国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

新疆阿克陶縣烏孜別里地區(qū)流紋巖的形成時(shí)代及成因分析

2021-12-30 02:05丘增旺閆慶賀張曉宇
地球化學(xué) 2021年6期
關(guān)鍵詞:流紋巖圖解鋯石

李 沛, 王 核, 普 強(qiáng), 丘增旺, 閆慶賀, 董 瑞, 張曉宇

新疆阿克陶縣烏孜別里地區(qū)流紋巖的形成時(shí)代及成因分析

李 沛1,2, 王 核1*, 普 強(qiáng)3, 丘增旺1,2, 閆慶賀1,2, 董 瑞1,2, 張曉宇1,2

(1. 中國科學(xué)院 廣州地球化學(xué)研究所 礦物學(xué)與成礦學(xué)重點(diǎn)實(shí)驗(yàn)室, 廣東 廣州 510640; 2. 中國科學(xué)院大學(xué), 北京 100049; 3. 河北省地礦局第五地質(zhì)大隊(duì), 河北 唐山 063000)

西昆侖烏孜別里山口南側(cè)一帶火山巖地層的時(shí)代歸屬一直存有爭(zhēng)議。該套地層雖普遍發(fā)育以流紋巖為主的火山巖系, 但尚未有人對(duì)其開展系統(tǒng)的年代學(xué)與地球化學(xué)研究。本次研究對(duì)該套地層中的流紋巖進(jìn)行元素地球化學(xué)、鋯石U-Pb定年及Hf同位素的研究。流紋巖激光剝蝕電感耦合等離子體質(zhì)譜(LA-ICP-MS)鋯石U-Pb年齡為(521.0±2.8) Ma, 表明其形成于早寒武世。流紋巖具有高硅富堿的特點(diǎn), 為過鋁質(zhì)、高鉀鈣堿性系列, 巖石明顯富集大離子親石元素(Rb、K)、輕稀土元素和不相容元素U, 相對(duì)虧損重稀土元素、高場(chǎng)強(qiáng)元素(P、Ti), 具有中等 Eu負(fù)異常, 流紋巖具有高分異S型花崗巖的特征。鋯石Hf同位素初始比值Hf ()變化范圍在?0.9~4.1之間, 主要為正值, 兩階段Hf模式年齡(DM2)介于1533~1229 Ma之間, 顯示烏孜別里地區(qū)流紋巖為中元古代新生地殼物質(zhì)重熔形成的巖漿, 經(jīng)較高程度的分異演化而成。結(jié)合前人研究成果, 推斷研究區(qū)流紋巖形成于原特提斯洋俯沖背景下巖漿弧構(gòu)造環(huán)境。

早寒武世; 鋯石U-Pb年齡; Hf同位素; 地球化學(xué); 流紋巖; 木吉金礦

0 引 言

西昆侖阿克陶縣烏孜別里山口南側(cè)一帶火山巖地層的時(shí)代歸屬一直存有爭(zhēng)議。新疆維吾爾自治區(qū)地質(zhì)礦產(chǎn)勘查開發(fā)局區(qū)域地質(zhì)測(cè)量大隊(duì)[1]將其劃歸于中上石炭統(tǒng)奈扎塔什群; 新疆維吾爾自治區(qū)地質(zhì)礦產(chǎn)勘查開發(fā)局第二地質(zhì)大隊(duì)[2]將其時(shí)代劃歸于奧陶-志留系; 新疆區(qū)域地質(zhì)志[3]將其劃歸志留系; 河南省地質(zhì)調(diào)查院[4]將其劃分至下石炭-上二疊統(tǒng)哈拉米蘭河群; 陜西省地質(zhì)調(diào)查院[5]將其重新厘定至恰提爾群, 時(shí)代劃歸石炭-二疊紀(jì); 新疆維吾爾自治區(qū)地質(zhì)礦產(chǎn)局通過“新疆木吉破碎蝕變巖型金礦成礦規(guī)律及資源量定量預(yù)測(cè)工作”[6]將其劃歸至上石炭統(tǒng)奈扎塔什群; 西安地質(zhì)礦產(chǎn)研究所[7]將其劃分至下石炭-上二疊統(tǒng)恰提爾群。但值得注意的是, 因?yàn)楣ぷ鲄^(qū)環(huán)境的嚴(yán)苛性, 尚沒有確鑿的年代數(shù)據(jù)來佐證。關(guān)于地層時(shí)代歸屬的劃分, 主要依據(jù)是區(qū)域上巖石性質(zhì)的類比。本次研究擬對(duì)采集于烏孜別里地區(qū)火山巖地層中流紋巖的地球化學(xué)數(shù)據(jù)進(jìn)行分析, 精確測(cè)定其所在地層的時(shí)代, 同時(shí)對(duì)其成因及構(gòu)造環(huán)境作初步探討。

1 地質(zhì)背景

烏孜別里山口南側(cè)一帶火山巖距新疆阿克陶縣木吉鄉(xiāng)約70 km, 位于木吉金礦區(qū)內(nèi)南部, 與塔吉克斯坦相鄰。大地構(gòu)造位置位于印度板塊與歐亞板塊碰撞帶的前緣區(qū)附近, 是古亞洲洋和特提斯構(gòu)造域的結(jié)合部位, 具有演化歷史漫長, 構(gòu)造復(fù)雜的特點(diǎn)[8–10]。經(jīng)歷了古生代和中生代的多期造山運(yùn)動(dòng), 以及新生代的印度板塊向歐亞板塊碰撞引起的遠(yuǎn)程構(gòu)造效應(yīng), 該地區(qū)產(chǎn)生強(qiáng)烈的地殼縮短和隆升, 形成了如今向北突出的弧形造山帶——帕米爾構(gòu)造結(jié), 見圖1a。帕米爾構(gòu)造結(jié)東部被右旋走滑喀喇昆侖斷裂(KKF)切斷, 北部以主帕米爾逆斷層帶(MPT)為界與阿萊盆地相鄰[11–12], 根據(jù)帕米爾地區(qū)蛇綠巖帶的分布特點(diǎn), 結(jié)合區(qū)域地質(zhì)構(gòu)造演化規(guī)律, 前人提出以Akbaytal-Tanymas縫合帶和Rushan-Pshart縫合帶為界, 將其劃分為北帕米爾、中帕米爾和南帕米爾[13–15]。河北省第五地質(zhì)大隊(duì)[16]將研究區(qū)大地構(gòu)造分區(qū)劃歸于塔什庫爾干-甜水海地塊, 與中帕米爾相接[17]。塔什庫爾干-甜水海地塊和西昆侖地體以麻扎-康西瓦縫合帶為界。一般認(rèn)為麻扎-康西瓦縫合帶經(jīng)慕士塔格峰西側(cè)的江托克鐵熱克達(dá)坂[18], 延伸到塔吉克斯坦, 再出現(xiàn)在我國的烏孜別里山口[3]。部分學(xué)者認(rèn)為麻扎-康西瓦縫合帶往北與木扎靈-空貝利斷裂相連, 通過烏孜別里山口延到國外[19]。

該區(qū)構(gòu)造極為發(fā)育, 其中烏孜別里山口-博多布拉克斷裂(F6) (圖1b)為調(diào)查區(qū)內(nèi)主要的邊界斷裂, 總體走向NWW–近EW向, 波狀彎曲, 向西在烏孜別里山口南側(cè)一帶延出國外, 向東在恰普吐孜敦別力山口南一帶延出國外。斷層主斷面較難辨認(rèn), 但其主體位于一系列山脊的鞍部, 局部見陡坎、陡壁, 主斷面向北傾, 傾向8°~20°, 傾角在70°以上, 具有多期活動(dòng)的特點(diǎn)。在斷裂帶及北側(cè)有一系列大致平行斷裂的石英脈形成, 石英脈具碎裂和蝕變現(xiàn)象, 發(fā)育有硅化、褐鐵礦化、孔雀石化和藍(lán)銅礦化為主, 石英脈中含明金, 研究區(qū)內(nèi)最具代表性的例子就是闊克吉勒嘎金礦床。木吉金礦區(qū)是目前西昆侖發(fā)現(xiàn)的規(guī)模最大的金礦富集區(qū)。闊克吉勒嘎金礦床則是木吉金礦區(qū)內(nèi)最大的巖金礦床。該礦床已發(fā)現(xiàn)的21處金礦體均產(chǎn)于蝕變破碎帶中。

研究區(qū)地層露頭較差, 巖石風(fēng)化、片理化比較嚴(yán)重。主要出露地層為: 下寒武統(tǒng)(?1)、下志留統(tǒng)溫泉溝群(S1w)、上白堊統(tǒng)鐵龍灘群(K2t)以及第四系(Q)。

