包宗堯 李永貴 楊建忠 吳依琳 劉亦冰 祖文菊
摘要:
碳納米管的力學(xué)、電學(xué)及熱學(xué)等性能可賦予聚酰胺纖維良好功能,且聚酰胺基碳納米管復(fù)合纖維能夠保持其功能的穩(wěn)定性。然而,如何提高碳納米管在聚酰胺基體中的分散效果、降低碳納米管應(yīng)用成本,是碳納米管復(fù)合纖維及其紡織品的重要研究方向。因此,本文結(jié)合現(xiàn)階段國(guó)內(nèi)外聚酰胺基碳納米管復(fù)合纖維及紡織品的研究現(xiàn)狀,探討影響聚酰胺基碳納米管復(fù)合纖維結(jié)構(gòu)性能的主要因素和應(yīng)用前景,為推進(jìn)碳納米管在紡織領(lǐng)域中的發(fā)展應(yīng)用提供參考。
關(guān)鍵詞:
碳納米管;碳納米管改性;聚酰胺纖維;柔性智能紡織品;共混紡絲
中圖分類(lèi)號(hào): TS102.65
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 10017003(2022)02004008
引用頁(yè)碼: 021106
DOI: 10.3969/j.issn.1001-7003.2022.02.006(篇序)
收稿日期: 20210921;
修回日期: 20211218
基金項(xiàng)目: 福建省基礎(chǔ)研究與高校產(chǎn)學(xué)合作計(jì)劃(高校產(chǎn)學(xué)合作)項(xiàng)目(2019H6019);福建省自然科學(xué)基金項(xiàng)目(2020J01849)
作者簡(jiǎn)介: 包宗堯(1993),男,碩士研究生,研究方向?yàn)榧徔棽牧吓c紡織品設(shè)計(jì)。通信作者:李永貴,教授,lygwxjd@sina.com。
1991年Iijima[1]博士發(fā)現(xiàn)并報(bào)道了碳納米管(CNTs),其獨(dú)特的結(jié)構(gòu)和優(yōu)異性能,引起了世界諸多領(lǐng)域?qū)<覍W(xué)者的廣泛關(guān)注。CNTs比表面積大、質(zhì)量輕,具有力學(xué)性能優(yōu)異、電學(xué)性能獨(dú)特及熱學(xué)性能良好等特點(diǎn)[2-3]。若以成纖高聚物為基體,將CNTs作為填料制成復(fù)合纖維,可實(shí)現(xiàn)兩者的優(yōu)勢(shì)互補(bǔ),使復(fù)合材料表現(xiàn)出良好的力學(xué)、電學(xué)和熱學(xué)等性能,在導(dǎo)電、導(dǎo)熱、吸波及智能可穿戴紡織品等領(lǐng)域展現(xiàn)出良好的應(yīng)用前景。
聚酰胺(PA)纖維的耐磨性、強(qiáng)力較好,居常用合成纖維前列。此外,PA纖維具有良好的吸濕性和耐腐蝕、耐蛀、耐寒性能,可賦予PA織物質(zhì)輕、透氣性好等特點(diǎn),被廣泛應(yīng)用于服裝、家紡、航空航天和軍工等多個(gè)領(lǐng)域。PA大分子主鏈上含有酰胺基團(tuán)(—NHCO—),其大分子末端是羧基或氨基,因此,PA是一種擁有一定反應(yīng)活性的強(qiáng)極性結(jié)晶型高聚物[4]。基于PA纖維結(jié)構(gòu)和性能特性,研究者常將PA纖維作為復(fù)合纖維的基體,以各種功能性材料為組分制備不同的功能性復(fù)合纖維,提升PA纖維的應(yīng)用特性,拓寬其應(yīng)用領(lǐng)域。
本文從CNTs的功能化改性方法出發(fā),綜合分析了功能化改性對(duì)CNTs在PA基體中的分散性及其對(duì)復(fù)合纖維的增強(qiáng)或功能化效果的影響,探討了聚酰胺基碳納米管復(fù)合纖維制備方法的現(xiàn)狀、關(guān)鍵技術(shù)及復(fù)合纖維的應(yīng)用前景,為進(jìn)一步開(kāi)發(fā)出性能優(yōu)良的聚酰胺基碳納米管復(fù)合纖維及其功能化紡織品提供參考。
