高健飛,錢(qián)夏曄,康佳良
閥蓋模鍛成形模擬分析與試驗(yàn)驗(yàn)證
高健飛,錢(qián)夏曄,康佳良
(中核蘇閥實(shí)業(yè)科技股份有限公司,江蘇 蘇州 215000)
某型號(hào)不銹鋼閥蓋是一種典型的長(zhǎng)肋條內(nèi)空型零件,在模鍛制造過(guò)程中,閥蓋鍛件容易出現(xiàn)不同程度的折疊和裂紋缺陷,亟需改進(jìn)成形工藝以提升合格率。采用有限元方法分析坯料在制坯/預(yù)鍛/終鍛全流程的金屬流動(dòng)規(guī)律和終鍛件成形質(zhì)量,得到最佳成形工藝方案。方坯在后續(xù)成形時(shí)易產(chǎn)生橫向流動(dòng),且局部充型不飽滿(mǎn);六邊型坯在預(yù)成形和終成形時(shí)流動(dòng)均勻、橫向流動(dòng)小,且有效抑制了充型不飽滿(mǎn)缺陷;預(yù)制坯在過(guò)渡區(qū)長(zhǎng)度過(guò)短,產(chǎn)生了折疊缺陷;采用六邊形坯料和增加過(guò)渡區(qū)長(zhǎng)度可以獲得無(wú)缺陷閥體鍛件。采用新工藝制備的閥蓋鍛件合格率達(dá)到了100%,通過(guò)全流程工藝分析,能夠得到金屬流線(xiàn)規(guī)律,進(jìn)而優(yōu)化模鍛成形方案,改善成形質(zhì)量。
閥蓋;模鍛;成形質(zhì)量;金屬流動(dòng);有限元模擬
某型號(hào)不銹鋼閥蓋是一種典型的鍛造類(lèi)復(fù)雜零件,肋條結(jié)構(gòu)和過(guò)渡結(jié)構(gòu)較復(fù)雜,通常采用模鍛工藝成形,成形困難[1]。為了提高鍛件成形質(zhì)量,模鍛通常會(huì)設(shè)置飛邊槽和輔料槽引導(dǎo)金屬的流動(dòng)[2—3]。該閥蓋前期采用圓棒下料,加熱到始鍛溫度,放入預(yù)拔長(zhǎng)模具,將其拔長(zhǎng)成帶有錐形的圓棒,隨后進(jìn)行預(yù)鍛和終鍛成形。經(jīng)切邊加工成成品,發(fā)現(xiàn)肋條內(nèi)側(cè)部位存在裂紋,肋條4個(gè)角的位置也出現(xiàn)褶皺缺陷。鍛造模擬軟件能夠有效模擬金屬流動(dòng)行為,指導(dǎo)實(shí)際生產(chǎn)工藝的優(yōu)化,可以節(jié)省模具試制成本和提高產(chǎn)品成形質(zhì)量[4—7]。通過(guò)改善擠壓制坯過(guò)程中的金屬流動(dòng)雖然可提高成形質(zhì)量,但在工藝試驗(yàn)時(shí),依舊發(fā)現(xiàn)預(yù)鍛和終鍛后的零件表面存在不同程度的折疊缺陷。綜上所述,文中擬從制坯形狀優(yōu)化出發(fā),深入分析中間坯料幾何結(jié)構(gòu)對(duì)閥蓋成形過(guò)程中金屬流動(dòng)的影響規(guī)律,以期提高閥蓋模鍛件的成形質(zhì)量。
閥蓋鍛件三維模型如圖1所示,該閥蓋成形難點(diǎn)主要在于兩側(cè)對(duì)稱(chēng)肋條結(jié)構(gòu)和肋條中間異型孔的成形。在原模鍛工藝中,在異性孔位置使用平板作為敷料,終鍛時(shí)金屬可能會(huì)沿著寬度方向向2個(gè)肋條外側(cè)快速流動(dòng),易于形成穿流缺陷[8—11]。綜上所述,在肋條成形時(shí),為了使得金屬向肋條兩側(cè)流動(dòng),擬在異型孔中間位置增加較大的敷料槽,控制金屬的流動(dòng)方向。
圖1 閥蓋三維模型
式中:為剪切流動(dòng)應(yīng)力;0為流動(dòng)應(yīng)力;為法向壓應(yīng)力。
在原工藝中,預(yù)成形坯料形狀如圖2a所示。為了保證模擬結(jié)果的可靠性,坯料在預(yù)成形時(shí),在1150 ℃下冷卻了30 s,如圖2b所示。使用圖3所示的預(yù)成形模具進(jìn)行預(yù)成形,預(yù)成形后的坯料及模具相對(duì)位置如圖4a所示,預(yù)成形模擬結(jié)果如圖4b—c所示??梢钥闯?,預(yù)成形坯料置于具有輔料槽的終鍛型腔,與水平方向有一定的角度(見(jiàn)圖4a),隨著上模下行,預(yù)成形坯料由傾斜轉(zhuǎn)為水平后充滿(mǎn)型腔。在預(yù)成形過(guò)程中,預(yù)成形坯料出現(xiàn)了一個(gè)缺口(見(jiàn)圖4b—c),經(jīng)分析,這個(gè)缺口由坯料過(guò)渡區(qū)較小所致(過(guò)渡區(qū)見(jiàn)圖2a),且在終成形時(shí)易形成折疊缺陷。在無(wú)欠壓坯料上存在局部充型不飽滿(mǎn)(見(jiàn)圖4c),此缺陷形成的原因主要是拔長(zhǎng)坯料直徑和長(zhǎng)度設(shè)計(jì)不合理,使得坯料在成形過(guò)程中,軸向流動(dòng)路徑短,進(jìn)而形成缺陷。