下寒武統(tǒng)(?1): 調(diào)查區(qū)該套地層爭(zhēng)議頗多, 時(shí)代歸屬混亂且證據(jù)嚴(yán)重不足, 河北省第五地質(zhì)大隊(duì)[16]最終將其定為下石炭~上二疊統(tǒng)恰提爾群(C1~P2q), 與陜西省地質(zhì)調(diào)查院報(bào)告[5]一致。但根據(jù)本人最新的研究發(fā)現(xiàn), 其時(shí)代歸屬應(yīng)為早寒武世, 具體劃分為哪個(gè)群組, 尚待討論。該套地層主要分布在克則勒治業(yè)克溝~烏孜別里山口南側(cè), 北以烏孜別里-博多布拉克斷裂(F6)為界, 與下志留統(tǒng)溫泉溝群(S1w) 呈斷層接觸, 向東、向南和向西延出國境, 整體呈NWW向帶狀展布。該套地層由南至北可劃分為兩個(gè)巖性段。第一巖性段巖石組合主要以海相火山巖為主, 其中多見流紋巖, 偶見英安巖、安山巖、玄武安山巖和玄武巖夾層。局部巖石有一定程度的變質(zhì), 變質(zhì)礦物以絹云母、綠泥石為主。第二巖性段主要巖性為大理巖、片理化結(jié)晶灰?guī)r和硅化灰?guī)r等, 見有少量的二云母石英千枚巖, 巖性組合較為簡(jiǎn)單, 主要為一套碳酸鹽夾碎屑巖組合。下志留統(tǒng)溫泉溝群(S1w)在研究區(qū)內(nèi)分布最廣, 整體呈近EW向帶狀展布, 為一套低綠片巖相的淺變質(zhì)巖和碳酸鹽巖互層?;鶐r露頭差, 風(fēng)化嚴(yán)重, 具有強(qiáng)變形弱變質(zhì)的特點(diǎn), 面理、片理化發(fā)育, 整體產(chǎn)狀數(shù)據(jù)絕大多數(shù)集中在20°~40°∠40°~60°范圍內(nèi)。

上白堊統(tǒng)鐵龍灘群(K2t)在區(qū)內(nèi)分布范圍有限, 主要出露于克則勒治業(yè)克溝-烏孜別里山口的北側(cè), 瓊巴額什溝北側(cè)的玉衣提克特一帶有部分出露, 均呈近EW向帶狀展布。由于受后期構(gòu)造改造影響及風(fēng)化剝蝕, 多數(shù)地段呈“斑禿”狀零散的孤包不整合于下志留統(tǒng)溫泉溝群之上, 厚度及規(guī)模較小。該群巖性以灰?guī)r、石英巖和凝灰?guī)r為主, 自下而上具有由細(xì)到粗的粒序特征。

研究區(qū)內(nèi)的第四系(Q)沖洪積物主要分布于海拔相對(duì)較低的寬闊河谷中, 多以礫石、砂和砂土等為主, 礫石以棱角-次棱角狀為主, 夾雜大量泥沙質(zhì)。

2 巖相學(xué)特征

本次研究選取的5件流紋巖樣品采集地點(diǎn)為38°35′02″N、73°54′35″E, 見圖1b。樣品整體較為新鮮, 野外露頭呈淺肉紅色, 具斑狀結(jié)構(gòu), 塊狀構(gòu)造、流紋構(gòu)造(圖2a、圖2b)。巖石由斑晶、基質(zhì)組成。斑晶主要由鉀長石(5%~15%)、石英(5%~10%)構(gòu)成。鉀長石半自形-自形, 板狀為主, 發(fā)育卡斯巴雙晶, 0.2~3.0 mm, 零散定向分布; 石英呈半自形粒狀, 粒徑0.1~1.0 mm, 可見波狀消光(圖2d)?;|(zhì)由長英質(zhì)及少量蝕變礦物構(gòu)成。長英質(zhì)部分具隱晶-微晶結(jié)構(gòu), 部分具球粒結(jié)構(gòu), 兩部分各自呈條紋狀相間流狀分布構(gòu)成流紋構(gòu)造, 具輕微高嶺土化。蝕變礦物為絹云母, 顯微鱗片狀, 直徑小于0.05 mm, 集合體主呈線紋狀、條紋狀等零散定向分布。

圖1 研究區(qū)地質(zhì)背景圖

(a) 西昆侖-帕米爾大地構(gòu)造略圖; (b) 木吉金礦區(qū)地層分布圖。1?下寒武統(tǒng); 2?下志留統(tǒng)溫泉溝群; 3?上白堊統(tǒng)鐵龍灘群; 4?第四系; 5?薩雷闊勒嶺; 6?地層界線; 7?實(shí)測(cè)斷層; 8?推測(cè)斷層; 9?闊克吉勒嘎巖金礦; 10?采樣位置; ATS?Akbaytal-Tanymas縫合帶; KKF?喀喇昆侖斷裂; MPT?主帕米爾逆沖斷層; RPS?Rushan-Pshart縫合帶。

圖2 研究區(qū)流紋巖的野外及鏡下顯微照片

Kfs?鉀長石; Qtz?石英。

3 分析測(cè)試方法

樣品的破碎和鋯石分選由河北省廊坊市誠信地質(zhì)服務(wù)有限公司完成。樣品制靶和鋯石陰極發(fā)光(CL)圖像由重慶宇勁科技有限公司完成。鋯石U-Pb年齡測(cè)定在中國科學(xué)院廣州地球化學(xué)研究所礦物學(xué)與成礦學(xué)重點(diǎn)實(shí)驗(yàn)室完成。Hf同位素及全巖主元素、微量元素分析測(cè)試在中國科學(xué)院廣州地球化學(xué)研究所同位素地球化學(xué)國家重點(diǎn)實(shí)驗(yàn)室完成。

3.1 LA-ICP-MS鋯石U-Pb定年分析測(cè)試方法

樣品破碎后制成約80目(0.177 mm)粉末, 用清水淘洗, 得到的重砂部分, 再經(jīng)過電磁選分離出鋯石, 在雙目鏡下挑選出晶形完整、無裂隙和透明度好的鋯石, 粘于環(huán)氧樹脂表面, 固化后打磨拋光至露出一個(gè)光潔平面, 然后進(jìn)行透反射和陰極發(fā)光(CL)照像, 結(jié)合這些圖像選擇適宜的點(diǎn)位進(jìn)行測(cè)試。鋯石的原位U-Pb定年和微量元素分析利用激光剝蝕電感耦合等離子體質(zhì)譜(LA-ICP-MS)完成。儀器采用美國Resonetics公司生產(chǎn)的RESOlution M-50激光剝蝕系統(tǒng)和Agilent 7500a型電感耦合等離子體質(zhì)譜儀(ICP-MS)聯(lián)機(jī)。實(shí)驗(yàn)采用標(biāo)準(zhǔn)鋯石TEMORA[20]作為測(cè)年外標(biāo), 激光剝蝕直徑為30 μm, 頻率為8 Hz,具體實(shí)驗(yàn)分析方法詳見涂湘林等[21]。數(shù)據(jù)處理使用軟件ICPMSDataCal 10.1[22]。鋯石諧和年齡圖繪制和年齡計(jì)算采用軟件Isoplot3.0[23]。

3.2 巖石主元素、微量元素分析測(cè)試方法

將樣品無污染粉碎至200目(0.075 mm)用于地球化學(xué)分析測(cè)試。主元素使用Rigaku ZSX100e型 XRF進(jìn)行分析, 精度優(yōu)于5%, 微量元素使用Perkin- Elmer Sciex ELAN DRC-e型ICP-MS進(jìn)行分析, 分析精度優(yōu)于5%, 具體分析方法和過程參照梁細(xì)榮等[24]和李獻(xiàn)華等[25]。

3.3 鋯石Hf同位素分析測(cè)試方法

鋯石Hf同位素原位分析, 使用儀器為美國resonetic公司生產(chǎn)的Neptune Plus型多接收等離子質(zhì)譜儀(MC-ICP-MS), 激光剝蝕系統(tǒng)為RESOlution M-50, 詳細(xì)激光剝蝕參數(shù)如下: 分析時(shí)激光剝蝕直徑為45 μm, 頻率為8 Hz, 激光輸出能量為80 mJ/cm2, 采用He和少量N2作為氣體介質(zhì)。測(cè)試過程采用蓬萊鋯石作為標(biāo)樣[26], 數(shù)據(jù)標(biāo)準(zhǔn)化根據(jù)179Hf/177Hf= 0.7325, 質(zhì)量歧視校正用指數(shù)法則進(jìn)行, Yb和Lu的干擾校正取176Lu/175Lu=0.02655[27]和176Yb/172Yb=0.5887, 而Yb分餾校正則根據(jù)172Yb/173Yb=1.35272用指數(shù)法則進(jìn)行[28]。Hf的計(jì)算采用176Lu衰變常數(shù)[29]1.867× 10?11a?1。Hf()和Hf模式年齡計(jì)算中采用的球粒隕石和虧損地幔的176Hf/177Hf比值分別為0.282772[30]和0.28325[31], 二階段模式年齡計(jì)算中采用平均地殼cc=?0.55[31]。