1 CNTs的功能化改性
CNTs因其結(jié)構(gòu)性能獨(dú)特,常被研究人員用作復(fù)合纖維材料中的增強(qiáng)相或功能相。CNTs在基體中的分散效果直接影響其功能化效果和增強(qiáng)作用,因此如何實(shí)現(xiàn)CNTs在基體中的有效分散已成為研究和應(yīng)用中的關(guān)鍵技術(shù)難題。超聲波震蕩[5]、高能球磨[6]和機(jī)械攪拌[7]等作為分散CNTs的常用處理方法只能暫時(shí)破壞CNTs的纏結(jié)狀態(tài),在之后的加工過(guò)程中,CNTs會(huì)發(fā)生重新團(tuán)聚的現(xiàn)象,因此這些常用處理方法只能用作分散CNTs的輔助手段。此外,良好的界面結(jié)合是實(shí)現(xiàn)應(yīng)力在基體與填料界面間有效傳遞的必要條件,是提高復(fù)合材料性能或?qū)崿F(xiàn)功能化的必要條件[8]。然而,CNTs表面因缺乏活性官能團(tuán),不能實(shí)現(xiàn)其與基體的有效結(jié)合。因此,為了提升CNTs的分散效果,同時(shí)增加其與聚合物基體的界面相互作用力,實(shí)現(xiàn)負(fù)載從聚合物基體到納米管的有效轉(zhuǎn)移,從而充分發(fā)揮碳納米管的優(yōu)異性能,需對(duì)CNTs表面進(jìn)行功能化改性。通常,功能改性CNTs主要分為有機(jī)共價(jià)修飾改性法和非共價(jià)修飾改性法,如圖1所示[9]。但是,在實(shí)際應(yīng)用過(guò)程中,常運(yùn)用多種方法對(duì)CNTs進(jìn)行表面處理。例如,等離子體表面改性技術(shù)是通過(guò)物理和化學(xué)反應(yīng)的綜合作用對(duì)材料表面進(jìn)行活化[10],因其精細(xì)高效、清潔環(huán)保的優(yōu)勢(shì)常被應(yīng)用于CNTs的表面處理。本文主要探討CNTs的共價(jià)鍵表面修飾和非共價(jià)修飾兩種方法。
1.1 CNTs的共價(jià)鍵表面修飾
由于CNTs的一維納米結(jié)構(gòu)非常穩(wěn)定,常規(guī)的處理方法不易在其表面接枝基團(tuán),必須利用碳納米管管壁或管端上的結(jié)構(gòu)缺陷,或運(yùn)用氧化法、高能球磨法、高能射線輻照法等對(duì)碳納米管進(jìn)行切割,引入羧基(—COOH)、羥基(—OH)或氨基(—NH2)等活性官能團(tuán)[11],并利用這些活性點(diǎn)進(jìn)行后續(xù)的接枝改性。改性后CNTs相互之間的范德華力減少,可得到良好的分散效果,同時(shí)提升了CNTs與聚合物之間的相容性,并通過(guò)共價(jià)鍵的結(jié)合增加了CNTs與基體的界面作用力。
Wang等[12]采用混合酸(H2SO4、HNO3)氧化和取代反應(yīng)對(duì)單壁碳納米管(SWCNTs)進(jìn)行改性,羧基、酰胺基和氨基成功接枝到SWCNTs上。侯立晨等[13]通過(guò)傅克反應(yīng)對(duì)多壁碳納米管(MWCNTs)進(jìn)行處理,在CNTs表面接枝氨基得到氨基功能化碳納米管(MWCNTs-NH2),采取原位聚合法將MWCNTs-NH2加入己內(nèi)酰胺,制備功能化碳納米管/PA6復(fù)合母粒,并通過(guò)熔融紡絲制備碳納米管/PA6復(fù)合纖維。當(dāng)CNTs的質(zhì)量分?jǐn)?shù)為0.5%時(shí),復(fù)合纖維的楊氏模量較純PA6纖維提高了208%,斷裂強(qiáng)度也提高了45%。