為了預(yù)估預(yù)制坯在終成形模具中的成形效果,對(duì)圖4的預(yù)制坯進(jìn)行終成形有限元模擬。終成形模具如圖5所示,考慮到預(yù)成形可能存在的欠壓現(xiàn)象,終成形采用了2種預(yù)制坯形狀,即欠壓2 mm的預(yù)成形坯和無(wú)欠壓預(yù)成形坯,用于終鍛成形。
終成形模擬結(jié)果如圖6所示。2種坯料均在圖示位置產(chǎn)生了折疊缺陷,綜合圖4的預(yù)成形坯外形可以得出,這是過(guò)渡區(qū)長(zhǎng)度過(guò)短導(dǎo)致的累積缺陷。同時(shí)可以看出,敷料槽改善了預(yù)成形時(shí)的金屬流動(dòng),使得金屬向肋條兩側(cè)流動(dòng),避免了穿流缺陷的產(chǎn)生[12—15]。修改了終鍛模腔的形狀后,穿流缺陷雖然得到消除,但折疊和充型不飽滿(mǎn)缺陷仍然存在,因此,必須優(yōu)化坯料幾何形狀。
圖2 第一火次坯料空冷后的溫度場(chǎng)
圖3 預(yù)成形上下模
圖4 添加輔料槽后的模鍛成形過(guò)程模擬分析
圖5 終成形模具上下模
圖6 終成形過(guò)程模擬分析
為了消除終成形時(shí)產(chǎn)生的折疊、充型不飽滿(mǎn)等缺陷,重新設(shè)計(jì)了2種拔長(zhǎng)坯結(jié)構(gòu),并采用全工序模擬分析這2種結(jié)構(gòu)對(duì)閥蓋模鍛成形質(zhì)量的影響。2種拔長(zhǎng)坯形狀為四角方坯和六角坯,分析結(jié)果如下所述。
方形坯模擬見(jiàn)圖7,發(fā)現(xiàn)預(yù)成形時(shí)存在局部?jī)?nèi)凹,在成形過(guò)程中,內(nèi)凹點(diǎn)處金屬可能回流入框架內(nèi)(見(jiàn)圖8),形成折疊,因此不能采用四角方坯。
六邊形坯模擬過(guò)程與方形坯一致,預(yù)成形模擬結(jié)果見(jiàn)圖9,終成形模擬結(jié)果見(jiàn)圖10,獲得的鍛件無(wú)折疊、無(wú)穿流,可作為成形首選方案。
充分考慮實(shí)際生產(chǎn)過(guò)程的各個(gè)環(huán)節(jié)、工藝模擬與優(yōu)化設(shè)計(jì)結(jié)果,試制了30個(gè)零件,經(jīng)過(guò)拔長(zhǎng)-預(yù)成形-終成形-沖內(nèi)孔-切飛邊后,得到的閥蓋鍛件產(chǎn)品質(zhì)量?jī)?yōu)良,無(wú)折疊和表面裂紋缺陷,且在打磨后初步發(fā)現(xiàn)肋條處兩側(cè)無(wú)裂紋(見(jiàn)圖11a—b)。隨后進(jìn)行著色處理和X射線(xiàn)工業(yè)探傷,發(fā)現(xiàn)鍛件表面無(wú)折疊、內(nèi)部無(wú)裂紋(見(jiàn)圖11c—d)。這批次試制的閥蓋鍛件全部無(wú)缺陷,產(chǎn)品合格率為100%。
圖7 方形坯的成形過(guò)程模擬
圖8 不同狀態(tài)下內(nèi)凹區(qū)域坯料的演變
圖9 預(yù)成形過(guò)程模擬
圖10 終成形過(guò)程模擬
圖11 閥蓋鍛件及其質(zhì)量無(wú)損檢測(cè)
采用有限元方法分析了坯料在制坯/預(yù)鍛/終鍛全流程中的金屬流動(dòng)規(guī)律和終鍛件成形質(zhì)量,優(yōu)化得到了最佳成形工藝方案,得出以下結(jié)論。
與錐形坯相比,方坯和六邊形坯是2種較好的幾何結(jié)構(gòu),而方坯在后續(xù)成形時(shí)易產(chǎn)生橫向流動(dòng)且局部充型不飽滿(mǎn);六邊型坯在預(yù)成形和終成形時(shí)流動(dòng)均勻、橫向流動(dòng)小且有效抑制了充型不飽滿(mǎn)缺陷;2種預(yù)成形坯因過(guò)渡區(qū)長(zhǎng)度過(guò)短而產(chǎn)生折疊缺陷;優(yōu)化得到的六邊形坯料的過(guò)渡區(qū)長(zhǎng)度得到適當(dāng)增加,可獲得無(wú)缺陷閥蓋鍛件。采用有限元模擬分析,能夠準(zhǔn)確獲取模鍛過(guò)程的金屬流動(dòng)行為,為改善閥蓋模鍛成形質(zhì)量提供了理論參考和工藝指導(dǎo)。通過(guò)有限元模擬,確定了閥蓋的生產(chǎn)工序,為坯料加熱→空氣錘制六角方坯→預(yù)成形→終成形,新工序制備的閥蓋產(chǎn)品合格率達(dá)到了100%,驗(yàn)證了有限元模擬結(jié)果的可靠性。