4 測(cè)試結(jié)果

4.1 LA-ICP-MS鋯石U-Pb定年

本次研究對(duì)木吉金礦區(qū)西南部火山巖系的流紋巖樣品進(jìn)行了鋯石U-Pb定年分析, 結(jié)果見表1。

流紋巖樣品中鋯石晶型較好, 多呈短柱狀, 晶體長度一般為60~100 μm, 長寬比集中于1.5∶1~2∶1之間。陰極發(fā)光圖像(圖3a)顯示, 大部分鋯石晶型較完整, 具有清晰的巖漿韻律環(huán)帶, 顯示巖漿成因特征[32]。流紋巖中鋯石的U、Th含量分別為200~455 μg/g和85.4~346 μg/g, 也顯示出巖漿鋯石的特點(diǎn)[33–34]。

本次研究共選擇了25個(gè)點(diǎn)進(jìn)行測(cè)試, 其中第23號(hào)點(diǎn)由于Pb丟失導(dǎo)致測(cè)試數(shù)據(jù)異常故已刪去, 其余測(cè)點(diǎn)的206Pb/238U年齡變化于(513.5±7.15)~(528.8± 8.75) Ma之間, 加權(quán)平均年齡為(521.0±2.8) Ma, MSWD=0.24, 見圖3b。

表1 烏孜別里地區(qū)流紋巖LA-ICP-MS鋯石U-Pb測(cè)試結(jié)果

圖3 烏孜別里地區(qū)流紋巖中代表性鋯石的陰極發(fā)光圖像(CL)、分析點(diǎn)位、年齡及εHf(t)值(a, 實(shí)線圓圈和虛線圓圈分別代表鋯石U-Pb、Hf同位素分析點(diǎn)位置)和鋯石U-Pb年齡諧和圖(b)

4.2 巖石地球化學(xué)特征

4.2.1 主元素特征

木吉金礦區(qū)5個(gè)流紋巖樣品的地球化學(xué)分析結(jié)果見表2。流紋巖的SiO2含量在71.3%~79.3%之間, 平均含量為74.5%; Na2O含量主要介于0.07%~ 0.81%之間, K2O含量為5.9%~10.6%, K2O/Na2O比值大于2.49, 具有明顯的富鉀低鈉特征; 5件樣品的里特曼指數(shù)介于0.99~4.11之間, 平均值為2.77, 總體顯示鈣堿性, L3B-6-2和L3G-7兩件樣品的K2O+ Na2O雖然都大于10%, 但并非堿性流紋巖(圖4), 鏡下也未看到有堿性暗色礦物的存在; Al2O3含量在9.18%~13.4%之間, 平均含量為11.7%, 鋁飽和指數(shù)(A/CNK)為0.99~1.33; CaO含量在0.17%~2.04%之間, 平均含量為0.81%, Fe2O3含量為1.06%~2.34%, 平均含量為1.74%; MgO含量為0.13%~1.51%, 平均含量為0.52%, 與流紋巖Mg、Fe和Ca組分較低的規(guī)律一致, 低TiO2(0.12%~0.46%)。此外, 巖石還表現(xiàn)出低P2O5(0.00%~0.06%)、MnO (0.06%~0.09%)的特征。在火山巖TAS分類命名圖解(圖5a)中, 5件樣品均落在流紋巖范圍內(nèi); 在A/NK-A/CNK圖解中(圖5b), 樣品點(diǎn)主要落在過鋁質(zhì)范圍內(nèi), 總體表現(xiàn)為過鋁質(zhì)特征。

4.2.2 微量元素特征

木吉金礦區(qū)西南部流紋巖5件樣品稀土元素總量∑REE主要介于53.8~106 μg/g之間, 輕稀土元素(∑LREE)介于43.2~81.8 μg/g之間, 重稀土元素(∑HREE)介于10.6~27.6 μg/g之間, ∑LREE/∑HREE比值介于3.42~4.53之間, 顯示輕稀土元素相對(duì)于重稀土元素有一定程度的富集; 分餾系數(shù)(La/Yb)N介于2.37~3.20之間, 輕、重稀土分餾作用比較明顯, 中等負(fù)Eu異常(Eu=0.35~0.64)。原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(見圖6b)顯示, 巖石富集大離子親石元素(Rb、K)、輕稀土元素和不相容元素U, 相對(duì)虧損重稀土元素、高場(chǎng)強(qiáng)元素(P、Ti)。

4.3 鋯石Hf同位素特征

流紋巖鋯石原位Hf同位素分析結(jié)果見表3, Hf同位素演化圖解如圖7所示。樣品鋯石的176Lu/177Hf比值變化范圍為0.001375818~0.00313943, 平均值為0.001895949, 所有鋯石的176Lu/177Hf比值都小于0.004, 表明鋯石在形成后基本上沒有放射性成因Hf的積累, 所測(cè)定的176Lu/177Hf比值能代表其形成時(shí)體系的Hf同位素組成[39]。分析結(jié)果顯示, 鋯石176Hf/177Hf比值變化范圍為0.282446~0.282571, 平均值為0.282502。鋯石Hf同位素初始比值Hf()變化范圍在?0.9~4.1之間, 主要為正值; 單階段Hf模式年齡(DM1)介于970~1175 Ma之間; 兩階段Hf模式年齡(DM2)介于1533~1229 Ma之間。

5 討 論

5.1 成巖年齡

關(guān)于木吉金礦區(qū)南部火山巖地層時(shí)代歸屬問題, 爭(zhēng)論由來已久。由于研究區(qū)所處地理位置的特殊性(這其中既包括高海拔的環(huán)境因素, 也包括我國與鄰國邊界問題的限制因素), 該區(qū)域一直未有科研工作者進(jìn)行系統(tǒng)性的科學(xué)考察研究, 最終導(dǎo)致地層時(shí)代歸屬的劃分依靠的僅僅是區(qū)域上巖石性質(zhì)的對(duì)比。本次研究獲得的LA-ICP-MS鋯石U-Pb年齡對(duì)該區(qū)域地層時(shí)代提供了重要約束, 表明其形成于早寒武世。

表2 烏孜別里地區(qū)流紋巖主量元素(%)和微量元素(μg/g)分析結(jié)果

圖4 烏孜別里地區(qū)流紋巖SiO2-Zr/TiO2圖解(底圖據(jù)Winchester et al. [35])

Fig.4 SiO2-Zr/TiO2 diagram (after Winchester et al.[35]) of rhyolites from the Wuzibieli area

5.2 巖石成因類型

目前, 花崗巖成因分類主要根據(jù)其源區(qū)和地球化學(xué)成分的不同分為S型、I型、M型和A型4種基本類型[40–41]。自然界中真正由地幔巖漿衍生的M型花崗巖極少, 主要成因類型為I型、S型和A型。判斷和區(qū)分I型、S型和A型花崗巖的重要礦物學(xué)標(biāo)志是角閃石、堇青石和堿性暗色礦物[42–43], 但由于研究區(qū)流紋巖缺乏以上標(biāo)志性礦物, 因此難以從礦物學(xué)上劃分成因類型。本次研究主要從地球化學(xué)特征方面來區(qū)別。

研究區(qū)流紋巖富硅、富鉀和貧磷的特點(diǎn), 雖顯示出A型花崗巖的特征, 但104×Ga/Al比值(104×Ga/ Al=1.39~2.39)小于2.6, 偏低的Zr、Nb、Ce和Y含量(Zr+Nb+Ce+Y=254~499 μg/g)、TiO2含量和鋯石結(jié)晶溫度(809~848 ℃)[44], 又不同于典型的A型花崗巖[43,45,46]。前述元素地球化學(xué)特征顯示, 本次所研究的流紋巖具有過鋁質(zhì)特征, Eu中等負(fù)異常,Eu平均值為0.5, Na含量較低等特征明顯不同于I型花崗巖。巖石樣品具有高Si, 富堿, 低CaO、TiO2和P2O5的特征, 表明巖漿可能經(jīng)歷了一定程度的分異演化; 中等負(fù)Eu異常(Eu=0.35~0.64)和Sr的虧損, 暗示巖漿在演化的過程中發(fā)生了斜長石的分離結(jié)晶作用或源區(qū)有斜長石的殘留; 分異指數(shù)D>85.8(范圍在85.8~91.8之間, 均值為89.0), 表明巖漿在離開源區(qū)的過程中經(jīng)歷了較高程度的結(jié)晶分異作用。在 Fe2O3T/MgO-(Zr+Nb+Ce+Y)和(K2O+Na2O)/CaO- (Zr+Nb+Ce+Y)的判別圖解中(圖8), 分析樣品基本落入分異的長英質(zhì)花崗巖及A型花崗巖區(qū)域內(nèi)。通常情況下, A型花崗巖都沒有顯示強(qiáng)烈分異的證據(jù), 而高分異的長英質(zhì)I&S型花崗巖又可以具有與典型A型花崗巖部分一致的某些主元素和微量元素值[47], 據(jù)此判斷其為高分異的花崗巖。Rb/Sr比值可以有效反映源區(qū)物質(zhì)的性質(zhì), Rb/Sr>0.9為S型花崗巖, Rb/Sr<0.9為I型花崗巖[48], 5件樣品的Rb/Sr比值介于1.65~8.95之間, 均大于0.9, 顯示出S型花崗巖的特征。在SiO2-Zr和ACF圖解中(圖9), 樣品幾乎全部落入S型花崗巖區(qū)域內(nèi)。綜上所述, 本次研究認(rèn)為研究區(qū)流紋巖應(yīng)為高分異S型花崗巖。

