, 2018, 488(4): 38—42.
[42] 楊杰, 樊建鋒, 單召輝, 等. 160°大角度等通道轉(zhuǎn)角擠壓AZ61組織演化與力學(xué)性能[J]. 鑄造技術(shù), 2019, 40(7): 729—733.
YANG Jie, FAN Jian-feng, SHAN Zhao-hui, et al. Microstructure Evolution and Mechanical Properties of AZ61 under 160° High Angle Equal Channel Angular Extrusion[J]. Casting Technology, 2019, 40(7): 729—733.
[43] 董蔚霞, 王曉溪, 夏華明, 等. 新型等徑角擠壓工藝下的5052鋁合金變形行為的有限元模擬[J]. 精密成形工程, 2015, 7(3): 43—47.
DONG Wei-xia, WANG Xiao-xi, XIA Hua-ming, et al. Finite Element Simulation of Deformation Behavior of 5052 Aluminum Alloy under New Equal Channel Angular Extrusion Process[J]. Journal of Netshape Forming Engineering, 2015, 7(3): 43—47.
[44] 夏顯明, 薛克敏, 李萍, 等. 擠壓態(tài)ZK60鎂合金往復(fù)擠壓力學(xué)性能研究[J]. 有色金屬工程, 2017, 7(3): 24—29.
XIA Xian-ming, XUE Ke-ming, LI Ping, et al. Study on the Mechanical Properties of Reciprocating Extrusion of Extruded ZK60 Magnesium Alloy[J]. Non-Ferrous Metal Engineering, 2017, 7(3): 24—29.
[45] 程正翠. 往復(fù)擠壓對(duì)ZK30鎂合金組織和力學(xué)性能的影響[J]. 黑龍江工業(yè)學(xué)院學(xué)報(bào)(綜合版), 2019, 19(6): 11—14.
CHENG Zheng-cui. Effect of Reciprocating Extrusion on the Microstructure and Mechanical Properties of ZK30 Magnesium Alloy[J]. Journal of Heilongjiang University of Technology (Comprehensive Edition), 2019, 19(6): 11—14.
[46] 韓飛, 陳剛, 劉洪偉, 等. 鑄態(tài)ZK60鎂合金往復(fù)擠壓的組織與性能[J]. 精密成形工程, 2017, 9(2): 40—44.
HAN Fei, CHEN Gang, LIU Hong-wei, et al. Microstructure and Properties of As-Cast ZK60 Magnesium Alloy Reciprocating Extrusion[J]. Journal of Netshape Forming Engineering, 2017, 9(2): 40—44.
[47] HAO H, MAIJER D M, WELLS M A, et al. Modeling the Stress-Strain Behavior and Hot Tearing during Direct Chill Casting of an AZ31 Magnesium Billet[J]. Metallurgical and Materials Transactions A, 2010, 41(8): 2067—2077.
[48] 趙金橋, 劉勝, 馬龍. 基于ANSYS的管線抗震支架抗震特性研究[J]. 重慶工商大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019, 36(2): 80—86.
ZHAO Jin-qiao, LIU Sheng, MA Long. Seismic Analysis of Seismic Braces in Pipelines Based on ANSYS[J]. Journal of Chongqing Technology and Business (Natural Sciences Edition), 2019, 36(2): 80—86.
[49] CARON E, WELLS M A. Secondary Cooling in the Direct-Chill Casting of Magnesium Alloy AZ31[J]. Metallurgical and Materials Transactions B, 2009, 40(4): 585—595.
[50] JIANG J F, WANG Y, LI Y F, et al. Microstructure and Mechanical Properties of the Motorcycle Cylinder Body of AM60B Magnesium Alloy Formed by Combining Die Casting and Forging[J]. Materials and Design, 2012, 37(1): 202—210.
[51] CHEN Q, YUAN B G, ZHAO G Z, et al. Microstructural Evolution during Reheating and Tensile Mechanical Properties of Thixoforged AZ91D-RE Magnesium Alloy Prepared by Squeeze Casting-Solid Extrusion[J]. Materials Science & Engineering A, 2012, 537(1): 25—38.
[52] ZHAO D J, Lü S L, LI J Y, et al. A Novel Continuous Squeeze Casting-Extrusion Process for Grain Refinement and Property Improvement in AZ31 Alloy[J]. Materials Science & Engineering A, 2021, 808: 140942.
[53] 馮靖凱, 張丁非, 陳霞, 等. 一種細(xì)化AZ31鎂合金的固液兩相區(qū)復(fù)合擠壓工藝[J]. 材料工程, 2021, 49(4): 78—88.
FENG Jing-kai, ZHANG Ding-fei, CHEN Xia, et al. A Solid-Liquid Two-Phase Composite Extrusion Process for Refined AZ31 Magnesium Alloy[J]. Materials Engineering, 2021, 49(4): 78—88.
[54] 于彥東, 李磊. 正擠壓和CCAE復(fù)合變形工藝數(shù)值模擬[J]. 哈爾濱理工大學(xué)學(xué)報(bào), 2018, 23(5): 134—137.