Zhang等[14]將雙氨丙基聚二甲基硅氧烷(APDMS)接枝到羧基化的多壁碳納米管(CMWCNTs),采用一鍋法將改性后的CNTs與己二酸己二胺鹽縮聚得到復(fù)合材料,再通過(guò)熔融紡絲得到PA66/APDMS-CMWCNTs復(fù)合纖維。FTIR和XPS測(cè)試光譜圖顯示,APDMS通過(guò)共價(jià)鍵對(duì)CMWCNTs完成功能化,PA66分子鏈嵌入到CMWCNTs中形成共價(jià)鍵。由于APDMS-CMWCNTs在PA66基體中的強(qiáng)界面相互作用和良好分散性,提高了復(fù)合纖維的玻璃化轉(zhuǎn)變溫度、結(jié)晶度和熱分解溫度。與純PA66纖維相比,添加0.15%的APDMS-CMWCNTs復(fù)合纖維的楊氏模量和拉伸強(qiáng)度分別提高了631%和167%。
劉海軍等[15]成功制備了超支化聚酰胺修飾的碳納米管(MWCNTs-P)。經(jīng)氧化和?;幚恚琈WCNTs上的酰氯基團(tuán)與含磷超支化聚酰胺(HBPA)上的活性端基發(fā)生取代反應(yīng),HBPA以化學(xué)鍵的方式接枝到MWCNTs表面,接枝率約為27%。通過(guò)熔融共混制備MWCNTs-P/PA6復(fù)合材料,修飾后的MWCNTs帶有的氨基等官能團(tuán)提高了其在PA6基材中的分散性,兩相界面相互作用得到改善,也提高了拉伸強(qiáng)度。但由于CNTs剛性結(jié)構(gòu)的存在,復(fù)合材料的韌性有所降低。加入0.5%的MWCNTs-P之后,復(fù)合材料的體積電導(dǎo)率比PA6提高了3個(gè)數(shù)量級(jí),比原始MWCNTs/PA6提高1個(gè)數(shù)量級(jí)。HBPA的含磷基團(tuán)與MWCNTs通過(guò)氣相阻燃和凝固相阻燃的協(xié)同作用提高了復(fù)合材料的阻燃性。
1.2 CNTs的非共價(jià)鍵表面修飾
CNTs表面非共價(jià)鍵修飾法,是利用氫鍵、π-π堆積等非共價(jià)鍵作用使有機(jī)或無(wú)機(jī)大分子物理吸附或包裹在CNTs表面。這種修飾方法能在保持CNTs本身結(jié)構(gòu)完整的基礎(chǔ)上實(shí)現(xiàn)CNTs功能化修飾[16]。目前常見(jiàn)的CNTs表面物理修飾法包括表面活性劑吸附、生物大分子包裹和高分子吸附等。
Sun等[17]通過(guò)超聲和離心的方法,利用雙親性表面活性劑四氯苝酐(1,6,7,12-四氯-3,4,9,10-四甲酸二酐)對(duì)CNTs進(jìn)行表面處理。四氯苝酐主鏈部分的芳香烴可以與碳納米管表面的π電子共軛體系形成π-π相互作用,而末端親水鏈段賦予改性后的碳納米管良好的水溶性,兩者協(xié)同作用使單壁碳納米管能夠有效地分散在水溶液中。
Zheng等[18]通過(guò)濕法紡絲法制備了由生物大分子材料透明質(zhì)酸(HA)和SWCNTs組成的混合微纖維,HA作為生物表面活性劑和離子交聯(lián)劑包裹在SWCNTs表面,并將它們分離成單個(gè)CNTs。所得HA包裹的SWCNTs混合微纖維具有優(yōu)異的拉伸性能、韌性、電導(dǎo)率穩(wěn)定性。此外,HA/SWCNTs混合纖維表面為取向統(tǒng)一且均勻的凹槽,呈現(xiàn)出“樹(shù)皮”狀形貌,此形貌有利于與聚合物基體界面間的相互作用。因此,HA/SWCNTs混合微纖維表現(xiàn)出優(yōu)異的生物相容性[19]。HA/SWCNTs混合微纖維在植入式醫(yī)療設(shè)備、人工肌肉、生物傳感器和微致動(dòng)器等方面具有巨大的應(yīng)用價(jià)值。