圖5 烏孜別里地區(qū)流紋巖TAS分類圖(a, TAS底圖據(jù)Le Bas et al. [36])和A/CNK-A/NK圖(b, 底圖據(jù)Maniar et al.[37])

Q?石英; Ol?橄欖石。

圖6 球粒隕石標(biāo)準(zhǔn)化稀土元素分布模式圖(a)和原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(b) (標(biāo)準(zhǔn)化值據(jù)Sun et al.[38])

表3 烏孜別里地區(qū)流紋巖鋯石Hf同位素分析結(jié)果

圖7 烏孜別里地區(qū)流紋巖εHf(t)-t圖解(a)和tDM2頻率分布直方圖(b)

圖8 烏孜別里地區(qū)流紋巖地球化學(xué)分類圖解(底圖據(jù)Whalen et al.[45])

FG–分異的長英質(zhì)花崗巖; OGT–未分異的M型、I型和S型花崗巖。

圖9 烏孜別里地區(qū)流紋巖SiO2-Zr圖解(a, 底圖據(jù)Whalen et al. [45])和ACF圖解(b, 底圖據(jù)Chappell et al. [49])

5.3 巖漿源區(qū)演化

研究區(qū)流紋巖樣品輕、重稀土元素分異較弱((La/Yb)N主要介于2.37~3.20之間), 重稀土平坦, 指示巖漿源區(qū)部分熔融殘留相主要礦物組成是角閃石而非石榴石; Eu、Sr和Ba負(fù)異常指示斜長石在巖漿源區(qū)穩(wěn)定, 或者巖漿演化過程中有斜長石的結(jié)晶分異[50]; 無明顯的Nb-Ta負(fù)異常, 指示源區(qū)部分熔融殘留中無金紅石。這些特征均表明該流紋巖是經(jīng)歷較高程度的分異演化形成。流紋巖的物質(zhì)來源比較復(fù)雜, 主要有3種認(rèn)識(shí): ①地殼物質(zhì)受幔源巖漿底侵發(fā)生部分熔融形成[51–53]; ②幔源玄武質(zhì)巖漿經(jīng)分離結(jié)晶作用形成[44,54,55]; ③殼幔巖漿混合形成[56–58]。

通常情況下, 流紋巖并不能由幔源巖漿直接分異形成, 幔源玄武質(zhì)巖漿結(jié)晶分異一般形成的是安山質(zhì)巖石[59]。鋯石因具有極低的Lu/Hf比值及其穩(wěn)定性而成為目前探討巖漿起源與演化、示蹤巖石源區(qū)及殼幔相互作用的重要工具[30,60,61]。研究區(qū)流紋巖的鋯石Hf同位素組成變化范圍較小, 顯示其在組成上的較均一性, 反映了巖石形成時(shí)的物源特征, 可以排除地幔物質(zhì)的混入。通常鋯石Hf同位素模式年齡代表原巖物質(zhì)從虧損地幔分異的時(shí)代, 鋯石Hf()>0指示其來源于新生地殼的熔融[60,62], 而Hf()<0則表明其來源于古老地殼的再循環(huán)[60]。本次研究測(cè)得流紋巖的Hf()= ?0.9~4.1, 主要為正值, 二階段模式年齡(DM2)介于1533~1229 Ma之間(圖7b)。在Hf()和年齡圖解中(圖7a), 數(shù)據(jù)點(diǎn)主要落于球粒隕石Hf同位素演化線上, 代表其原巖來自新生地殼的重熔, 從其二階段模式年齡可知, 可推測(cè)該區(qū)在1.23~1.53 Ga期間有新生地殼的增長。

該流紋巖的Nb/Ta比值(11.7~13.3), 均值為12.3, 與大陸地殼中的(Nb/Ta≈11)[63–64]非常接近, 且明顯低于幔源巖漿的Nb/Ta比值(17.5±2.0)[65–66], 說明流紋巖源區(qū)受地殼組分的影響比較大。Th/Ce比值(0.13~0.81, 均值為0.5)和Th/U比值(3.38~8.10, 均值為4.95)與大陸地殼(Th/Ce≥0.2[67]; Th/U=6[68])非常接近, 說明該組流紋巖可能是殼源物質(zhì)部分熔融的產(chǎn)物。流紋巖中Rb/Sr比值為1.65~8.95(平均為5.29)、Rb/Nb比值為8.49~17.9(平均為13.8), 均高于全球上地殼的平均值(0.32和4.5)[69], 表明其巖漿源區(qū)主要為殼源巖漿。在Eu-(La/Yb)N圖解上(圖10), 樣品均落在殼源型花崗巖范圍內(nèi), 證明該流紋巖為殼源物質(zhì)熔融的產(chǎn)物。

圖10 烏孜別里地區(qū)流紋巖δEu-(La/Yb)N圖解(底圖據(jù)文獻(xiàn)[70])

綜上所述, 本次研究認(rèn)為烏孜別里地區(qū)流紋巖為中元古代新生地殼重熔形成的巖漿, 經(jīng)較高程度的分異演化而成。

5.4 成巖構(gòu)造環(huán)境

近年來, 塔什庫爾干-水海地塊地質(zhì)調(diào)查研究表明, 區(qū)域上發(fā)育一系列的寒武紀(jì)巖漿作用記錄, 如大量的花崗巖類、基性巖墻和雙峰式火山巖等[71–82], 揭示了西昆侖造山帶在早古生代的構(gòu)造演化背景主要有以下4種模式: 原特提斯洋俯沖背景島弧環(huán)境[71–74]、原特提斯洋俯沖背景下巖漿弧構(gòu)造環(huán)境[75–76]、伸展構(gòu)造背景下陸內(nèi)裂谷環(huán)境[72,73,77–79]以及被動(dòng)陸緣構(gòu)造環(huán)境[83–86]。

一般S型花崗巖被認(rèn)為是在同碰撞或者后碰撞構(gòu)造背景下形成的, 研究區(qū)流紋巖在(Y+Nb)-Rb圖解(圖11b)上雖都落入后碰撞構(gòu)造區(qū)域, 但在Rb/30-Hf-3Ta圖解(圖11a)中則顯示出火山弧的特征。前人研究表明, 在火山弧環(huán)境下, 由于地殼的加厚能夠產(chǎn)生S型花崗巖: 沉積巖通常在洋殼低角度俯沖的過程中能夠被深埋, 然后由于洋殼俯沖向高角度轉(zhuǎn)換, 俯沖帶之上出現(xiàn)伸展的環(huán)境, 沉積巖部分熔融產(chǎn)生S型花崗巖漿[87]。研究區(qū)流紋巖富集輕稀土, 虧損高場(chǎng)強(qiáng)元素, 在稀土元素和微量元素圖解方面顯示出較為典型的島弧花崗巖特征, 在(Y)-(Zr)圖解中(圖12a), 樣品均落在弧巖漿巖區(qū)域, 暗示其與火山弧花崗巖具有親緣性。另有研究表明, 活動(dòng)大陸邊緣的巖漿巖Th/Ta比值較高(16~20)[88],而該流紋巖Th/Ta比值為15.1~19.8, 在Th/Ta-(Yb)圖解中(圖12b), 樣品均落在活動(dòng)大陸邊緣區(qū)域。綜上所述, 推斷研究區(qū)流紋巖在早寒武世的形成背景為原特提斯洋俯沖背景下巖漿弧構(gòu)造環(huán)境。

圖11 烏孜別里地區(qū)流紋巖Rb/30-Hf-3Ta圖解(a, 底圖據(jù)Harris et al. [89])和(Y+Nb)-Rb圖解(b, 底圖據(jù)Pearce[90])

圖12 烏孜別里地區(qū)流紋巖w(Y)-w(Zr)圖解(a)和Th/Ta-w(Yb)圖解(b)(底圖據(jù)Gorton et al.[91])

6 結(jié) 論

(1) 烏孜別里地區(qū)流紋巖成巖年齡為(521.0± 2.8) Ma, 表明它形成于早寒武世, 而非晚石炭-早二疊時(shí)期的產(chǎn)物。

(2) 烏孜別里地區(qū)流紋巖具有高硅富堿特點(diǎn), 屬于過鋁質(zhì)高鉀鈣堿性系列。巖石明顯富集大離子親石元素(Rb、K)、輕稀土元素和不相容元素U, 相對(duì)虧損重稀土元素、高場(chǎng)強(qiáng)元素(P、Ti), 具有中等 Eu負(fù)異常, 屬于高分異S型花崗巖。

(3) 烏孜別里地區(qū)流紋巖由中元古代新生地殼重熔形成的巖漿經(jīng)較高程度的分異演化而成。

(4) 結(jié)合前人研究, 推斷研究區(qū)流紋巖形成于原特提斯洋俯沖背景下巖漿弧構(gòu)造環(huán)境。

本文撰寫過程中, 中國科學(xué)院廣州地球化學(xué)研究所的包志偉研究員、河海大學(xué)的張傳林教授給予了熱忱的幫助并提出了寶貴的修改意見, 在此表示誠摯的謝意!