劉建生, 陳慧琴, 郭曉霞. 金屬塑性加工有限元模擬技術(shù)與應(yīng)用[M]. 北京: 冶金工業(yè)出版社, 2003: 25— 29.LIU Jian-sheng, CHEN Hui-qin, GUO Xiao-xia. Finite Element Simulation Technology and Application of Metal Plastic Machining[M]. Beijing: Metallurgical Industry Press, 2003: 25—29.
[1] 徐新成, 張水忠, 劉淑梅. 溫鍛用模具材料的選用及熱處理工藝[J]. 熱加工工藝, 2005, 34(7): 66—69.
XU Xin-cheng, ZHANG Shui-zhong, LIU Shu-mei. Selection of Mould Material for Warm Forging and Process of Heat-Treat[J]. Hot Working Technology, 2005, 34(7): 66—69.
[2] 楊鋒, 富國(guó)亮, 侯巧紅, 等. 基于Deform的飛邊槽結(jié)構(gòu)對(duì)法蘭盤(pán)模鍛的影響分析[J]. 熱加工工藝, 2020, 49(19): 108—110.
YANG Feng, FU Guo-liang, HOU Qiao-hong, et al. Analysis of Influence of Flash Structure on Flange Plate Die Forging Based on Deform[J]. Hot Working Technology, 2020, 49(19): 108—110.
[3] 朱帥, 孫福臻, 張泉達(dá), 等. 基于AUTOFORM模擬的頂蓋前邊梁加強(qiáng)板熱沖壓工藝[J]. 精密成形工程, 2020, 12(4): 146—151.
ZHU Shuai, SUN Fu-zhen, ZHANG Quan-da, et al. Hot Stamping Process for the Front Side Beam Strengthening Plate of the Roof Based on AUTOFORM[J]. Journal of Netshape Forming Engineering, 2020, 12(4): 146— 151.
[4] 牛海俠, 張瓊, 吳建美. 鋁合金薄壁殼體件液態(tài)模鍛塑性變形過(guò)程的數(shù)值模擬[J]. 佳木斯大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020, 38(5): 95—99.
NIU Hai-xia, ZHANG Qiong, WU Jian-mei. Numerical Simulation of Plastic Deformation of Aluminum Alloy Thin-Walled Shell Parts[J]. Journal of Jiamusi University (Natural Science Edition), 2020, 38(5): 95—99.
[5] 陳鍇, 顏銀標(biāo), 徐躍, 等. 基于Deform的鋁合金薄壁錐形件成形分析[J]. 精密成形工程, 2016, 8(1): 63— 66.
CHEN Kai, YAN Yin-biao, XU Yue, et al. Analysis of Extrusion Forming of Aluminum Alloy Cone Component Based on Deform [J]. Journal of Netshape Forming Engineering, 2016, 8(1): 63—66.
[6] 趙翔, 李萍. 基于Deform-3D的汽車(chē)擺臂輥鍛制坯模擬優(yōu)化研究[J]. 精密成形工程, 2013, 5(1): 29—32.
ZHAO Xiang, LI Ping. Numerical Simulation Research of Automobile Swing Arm Roll Forging Preforming Based on Deform-3D[J]. Journal of Netshape Forming Engineering, 2013, 5(1): 29—32.