Xue等[20]采用自制的含芘基苯乙烯-馬來(lái)酸酐共聚物(HPSMAP),利用輔助剝離-離心改性的方法成功獲得共聚物包覆的碳納米管(HPSMAP-MWCNTs)。含芘基苯乙烯-馬來(lái)酸酐共聚物骨架上的苯乙烯單元對(duì)CNTs有很好的吸附作用,帶電荷的馬來(lái)酸根又易溶于水,這就使得包覆改性后的多壁碳納米管的管束得到有效分離。分析表明,共聚物成功包覆到CNTs表面,這種緊密包覆在CNTs表面的聚合物能夠改善CNTs與其他聚合物之間的相容性,有利于進(jìn)一步制備碳納米管基聚合物復(fù)合材料。
碳納米管的共價(jià)修飾改性法和非共價(jià)修飾改性法各有優(yōu)缺點(diǎn),共價(jià)修飾改性法可以得到較高的分散穩(wěn)定性,但是使碳納米管的結(jié)構(gòu)受到破壞,從而使其本身固有性能有所改變。非共價(jià)修飾改性法對(duì)碳納米管結(jié)構(gòu)的損傷程度小,且較為簡(jiǎn)單易行,但是分散劑的去除困難,同時(shí)在后繼的應(yīng)用過(guò)程中,分散劑的加入會(huì)影響復(fù)合纖維的性能。
2 聚酰胺基碳納米管復(fù)合纖維
2.1 聚酰胺基碳納米管復(fù)合纖維研究現(xiàn)狀
開(kāi)發(fā)聚酰胺基碳納米管復(fù)合纖維,可發(fā)揮PA纖維材料輕質(zhì)、柔韌、耐磨及耐腐蝕等優(yōu)點(diǎn),是開(kāi)發(fā)新型高性能、功能性纖維的有益探索,也是納米改性技術(shù)在紡織纖維領(lǐng)域應(yīng)用的拓展。把CNTs材料添加到PA纖維中,將PA纖維基體良好的可加工性和柔性?xún)?yōu)勢(shì)結(jié)合CNTs形成的功能網(wǎng)絡(luò),既可解決高純CNTs纖維及其紡織品脆性大、可紡性差等難題,又可實(shí)現(xiàn)CNTs纖維在不同應(yīng)變環(huán)境下的功能保持。聚酰胺基碳納米管復(fù)合纖維具有良好的應(yīng)用前景,但相關(guān)報(bào)道較少,且大多處于實(shí)驗(yàn)研究階段。然而,作為一種具有巨大潛在應(yīng)用價(jià)值的復(fù)合材料,科研人員和工業(yè)界依然持續(xù)關(guān)注并采用不同方法致力于聚酰胺基碳納米管纖維及其紡織品的研究與開(kāi)發(fā)。目前,聚酰胺基碳納米管復(fù)合纖維及其紡織品的制備方法主要包括熔融紡絲法、靜電紡絲法、浸漬法和表面涂敷法等。
2.1.1 熔融紡絲法
Scaffaro等[21]將電弧放電法生產(chǎn)的MWCNTs和采用化學(xué)氣相沉積法自制的MWCNTs在氧氣氣氛下進(jìn)行等離子體功能化,分別添加2%功能化前后的CNTs到PA6中進(jìn)行熔融紡絲。結(jié)果表明,功能化的碳納米管在PA6基體中的分散性和界面結(jié)合力較原始的CNTs好,取向度也較高,復(fù)合纖維的拉伸斷裂強(qiáng)力和界面結(jié)合牢度得到提高,但纖維的斷裂伸長(zhǎng)率都有所降低。Chen等[6]采用球磨法對(duì)羧基化的多碳納米管(MWCNTs-COOH)和十二烷基苯磺酸鈉(SDBS)改性的碳納米管進(jìn)行處理,而后與PA66進(jìn)行熔融共混紡絲,獲得了多壁碳納米管在PA66基體中均勻分散的復(fù)合纖維。當(dāng)MWCNTs-SDBS和MWCNTs-COOH的質(zhì)量分?jǐn)?shù)為0.1%時(shí),復(fù)合纖維的拉伸強(qiáng)度達(dá)到最大值,分別比純PA66纖維提高了27%和24%。諸多研究表明:功能化修飾減少了CNTs的用量,提高了CNTs的利用率。Irisawa等[22]將CNTs加入體積比為2︰1的蒸餾水/叔丁醇混合溶液中攪拌,以獲得CNTs懸浮液,通過(guò)濕法噴射研磨工藝高速剪切流的作用將懸浮液中的CNTs集聚體進(jìn)行研磨粉碎,產(chǎn)物經(jīng)冷凍干燥后與PA6共混造粒并進(jìn)行熔融紡絲。研磨粉碎的CNTs在PA6纖維中分散良好,可在不降低強(qiáng)度的情況下提高網(wǎng)球線的拉伸模量以改變擊球的感覺(jué),在運(yùn)動(dòng)器材等方面具有很好的應(yīng)用前景。