[1] 新疆地礦局區(qū)域地質(zhì)測(cè)量大隊(duì)二分隊(duì). 1∶100萬西昆侖地區(qū)木吉–塔什庫爾干一帶地質(zhì)、礦產(chǎn)調(diào)查報(bào)告[R]. 烏魯木齊: 新疆地礦局區(qū)域地質(zhì)測(cè)量大隊(duì), 1967.

The Second Unit of Regional Geological Survey Company of Xinjiang Geology and Mineral Bureau. Geological and Mineral Investigation Reports in the areas of Muji–Tashikuergan of West Kunlun (Scale 1∶1000000) [R]. Urumqi: Regional Geological Survey Company of Xinjiang Geology and Mineral Bureau, 1967 (in Chinese).

[2] 汪玉珍. 1∶50萬新疆南疆西部地質(zhì)圖、礦產(chǎn)圖說明書[R]. 烏魯木齊: 新疆地礦局第二地質(zhì)大隊(duì), 1985.

Wang Yu-Zhen. Description of Geological Maps and Mineral Maps of Western South Xinjiang (Scale 1∶500000) [R]. Urumqi: The Second Geology Company of Xinjiang Geology and Mineral Bureau, 1985 (in Chinese).

[3] 新疆維吾爾自治區(qū)地質(zhì)礦產(chǎn)局. 新疆維吾爾自治區(qū)區(qū)域地質(zhì)志[M]. 北京: 地質(zhì)出版社, 1993: 1–780.

Bureau of Geology and Mineral Resources of Xinjiang. The Regional Geology of Xinjiang[M]. Beijing: Geological Publishing House, 1993: 1–780 (in Chinese).

[4] 盧書煒, 杜鳳軍, 任建德. 中華人民共和國區(qū)域地質(zhì)調(diào)查報(bào)告(艾提開爾丁薩依、英吉沙縣幅, 1∶250000)[R]. 北京: 中國地質(zhì)大學(xué)出版社, 2005: 1–287.

Lu Shu-wei, Du Feng-jun, Ren Jian-de. The Regional Geology of Aitikaierdingsayi and Yingjisha (Scale 1: 250000) of The People’s Republic of China [R]. Beijing: China University of Geosciences Press. 2005: 1–287 (in Chinese).

[5] 陜西省地質(zhì)調(diào)查院. 木吉西南一帶1∶5萬區(qū)域礦產(chǎn)地質(zhì)調(diào)查報(bào)告[R]. 西安: 陜西省地質(zhì)調(diào)查院, 2009.

Shaanxi Institute of Geological Survey. The Regional Geology of Southwest of Muji (Scale 1∶50000) [R]. Xi’an: Shaanxi Institute of Geological Survey. 2009 (in Chinese).

[6] 新疆維吾爾自治區(qū)地質(zhì)礦產(chǎn)勘查開發(fā)局. 新疆木吉破碎蝕變巖型金礦成礦規(guī)律及資源量定量預(yù)測(cè)工作[R]. 烏魯木齊: 新疆維吾爾自治區(qū)地質(zhì)礦產(chǎn)勘查開發(fā)局, 2010.

Xinjiang Bureau of Geo-exploration and Mineral Development. Metallogenic Regularity and Quantitative Prediction of Resources of the Fractured Altered Gold Deposits in Muji, Xinjiang[R]. Urumqi: Xinjiang Bureau of Geo-exploration and Mineral Development. 2010 (in Chinese).

[7] 閆明江, 張廣輝, 徐衛(wèi)東. 青藏高原北部空白區(qū)基礎(chǔ)地質(zhì)綜合研究[J]. 西北地質(zhì), 2005: 110.

Yan Ming-jiang, Zhang Guang-hui, Xu Wei-dong. A comprehensivestudy of basic geology in the northern blank area of the Qinghai Tibet Plateau[J]. Northwestern Geol, 2005: 110 (in Chinese).

[8] 肖序常, 李廷棟, 李光岑, 高延林, 許志琴. 青藏高原的構(gòu)造演化[R]. 中國地質(zhì)科學(xué)院院報(bào), 1990, 20(1): 123–125.

Xiao Xu-chang, Li Ting-dong, Li Guang-cen, Gao Yan–lin, Xu Zhi–qin. Tectonic evolution of the Qinghai-Xizang(Tibet) Plateau[R]. Bull Chinese Geol Sci, 1990, 20(1): 123–125 (in Chinese).

[9] 董連慧, 屈迅, 朱志新, 張良臣. 新疆大地構(gòu)造演化與成礦[J].新疆地質(zhì), 2010, 28(4): 351–357.

Dong Lian-hui, Qu Xun, Zhu Zhi-xin, Zhang Liang-chen. Tectonic evolution and metallogenesis of Xinjiang, China[J]. Xinjiang Geol, 2010, 28(4): 351–357 (in Chinese with English abstract).

[10] Zhang X J, Zhang L C, Xiang P, Wan B, Pirajno F. Zircon U-Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: Constrains on the ore-forming age and tectonic setting[J]. Gondw Res, 2011, 20(1): 137–148.

[11] Strecker M R, Frisch W, Hamburger M W, Ratschbacher L, Semiletkin S, Zamoruyev A, Sturchio N. Quaternary deformationin the Eastern Pamirs, Tadzhikistan and Kyrgyzstan[J]. Tectonics, 1995, 14(5): 1061–1079.

[12] 陳漢林, 陳沈強(qiáng), 林秀斌. 帕米爾弧形構(gòu)造帶新生代構(gòu)造演化研究進(jìn)展[J]. 地球科學(xué)進(jìn)展, 2014, 29(8): 890–902.

Chen Han-lin, Chen Shen-qiang, Lin Xiu-bin. A review of the Centonic evolution of Pamir Syntax[J]. Adv Earth Sci, 2014, 29(8): 890–902 (in Chinese with English abstract).

[13] Burtman V S. Cenozoic crustal shortening between the Pamir and Tienshan and a reconstruction of the Pamir-Tienshan transition zone for the Cretaceous and Paleogene[J]. Tectonophysics, 2000, 319(2): 69–92.

[14] Robinson A C, Yin A, Manning C E, Harrison T M, Zhang S H, Wang X F. Tectonic evolution of the northeastern Pamir: Constraints from the northern portion of the Cenozoic Kongur Shan extensional system, western China[J]. Geol Soc Am Bull, 2004, 116(7): 953.

[15] Robinson A C, Yin A, Manning C E, Harrison T M, Zhang S H, Wang X F. Cenozoic evolution of the eastern Pamir: Implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogeny[J]. Geol Soc Am Bull, 2007, 119(7/8): 882–896.

[16] 河北省地質(zhì)礦產(chǎn)勘查開發(fā)局第五地質(zhì)大隊(duì). 新疆阿克陶縣烏孜別里地區(qū)礦產(chǎn)地質(zhì)調(diào)查[R]. 唐山: 河北省地質(zhì)礦產(chǎn)勘查開發(fā)局第五地質(zhì)大隊(duì), 2015.

Tangshan: The Fifth Geology Company of Hebei Bureau of Geo-exploration and Mineral Development. Geological and Mineral Survey of Wuzibieli Area in Akto County, Xinjiang [R]. Tangshan: The Fifth Geology Company of Hebei Bureau of Geo-exploration and Mineral Development, 2015 (in Chinese).

[17] Ducea M N, Lutkov V, Minaev V T, Hacker B, Ratschbacher L, Luffi P, Schwab M, Gehrels G E, McWilliams M, Vervoort J, Metcalf J. Building the Pamirs: The view from the underside[J]. Geology, 2003, 31(10): 849–852.

[18] 王世炎. 區(qū)域地質(zhì)調(diào)查成果報(bào)告(葉城縣幅、塔什庫爾干縣幅, 1︰250000) [R]. 鄭州: 河南省地質(zhì)調(diào)查院, 2004.

Wang Shi-yan. The Regional Geology of Yecheng and Tashikuergan (Scale 1︰250000) [R]. Zhengzhou: Henan Provincial Geological Survey Institute. 2004 (in Chinese).

[19] 李榮社, 計(jì)文化, 楊永成. 昆侖山及鄰區(qū)地質(zhì)[M]. 北京: 地質(zhì)出版社, 1993, 1–400.