[7] 徒延萍. 模鍛件流線(xiàn)穿流的形成原因及預(yù)防方法[J]. 西安航空技術(shù)高等專(zhuān)科學(xué)校學(xué)報(bào), 2008(3): 12—13.
TU Yan-ping. Stamp Work Stream Line’s Draining’s Forming Causes and Prevention[J]. Journal of Xi'an Aerotechnical College, 2008(3): 12—13.
[8] 趙明杰, 黃亮, 李昌民, 等. 300M鋼的熱變形行為及熱鍛成形工藝研究現(xiàn)狀[J]. 精密成形工程, 2020, 12(6): 16—27.
ZHAO Ming-jie, HUANG Liang, LI Chang-min, et al. Research Status of the Hot Deformation Behaviors and Hot Forging Process of 300M Steel[J]. Journal of Netshape Forming Engineering, 2020, 12(6): 16—27.
[9] 趙潔, 閆洪波, 侯永亮. 基于Deform的三通閥體熱鍛成形工藝優(yōu)化[J]. 熱加工工藝, 2019, 48(21): 96—98.
ZHAO Jie, YAN Hong-bo, HOU Yong-liang. Optimization of Hot Forging Process for Three-Way Valve Body Based on Deform[J]. Hot Working Technology, 2019, 48(21): 96—98.
[10] ZOLOTAREV V, BELYANIN R, PERETYATKO Y, et al. The Optimization of Power Supply Modes of Induction Melting Apparatus with a Total Metal Draining[C]// International Conference on Computational Problems of Electrical Engineering, IEEE, 2015: 49.
[11] 曾德濤, 周杰, 張輝, 等. 某齒輪坯精鍛金屬流動(dòng)規(guī)律分析及工藝優(yōu)化[J]. 熱加工工藝, 2012, 41(5): 84—86.
ZENG De-tao, ZHOU Jie, ZHANG Hui, et al. Metal Flow Analysis of Precision Forging Process and Optimization of Technology for Gear Blank[J]. Casting Forging Welding, 2012, 41(5): 84—86.
[12] 徐吉生. 等徑三通多向模鍛金屬流動(dòng)研究[J]. 鍛壓技術(shù), 2002(4): 11—14.
XU Ji-sheng. Study on Metal Flow in Multi-Ram Forging Process of Equal Diameter Tee Joint[J]. Forging & Stamping Technology, 2002(4): 11—14.
[13] 劉慶斌, 吳詩(shī)炊, 孫勝. 控制金屬流動(dòng)模式的模鍛設(shè)計(jì)新方法及其應(yīng)用[J]. 機(jī)械科學(xué)與技術(shù), 1998(2): 132—133.
LIU Qing-bin, WU Shi-chui, SUN Sheng. A New Forging Approach for Controlling Metal Flow Way and Its Applications[J]. Mechanical Science and Technology, 1998(2): 132—133.
[14] 高錦張, 程慈齡, 曹詩(shī)倬. 模鍛過(guò)程金屬流動(dòng)的數(shù)值模擬[J]. 熱加工工藝, 1989(3): 7—10.
GAO Jin-zhang, CHENG Ci-ling, CAO Shi-zhuo. The Numerical Simulation of the Metal Flow in Drop Forging[J]. Hot Working Technology, 1989(3): 7—10.
Simulation Analysis and Test Verification of Valve Cover Forming
GAO Jian-fei, QIAN Xia-ye, KANG Jia-liang
(CNNC SUFA Technology Industry Co., Ltd., Suzhou 215000, China)
A certain type of stainless steel valve cover is a typical hollow part with long ribs. In the process of die forging, the valve cover forgings are prone to fold and crack defects in different degrees, so it is urgent to improve the forming process to increase the qualified rate. The metal flow law and the forming quality of the final forging were analyzed by finite element method in the whole process of billet/pre-forging/final forging, and the best forming process scheme was obtained. The square billet was easy to produce transverse flow and the local filling was not full in subsequent forming, while the hexagonal billet flowed evenly in pre-forming and final forming and the transverse flow was small and the filling defects could be effectively suppressed. In the meantime, it was found that both billets had folding defects in the short transition zone. The defect-free valve forgings could be obtained by the use of hexagonal billet and increase of transition length. The qualified rate of the valve cover forgings prepared by new process is 100%. Through the analysis on whole process, the metal flow law is obtained to optimize the die forging scheme and effectively improve the forming quality.
valve cover; die forging; forming quality; metal flow; finite element simulation
10.3969/j.issn.1674-6457.2021.06.016
TG31;TH134
A
1674-6457(2021)06-0117-06
2021-02-04
高健飛(1981—),男,工程師,主要研究方向?yàn)椴牧襄懺斐尚巍?/p>