2.1.2 靜電紡絲法
Baji等[23]采用高精度靜電紡絲技術(shù)獲得自組裝CNTs增強(qiáng)PA66纖維,研究了纖維直徑和CNTs質(zhì)量分?jǐn)?shù)對(duì)纖維增強(qiáng)的影響。在CNTs質(zhì)量分?jǐn)?shù)為0~2.5%時(shí),CNTs增強(qiáng)纖維的拉伸強(qiáng)度和模量隨著CNTs質(zhì)量分?jǐn)?shù)的增加而增大,這是因?yàn)镃NTs的加入限制了聚合物鏈的節(jié)段運(yùn)動(dòng),并對(duì)鄰近分子起到了限制作用。研究還發(fā)現(xiàn),纖維的強(qiáng)度和模量與纖維直徑成反比,當(dāng)纖維的直徑在500 nm以下時(shí),纖維的模量和強(qiáng)度增加明顯,這可以歸因于晶體的有序排列和纖維的空間限制效應(yīng)。CNTs的有序排列是由于聚合物射流在靜電紡絲過(guò)程中經(jīng)受的高拉伸力而獲得的。Li等[24]采用靜電紡絲裝置制備了連續(xù)的PA6/SWCNTs納米纖維束,TEM圖像顯示酰胺化處理后的單壁碳納米管沿納米纖維長(zhǎng)絲軸線有序排列,形成了連續(xù)的CNTs網(wǎng)絡(luò),管間相互糾纏現(xiàn)象較弱。添加酰胺功能化單壁碳納米管的PA6/SWCNTs纖維的初始模量增大了一倍多,并且斷裂應(yīng)力從43.42 MPa增加到了79.75 MPa。SWCNTs對(duì)納米纖維束有良好的電學(xué)增強(qiáng)效應(yīng),其導(dǎo)電性滲透閾值約為0.8%,電導(dǎo)率最大可增加9個(gè)數(shù)量級(jí)。
2.1.3 涂層法和浸漬法
夏禹舜等[25]采用環(huán)錠紡紗法紡制了以強(qiáng)力較好的聚酰胺纖維長(zhǎng)絲為芯絲,外包具有較好的吸濕、透氣及優(yōu)異服用性能的棉纖維包芯紗,之后采用漿紗的方法進(jìn)行單壁碳納米管涂層制成導(dǎo)電復(fù)合紗,該復(fù)合紗線電導(dǎo)率為0.016 S/cm,紗線屬性為抗靜電材料。Guan等[26]通過(guò)靜電紡絲法制備了PA66納米纖維束,并將其浸入含有羧基化多壁碳納米管的分散液中進(jìn)行超聲波處理,羧基功能化的多壁碳納米管通過(guò)氫鍵與PA66納米纖維束形成良好的界面相互作用,增強(qiáng)了PA66納米纖維束的力學(xué)性能。浸入含0.05%多壁碳納米管的懸浮液中的纖維束獲得最高的電導(dǎo)率(0.2 S/cm)和拉伸強(qiáng)度(103.3 MPa)。吸附在納米纖維表面的MWCNTs形成了導(dǎo)電網(wǎng)絡(luò),并且復(fù)合纖維束在彎曲下的電阻波動(dòng)小于3.6%,說(shuō)明其具有較好柔韌性。該導(dǎo)電纖維束在溫度傳感器、導(dǎo)電紡織品、可穿戴電子產(chǎn)品等方面具有巨大的應(yīng)用潛力。