Li Rong-she, Ji Wen-hua, Yang Yong-cheng. Geology of KunlunMountain and its adjacent areas[M]. Beijing Geological Publishing House, 1993, 1–400 (in Chinese).

[20] Black L P, Kamo S L, Allen C M, Aleinikoff J N, Davis D W, Korsch R J, Foudoulis C. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology[J]. Chem Geol, 2003, 200(1/2): 155–170.

[21] 涂湘林, 張紅, 鄧文峰, 凌明星, 梁華英, 劉穎, 孫衛(wèi)東. RESOlution激光剝蝕系統(tǒng)在微量元素原位微區(qū)分析中的應(yīng)用[J]. 地球化學(xué), 2011, 40(1): 83–98.

Tu Xiang-lin, Zhang Hong, Deng Wen-feng, Ling Ming-xing, Liang Hua-ying, Liu Ying, Sun Wei-dong. Application of RESOlution in-situ laser ablation ICP-MS in trace element analyses[J]. Geochimica, 2011, 40(1): 83–98 (in Chinese with English abstract).

[22] Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J, Chen H H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Sci Bull, 2010, 55(15): 1535–1546.

[23] Ludwig K R. User’s Manual for Isoplot/Ex Version 3.00: A Geochronology Toolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2003, 4: 1–70.

[24] 梁細(xì)榮, 李獻(xiàn)華, 劉穎, 李寄嵎. 激光熔蝕微探針-電感耦合等離子體質(zhì)譜法——一種快速測(cè)定巖石樣品中多個(gè)元素的新方法[J]. 分析測(cè)試學(xué)報(bào), 2000, 19(1): 33–36.

Liang Xi-rong, Li Xian-hua, Liu Ying, Lee Chee-yu. Laser ablation microprobe: Inductively coupled plasma mass spectrometry: A new method for rapid determination of multiple elements in rock samples[J]. J Instr Anal, 2000, 19(1): 33–36 (in Chinese with English abstract).

[25] 李獻(xiàn)華, 劉穎, 涂湘林, 胡光黔, 曾文. 硅酸鹽巖石化學(xué)組成的ICP-AES和ICP-MS準(zhǔn)確測(cè)定: 酸溶與堿熔分解樣品方法的對(duì)比[J]. 地球化學(xué), 2002, 31(3): 289–294.

Li Xian-hua, Liu Ying, Tu Xiang-lin, Hu Guang–qian, Zeng Wen. Precise determination of chemical compositions in silicate rocks using ICP-AES and ICP-MS: A comparative study of sample digestion techniques of alkali fusion and acid dissolution[J]. Geochimica, 2002, 31(3): 289–294 (in Chinese with English abstract).

[26] Li X H, Long W G, Li Q L, Liu Y, Zheng Y F, Yang Y H, Chamberlain K R, Wan D F, Guo C H, Wang X C, Tao H. Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age[J]. Geost Geoanal Res, 2010, 34(2): 117–134.

[27] Chu N C, Taylor R N, Chavagnac V, Nesbitt R W, Boella R M, Milton J A, German C, Bayon G, Burton K. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections[J]. J Anal Atom Spectr, 2002, 17(12): 1567–1574.

[28] Wu F Y, Yang Y H, Xie L W, Yang J H, Xu P. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chem Geol, 2006, 234(1/2): 105–126.

[29] Scherer E, Munker C, Mezger K. Calibration of the lutetium- hafnium clock[J]. Science, 2001, 293(5530): 683–687.

[30] Blichert T J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle crust system[J]. Earth Planet Sci Lett, 1997, 148(1/2): 243–258.

[31] Griffin W L, Wang X, Jackson S E, Pearson N J, O’Reilly S Y. Zircon geochemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3/4): 237–269.

[32] Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: Some examples from the Western Alps[J]. Cathodolum Geosci, 2000: 373–400.

[33] Belousova E A, Griffin W L, O’Reilly S Y, Fisher N I. Igneous zircon: Trace element composition as an indicator of source rock type[J]. Contrib Mineral Petrol, 2002, 143(5): 602–622.

[34] 吳元保, 鄭永飛. 鋯石成因礦物學(xué)研究及其對(duì)U-Pb年齡解釋的制約[J]. 科學(xué)通報(bào), 2004, 49(16): 1589–1604.

Wu Yuanbao, Zheng Yongfei. Genetic mineralogy of zircon and its constraints on U-Pb age interpretation[J]. Sci Bull, 2004, 49(16): 1589–1604 (in Chinese).

[35] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chem Geol, 1977, 20: 325–343.

[36] Le Bas M J, Maitre R W L, Streckeisen A, Zanettin B. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. J Petrol, 1986, 27(3): 745–750.

[37] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geol Soc Am Bull, 1989, 101(5): 635–643.

[38] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geol Soc London Spec Pub, 1989, 42: 313–345.

[39] 王汾連, 趙太平, 陳偉, 王焰. 峨眉山大火成巖省賦Nb-Ta-Zr礦化正長巖脈的形成時(shí)代和鋯石Hf同位素組成[J]. 巖石學(xué)報(bào), 2013, 29(10): 3519–3532.

Wang Fen-lian, Zhao Tai-ping, Chen Wei, Wang Yan. Zircon U-Pb ages and Lu-Hf Isotopic compositions of the Nb-Ta-Zr bearing syenitic diakes in the Emeishan large igneous province[J]. Acta Petrol Sinica, 2013, 29(10): 3519–3532 (in Chinese with English abstract).

[40] Chappell B W. Aluminum saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535–551.

[41] Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1/2): 1–29.

[42] Miller C F. Are strongly peraluminous magmas derived from politic sedimentary source? [J] J Geol, 1985, 93(6): 673-689.

[43] 吳福元, 李獻(xiàn)華, 楊進(jìn)輝, 鄭永飛. 花崗巖成因研究的若干問題[J]. 巖石學(xué)報(bào), 2007, 23(6): 1217–1238.

Wu Fu-yuan, Li Xian-hua, Yang Jin-hui, Zheng Yong-fei. Discussions on the petrogenesis of granites[J]. Acta Petrol Sinica, 2007, 23(6): 1217–1238.

[44] Watson E B, Harrison T M. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types[J]. Earth Planet Sci Lett, 1983, 64(2): 295-304.

[45] Whalen J B, Currie K L, Chappell B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contrib Mineral Petrol, 1987, 95(4): 407–419.

[46] Collins W J, Beams S D, White A J R, Chappell B W. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contrib Mineral Petrol, 1982, 80(2): 189–200.

[47] Whalen J B. Geochemical characteristics, discrimination marks and petrogenesis of A-type granites[J]. Contrib Mineral Petrol, 1987, 95(4): 407–419.

[48] 王德滋, 劉昌實(shí), 沈渭洲, 陳繁榮. 桐廬I型和相山S型兩類碎斑熔巖對(duì)比[J]. 巖石學(xué)報(bào), 1993, 9(1): 44–54.

Wang De-zi, Liu Chang-shi, Shen Wei-zhou, Chen Fan-rong. The contrast between Tonglu I-type and Xiangshan S-type clastoporphyritic lava[J]. Acta Petrol Sinica, 1993, 9(1): 44–54 (in Chinese with English abstract).

[49] Chappell B W, White A J R. I- and S-type granites in the Lachlan Fold Belt[J]. Earth Environ Sci Trans Royal Soc Edinb, 1992, 83(1/2): 1–26.

[50] Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis[J]. Chem Geol, 2005, 218(3/4): 339–359.

[51] 王德滋, 周金城, 邱檢生, 張海進(jìn). 東南沿海早白堊世火山活動(dòng)中的巖漿混合及殼幔作用證據(jù)[J]. 南京大學(xué)學(xué)報(bào)(地球科學(xué)), 1994, 6(4): 317–325.

Wang De-zi, Zhou Jin-cheng, Qiu Jian-sheng, Zhang Hai-jin. Evidence of magma mixing and crust mantle action in Early Cretaceous volcanism in the southeast coast of China[J]. J Nanjing Univ Geosci, 1994, 6(4): 317–325 (in Chinese with English abstract).

[52] 于津海, 王德滋, 耿建華. 一個(gè)古元古代A型流紋巖[J]. 地球化學(xué), 1998, 27(6): 549–558.

Yu Jin-hai, Wang De-zi, Geng Jian-hua. A Palaeoproterozoic A-type rhyolite[J]. Geochimica, 1998, 27(6): 549–558 (in Chinese with English abstract).

[53] 李伍平. 遼西義縣晚白堊世大興莊組流紋巖的地球化學(xué)特征及其成因[J]. 地球科學(xué), 2011, 36(3): 429–439.

Li Wu-ping. Geochemistry characteristics of the Late Cretaceous adakitic rhyolites of Daxingzhuang Formation and its genesis in Yixian Area, western Liaoning Province[J]. Geoscience, 2011, 36(3): 429–439 (in Chinese with English abstract).