YU Yan-dong, LI Lei. Numerical Simulation of Composite Deformation Process of Forward Extrusion and CCAE[J]. Journal of Harbin University of Science and Technology, 2018, 23(5): 134—137.
[55] 劉雁峰. 鎂合金正擠壓-彎曲剪切復(fù)合連續(xù)變形模具型腔設(shè)計(jì)及工藝參數(shù)優(yōu)化[D]. 湘潭: 湖南科技大學(xué), 2017: 63—65.
LIU Yan-feng. Magnesium Alloy Forward Extrusion-Bending-Shear Compound Continuous Deformation Die Cavity Design and Process Parameter Optimization[D]. Xiangtan: Hunan University of Science and Technology, 2017: 63—65.
[56] 尹振入. 航空用鎂合金預(yù)變形—正擠壓扭轉(zhuǎn)變形加工工藝研究[D]. 湘潭: 湖南科技大學(xué), 2017: 60—62.
YIN Zhen-ru. Pre-Deformation of Magnesium Alloy for Aviation-Research on Forward Extrusion and Torsion Deformation Process[D]. Xiangtan: Hunan University of Science and Technology, 2017: 60—62.
[57] SU X, XU G M, JIANG D H. Abatement of Segregation with the Electro and Static Magnetic Field During Twin-Roll Casting of 7075 Alloy Sheet[J]. Materials Science & Engineering A, 2014, 599(2): 279—285.
[58] JIE K, THADDEUS S E L, STEPHEN R, et al. Abnormal Texture Development in Magnesium Alloy Mg-3Al-1Zn during Large Strain Electroplastic Rolling: Effect of Pulsed Electric Current[J]. International Journal of Plasticity, 2016, 87: 86—99.
[59] YAN M, WANG C, LUO T J, et al. Effect of Pulsed Magnetic Field on the Residual Stress of Rolled Magnium Alloy AZ31 Sheet[J]. Acta Metallurgica Sinica (English Letters), 2021, 34(1): 45—53.
[60] 曹秒艷, 田少杰, 胡晗, 等. 超聲振動(dòng)條件下AZ31B鎂合金本構(gòu)關(guān)系[J]. 中國有色金屬學(xué)報(bào), 2020, 30(7): 1584—1593.
CAO Miao-yan, TIAN Shao-jie, HU Han, et al. Constitutive Relationship of AZ31B Magnesium Alloy under Ultrasonic Vibration[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(7): 1584—1593.
[61] 何勁松. ZK60鎂合金超聲波輔助振動(dòng)微擠壓變形研究及有限元模擬分析[D]. 深圳: 深圳大學(xué), 2017: 52—54.
HE Jin-song. Research on Deformation of ZK60 Magnesium Alloy by Ultrasonic-Assisted Vibration Micro-Extrusion and Finite Element Simulation Analysis[D]. Shenzhen: Shenzhen University, 2017: 52—54.
Research Progress on Composite Refinement Strengthening of Magnesium Alloy
ZHANG Ou1, HU Hong-jun1, HU Gang1, ZHANG Ding-fei2, DAI Qing-wei3, OU Zhong-wen4
(1. School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400050, China; 2. School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China; 3. School of Metallurgy and Materials, Chongqing University of Science and Technology, Chongqing 401331, China; 4. School of Chemistry and Materials, Army Service College, Chongqing 401311, China)
The grain refinement of magnesium alloy can greatly improve the comprehensive mechanical properties. Single refinement method includes applying external force field, high pressure and chilling action, and large plastic deformation in melt. The properties of materials processed by single refinement method are difficult to meet the actual production needs, and the production efficiency is low, the cost is high, and the quality is difficult to guarantee. The combination of two or more grain refinement methods can achieve greater improvement in the properties of magnesium alloys. Through the review on composite processing methods of magnesium alloy, including squeeze casting-solid extrusion forming, squeeze casting-positive extrusion, FE-CCAE composite deformation process, electromagnetic pulse combined rolling process, ultrasonic vibration-extrusion processing, et al, the research progress on composite refinement strengthening process of magnesium alloy is expounded in detail, which provides a reference for further research and development of more efficient and green composite forming technology of refining magnesium alloy grains.
magnesium alloy; composite processing; external field
10.3969/j.issn.1674-6457.2021.06.013
TG146.2+2
A
1674-6457(2021)06-0098-08
2021-03-17
國家自然科學(xué)基金面上項(xiàng)目(52071042,51771038);重慶英才計(jì)劃(CQYC202003047);重慶市自然科學(xué)基金(cstc2018jcyjAX0249,cstc2018jcyjAX0653)
章歐(1997—),男,碩士生,主要研究方向?yàn)殒V合金組織與性能的優(yōu)化調(diào)控。
胡紅軍(1976—),男,博士,教授,主要研究方向?yàn)檩p合金材料科學(xué)與工程。