[54] McCulloch M T, Kyser T K, Woodhead J D, Kinsley L. Pb-Sr-Nd-O isotopic constraints on the origin of rhyolites from the Taupo Volcanic Zone of New Zealand: Evidence for assimilation followed by fractionation from basalt[J]. Contrib Mineral Petrol, 1994, 115(3): 303–12.

[55] Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000, 54(3/4): 117–137.

[56] Hildreth W, Hallidy A N, Christiansen R L. Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magma beneath the Yellowstone plateau volcanic field[J]. J Petrol, 1991, 32(1): 63–138.

[57] Briand B, Bouchardon J L, Capiez P, Piboule M. Felsic (A-type)-basic (plume-induced) Early Palaeozoic bimodal magmatism in the Maures massif (southeastern France)[J]. Geol Mag, 2002, 139(3): 291–311.

[58] 丁爍, 黃慧, 牛耀齡, 趙志丹, 喻學(xué)惠, 莫宣學(xué). 東昆侖高Nb-Ta流紋巖的年代學(xué)、地球化學(xué)及成因[J]. 巖石學(xué)報(bào), 2011, 27(12): 3603–3614.

Ding Shuo, Huang Hui, Niu Yao-ling, Zhao Zhi-dan, Yu Xue-hui, Mo Xuan-xue. Geochemistry, geochronology and petrogenesis of East Kunlun high Nb-Ta rhyolites[J]. Acta Petrol Sinica, 2011, 27(12): 3603–3614 (in Chinese with English abstract).

[59] Hirose K. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts[J]. Geology, 1997, 25(1): 42–44.

[60] 吳福元, 李獻(xiàn)華, 鄭永飛, 高山. Lu-Hf同位素體系及其巖石學(xué)應(yīng)用[J]. 巖石學(xué)報(bào), 2007, 23(2): 185–220.

Wu Fu-yuan, Li Xian-hua, Zheng Yong-fei, Gao Shan. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrol Sinica, 2007, 23(2): 185–220 (in Chinese with English abstract).

[61] Amelin Y, Lee D C, Halliday A N, Pidgeon R T. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 1999, 399(6733): 252–255.

[62] Griffin W L, Pearson N J, Belousova E, Jackson S E, van Acterbergh E, O’Reilly S Y, Shee S R. The Hf isotope compositing of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kinberlites[J]. Geochim Cosmochim Acta, 2000, 64(1): 133–147.

[63] Taylor S P, Mclennan S M. The Continental Crust: Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks[M]. Oxford: Blackwell Scientific, 1985.

[64] Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chem Geol, 1995, 120(3/4): 347–359.

[65] Hofmann A W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust[J]. Earth Planet Sci Lett, 1988, 90: 297–314.

[66] Dostal J, Chatterjee A K. Contrasting behavior of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada) [J]. Chem Geol, 2000, 163(1/4): 207–218.

[67] Kerrich R, Polat A, Wyman D, Hollings P. Trace element systematics of Mg-, to Fe- tholeiitic basalt suits of the Superior Province: Implications for Archean mantle reservoirs and greenstone belt genesis[J]. Lithos, 1999, 46(1): 163–187.

[68] Rudnick R L, Gao S. The Composition of the Continental Crust[M]. Oxford: Elsevier, 2003: 1–64.

[69] Taylor S R, Mclennan S M. The Continental Crust: Its Composition and Evolution[M]. London: Blackwell, 1985: 57–72.

[70] 陳佑緯, 畢獻(xiàn)武, 胡瑞忠, 戚華文. 貴東復(fù)式巖體印支期產(chǎn)鈾和非產(chǎn)鈾花崗巖地球化學(xué)特征對(duì)比研究[J]. 礦物巖石, 2009, 29(3): 106–114.

Chen you-wei, Bi Xian-wu, Hu Rui-zhong, Qi Hua-wen. Comparison of geochemical characteristic of uranium- and non-uranium-bearing Indosinian granites in Guidong composite pluton[J]. Mineral Petrol, 2009, 29(3): 106–114 (in Chinese with English abstract).

[71] 陜西省地質(zhì)調(diào)查院. 新疆1∶5萬J43E017015等4幅區(qū)域地質(zhì)調(diào)查報(bào)告[R]. 西安: 陜西省地質(zhì)調(diào)查院, 2011.

Shaanxi Institute of Geological Survey. The Regional Geology of 4 maps(J43E017015) of Xinjiang (Scale 1: 50000) [R]. Xi’an: Shaanxi Institute of Geological Survey, 2011 (in Chinese).

[72] 陜西省地質(zhì)調(diào)查院. 新疆1∶5萬J43E016014等4幅區(qū)域地質(zhì)調(diào)查報(bào)告[R]. 西安: 陜西省地質(zhì)調(diào)查院, 2012.

Shaanxi Mineral Resources and Geological Survey. The Regional Geology of 4 maps(J43E016014) of Xinjiang (Scale 1∶50000) [R]. Xi’an: Shaanxi Institute of Geological Survey, 2012 (in Chinese).

[73] 陜西省地質(zhì)調(diào)查院. 新疆1∶5萬J43E014012等7幅區(qū)域地質(zhì)調(diào)查報(bào)告[R]. 西安: 陜西省地質(zhì)調(diào)查院. 2014.

Shaanxi Mineral Resources and Geological Survey. The Regional Geology of 7 maps(J43E014012) of Xinjiang (Scale 1∶50000) [R]. Xi’an: Shaanxi Institute of Geological Survey, 2014 (in Chinese).

[74] 朱杰, 李秋根, 王宗起, 湯好書, 陳旭, 肖兵. 西昆侖甜水海地體早寒武世花崗巖漿作用及其構(gòu)造意義[J]. 西北地質(zhì), 2016, 49(4): 1–18.

Zhu Jie, Li Qiu-gen, Wang Zong-qi, Tang Hao-shu, Chen Xu, Xiao Bing. Magmatism and tectonic implications of Early Cambrian granitoid plutons in Tianshuihai terrane of the western Kunlun orogenic belt, Northwest China[J]. Northwest Geol, 2016, 49(4): 1–18 (in Chinese with English abstract).

[75] 匡愛兵, 王云, 劉兵, 張銀洲. 新疆葉城縣麻扎-塔什庫爾干縣塔吐魯溝一帶1∶5萬區(qū)域地質(zhì)礦產(chǎn)調(diào)查報(bào)告[R], 成都: 四川省核工業(yè)地質(zhì)調(diào)查院, 2014.

Kuang Ai-bing, Wang Yun, Liu Bing, Zhang Yin-zhou. The Regional Geology of Yecheng and Tashikuergan of Xinjiang (Scale 1∶50000) [R]. Chengdu: Sichuan Institute of Nuclear Geology, 2014 (in Chinese).

[76] 張輝善, 何世平, 計(jì)文化, 王超, 史俊波, 康孔躍, 張杰, 祝大偉, 湯宏偉, 李承棟, 葸德華. 甜水海地塊晚寒武世花崗巖對(duì)原特提斯洋演化的啟示: 來自鋯石年代學(xué)和地球化學(xué)的證據(jù)[J]. 地質(zhì)學(xué)報(bào), 2016, 90(10): 2582–2602.

Zhang Hui-shan, He Shi-ping, Ji Wen-hua, Wang Chao, Shi Jun-bo, Kang Kong-yue, Zhang Jie, Zhu Da-wei, Tang Hong-wei, Li Cheng-dong, Xi De-hua. Implications of Late Cambrian granite in Tianshuihai massif for the evolution of proto-tethy ocean: Evidences from zircon geochronology and geochemistry[J]. Acta Geol Sinica, 2016, 90(10): 2582–2602 (in Chinese with English abstract).

[77] 高曉峰, 校培喜, 康磊, 朱海平, 過磊, 奚仁剛, 董增產(chǎn). 新疆塔什庫爾干塔阿西一帶火山巖成因及地質(zhì)意義[J]. 地球科學(xué), 2013, 38(6): 1169–1182.

Gao Xiao-feng, Xiao Pei-xi, Kang Lei, Zhu Hai-ping, Guo Lei, Xi Ren-gang, Dong Zeng-chan. Origin of the volcanic rocks from the Ta’axi Region, Taxkorgan Xinjiang and its geological significance[J]. Earth Sci, 2013, 38(6): 1169–1182 (in Chinese with English abstract).

[78] 林尚康, 湯好書, 任濤. 西昆侖贊坎鐵礦區(qū)英安斑巖地球化學(xué)特征及U-Pb年代學(xué)研究[J]. 河南科學(xué), 2015, 33(6): 986–992.

Lin Shang-kang, Tang Hao-shu, Ren Tao. Study on geochemistry and Zircon U-Pb ages of dacite porphyry from the Zankan iron deposit West Kunlun area[J]. Henan Sci, 2015, 33(6): 986–992 (in Chinese with English abstract).

[79] 喬耿彪, 王萍, 伍躍中, 郝延海, 趙曉健, 陳登輝, 呂鵬瑞, 杜瑋. 西昆侖塔什庫爾干陸塊贊坎鐵礦賦礦地層形成時(shí)代及其地質(zhì)意義[J]. 中國地質(zhì), 2015, 42(3): 616–629.

Qiao Geng-biao, Wang Ping, Wu Yue-zhong, Hao Yan-hai, Zhao Xiao-jian, Chen Deng-hui, Lü Peng-rui, Du Wei. Formation age of ore-bearing strata of the Zankan iron deposit in Taxkorgan landmass of Western Kunlun Mountains and its geological significance[J]. Geol China, 2015, 42(3): 616–629 (in Chinese with English abstract).

[80] 燕長海, 陳曹軍, 曹新志, 張旺生, 陳俊魁, 李山坡, 劉品德. 新疆塔什庫爾干地區(qū)“帕米爾式”鐵礦床的發(fā)現(xiàn)及其地質(zhì)意義[J]. 地質(zhì)通報(bào), 2012, 31(4): 549–557.

Yan Chang-Hai, Chen Cao-jun, Cao Xin-zhi, Zhang Wang-sheng, Chen Jun-kui, Li Shan-po, Liu Pin-de. The discovery of the “Pamir-type” iron deposits on Taxkorgan area of Xinjiang and its geological significance[J]. Geol Bull China, 2012, 31(4): 549–557 (in Chinese with English abstract).

[81] Hu J, Wang H, Huang C Y, Tong L X, Mu S L, Qiu Z W. Geological characteristics and age of the Dahongliutan Fe-ore deposit in the Western Kunlun orogenic belt, Xinjiang, northwestern China[J]. J Asian Earth Sci, 2016, 116: 1–25.

[82] 胡軍, 王核, 慕生祿, 王敏, 侯學(xué)文. 西昆侖甜水海地塊南屏雪山早古生代花崗巖地球化學(xué)、Hf同位素特征及其殼幔巖漿作用[J]. 地質(zhì)學(xué)報(bào), 2017, 91(6): 1192–1207.

Hu Jun, Wang He, Mu Sheng-lu, Wang Min, Hou Xue-wen. Geochemistry and Hf isotopic compositions of Early Paleozoic granites in Nanpingxueshan from the Tianshuihai terrane, Wset Kunlun: Crust-mantle magmatism[J]. Acta Geol Sinica, 2017, 91(6): 1192–1207 (in Chinese with English abstract).

[83] 楊克明. 論西昆侖大陸邊緣構(gòu)造演化及塔里木西南盆地類型[J]. 地質(zhì)論評(píng), 1994, 40(1): 9–18.

Yang Ke-ming. The formation and evolution fo the western Kunlun continental margin[J]. Geol Rev, 1994, 40(1): 9–18 (in Chinese with English abstract)

[84] 計(jì)文化. 西昆侖-喀喇昆侖晚古生代-早中生代構(gòu)造格局[D]. 北京: 中國地質(zhì)大學(xué)(北京), 2005: 1–143.

Ji Wen-hua. The late Paleozoic-early Mesozoic tectonic frame in the western Kunlun-Karakorum area[D]. Beijing: China University of Geosciences (Beijing), 2005, 1–143 (in Chinese with English abstract).

[85] 計(jì)文化, 陳守建, 李榮社, 王訓(xùn)練. 青藏高原及鄰區(qū)古生代構(gòu)造-巖相古地理綜合研究[M]. 武漢: 中國地質(zhì)大學(xué)出版社, 2014: 1–381.

Ji Wen-hua, Chen Shou-jian, Li Rong-she, Wang Xun-lian. The comprehensive study of Paleozoic tectonics and in the Qinghai-Tibet Plateau and its adjacent areas[M]. Wuhan: China University of Geosciences Press (Wuhan), 2014: 1–381 (in Chinese with English abstract).

[86] 柳坤峰, 王永和, 姜高磊, 張思敏, 張克信. 西昆侖新元古代-中生代沉積盆地演化[J]. 地球科學(xué), 2014, 39(8): 987–999.

Liu Kun-feng, Wang Yong-he, Jiang Gao-lei, Zhang Si-min, Zhang Ke-xin. Evolution of Neoproterozoic-Mesozoic Sedimentary Basins of West Kunlun Area[J]. Earth Sci, 2014, 39(8): 987–999 (in Chinese with English abstract).

[87] Collins W J, Richards S W. Geodynamic significance of S-type granites in circum-Pacific orogens[J]. Geology, 2008, 36(7): 559–562.

[88] Ma X X, Xu Z Q, Chen X J, Meert J G, He Z Y, Liang F H, Meng Y K, Ma S W. The origin and tectonic significance of thevolcanic rocks of the Yeba Formation in the Gangdese magmatic belt, South Tibet[J]. J Earth Sci, 2017, 28(2): 265–282.

[89] Harris N B W, Marzouki F M H, Ali S. The Jabel Sayd complex, Arabian Shield: Geochemical contraints on the origin peralkaline and related granites[J]. J Geol Soc Lond, 1986, 143: 287–295.

[90] Pearce J A. Sources and settings of granitic rocks[J]. Episodes, 1996, 19(4): 120–125.

[91] Gorton M P, Schandl E S. From continents to island arcs: A geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks[J]. Can Mineral, 2000, 38(5): 1065–1073.

Geochronology, geochemistry and genesis of the rhyolite in the Wuzibieli area, Akto County, Xinjiang

LI Pei1,2, WANG He1*, PU Qiang3, QIU Zeng-wang1,2, YAN Qing-he1,2, DONG Rui1,2and ZHANG Xiao-yu1,2

1. CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. The Fifth Geology Company of Hebei Geology and Mineral Bureau, Tangshan 063000, China

Rhyolite dominated volcanic rocks widely outcrop in the Wuzibieli area, Akto county, in the West Kunlun orogenic belt. However, to date, no systematic chronological and geochemical studies have been performed, which hinders our understanding of their genesis and tectonic environment. In this study, we report the geochemistry, zircon U-Pb dating, and Hf isotopes of rhyolites in this area. LA-ICP-MS Zircon dating yielded a concordant238U/206Pb age of (521.0±2.8) Ma, indicating that the rhyolite erupted during the Early Cambrian. Geochemically, the rhyolites areperaluminous and show a high-K calc-alkaline signature. They are enriched in LILEs (such as Rb and K), LREE, and more mobile incompatible elements (U), but relatively depleted in HFES (such as P and Ti). They also show medium negative Eu anomalies and share most features with highly differentiated S-type granites. The ZirconHf() values are nearly positive (?0.9~4.1), and the two-stage model age (DM2) ranges from 1229 to 1553 Ma, indicating that the rhyolite in the Wuzibieli area was likely generated by partial melting of Mesoproterozoic new crust. Integrating with previous study, it is inferred that the rthyolite was formed in the continental volcanic arc related to the subduction of the Proto-Tethys Ocean.

Early Cambrian; zircon U-Pb dating; Hf isotope; geochemistry; rhyolites; the Muji gold deposit

P597

A

0379-1726(2021)06-0562-17

10.19700/j.0379-1726.2021.06.003

2020-01-03;

2020-03-21;

2020-04-02

新疆維吾爾自治區(qū)重點(diǎn)研發(fā)專項(xiàng)(2019B00011); 新疆維吾爾自治區(qū)重大科技專項(xiàng)(2018A03004); 國家自然科學(xué)基金(91962215, 41972088); 國家重點(diǎn)研發(fā)計(jì)劃(2019YFC06005201); 第二次青藏科考項(xiàng)目(2019QZKK0802-01); 國家十二五科技支撐項(xiàng)目(2015BAB05B03); 中國科學(xué)院廣州地球化學(xué)研究所135項(xiàng)目(135TP201601)

李沛(1986–), 男, 博士研究生, 構(gòu)造地質(zhì)學(xué)專業(yè)。E-mail: 522685551@qq.com

WANG He, E-mail: wanghe@gig.ac.cn; Tel: +86-20-85290986

猜你喜歡
流紋巖圖解鋯石
伊寧地塊阿騰套山東晚石炭世伊什基里克組流紋巖年代學(xué)、地球化學(xué)及巖石成因
大興安嶺北段古利庫金銀礦區(qū)流紋巖年代學(xué)、巖石地球化學(xué)特征及地質(zhì)意義
俄成功試射“鋯石”高超音速巡航導(dǎo)彈
東寧暖泉金礦床地質(zhì)特征與成礦關(guān)系探討
圖解十八屆六中全會(huì)
紅鋯石
哈密沁城地區(qū)紅柳溝組流紋巖LA-ICP-MS鋯石U-Pb年代學(xué)及地質(zhì)意義
西準(zhǔn)噶爾烏爾禾早二疊世中基性巖墻群LA-ICP-MS鋯石U-Pb測(cè)年及構(gòu)造意義
鋯石微區(qū)原位U-Pb定年的測(cè)定位置選擇方法
圖解天下