諸多研究表明,聚酰胺基碳納米管復(fù)合纖維的制備及性能研究仍處于初級(jí)階段,其增強(qiáng)或功能改性效果并不是很理想,且各制備方法均有其優(yōu)缺點(diǎn)。例如,熔融紡絲法的工藝簡(jiǎn)單、生產(chǎn)效率高且纖維耐久,具有進(jìn)行大規(guī)模工業(yè)化生產(chǎn)聚酰胺基碳納米管復(fù)合纖維的可能,但碳納米管在聚酰胺這種高黏度聚合物熔體中分散較為困難;靜電紡絲能夠制備納米級(jí)超細(xì)纖維,形成超高相對(duì)表面積的織物,纖維材料的尺寸效應(yīng)、表/界面效應(yīng)及纖維超分子結(jié)構(gòu)和宏觀力學(xué)性能等都將發(fā)生顯著變化,噴射所經(jīng)歷的高伸長(zhǎng)和拉伸力可以誘導(dǎo)填料的有效分散、排列和定向,從而優(yōu)化碳納米管與基體的相互作用和應(yīng)力傳遞,但靜電紡絲的效率還比較低,制備納米級(jí)纖維連續(xù)紗線的方法還比較單一;浸漬法和涂層法能在碳納米管僅分布在聚酰胺纖維表面的情況下即能形成較好的功能網(wǎng)絡(luò),材料的利用率高,用量少,但纖維功能組分的牢度一般不高,耐久性較差。因此,聚酰胺基碳納米管復(fù)合纖維的制備需根據(jù)應(yīng)用領(lǐng)域?qū)嶋H要求對(duì)制備方法和工藝過(guò)程不斷進(jìn)行探索和創(chuàng)新,以獲得制備方法簡(jiǎn)單、結(jié)構(gòu)性能優(yōu)良的聚酰胺基碳納米管復(fù)合纖維。
2.2 聚酰胺基碳納米管復(fù)合纖維質(zhì)量的影響因素
理想的聚酰胺基碳納米管復(fù)合纖維可兼具聚酰胺與碳納米管的雙重特性,材料優(yōu)良的性能能否得以保持、功能性可否得以表現(xiàn),其影響因素有CNTs本身的制備方法和形成的結(jié)構(gòu)、CNTs官能團(tuán)化的種類(lèi)、復(fù)合纖維的成型方法及制備工藝的參數(shù)、CNTs的含量及其分散狀態(tài),以及CNTs與聚酰胺基體間的界面作用等。
國(guó)內(nèi)外學(xué)者研究并發(fā)現(xiàn)了多種制備CNTs的方法,有電弧放電、激光蒸發(fā)和化學(xué)氣相沉積法等。不同的制備方法和工藝得到的CNTs的長(zhǎng)度、直徑、取向、純度和密度都不同,且含有不同類(lèi)型的雜質(zhì)。CNTs中碳原子的層數(shù)有單層、雙層和多層,這些都會(huì)影響CNTs預(yù)期的性能,進(jìn)而影響其后期應(yīng)用。Mirjalili等[27]研究發(fā)現(xiàn),SWCNTs/聚酰胺復(fù)合纖維比MWCNTs/聚酰胺復(fù)合纖維具有更低的表面電阻,且SWCNTs對(duì)復(fù)合纖維增強(qiáng)效果更好。
CNTs具有納米材料的強(qiáng)集聚效應(yīng),而且擁有納米級(jí)直徑和微米級(jí)長(zhǎng)度的超大長(zhǎng)徑比,使其更加容易纏結(jié),且各種易集聚因素的疊加使CNTs分散更為困難,團(tuán)聚體結(jié)合更加緊密[28]。團(tuán)聚體的存在限制了CNTs作為功能填料在基體中的質(zhì)量分?jǐn)?shù),阻礙了功能網(wǎng)絡(luò)的形成,甚至形成應(yīng)力集中點(diǎn),進(jìn)而降低了基體材料的性能。團(tuán)聚體的存在對(duì)CNTs/聚合物復(fù)合纖維而言尤其不利,這些CNTs團(tuán)聚體的不規(guī)則分布會(huì)使在熔融紡絲過(guò)程中的紡絲組件壓力不穩(wěn),出絲不連續(xù),從而無(wú)法實(shí)現(xiàn)牽伸和卷繞,甚至堵塞濾網(wǎng)和螺桿,對(duì)紡絲設(shè)備造成損傷。CNTs分散性不好,在某種程度上也增大了CNTs的用量,造成資源和能源的浪費(fèi)。由于原始的CNTs表面缺乏活性基團(tuán),化學(xué)性質(zhì)穩(wěn)定呈非極性,與聚酰胺之間的界面作用只有色散力,更無(wú)法與聚酰胺之間發(fā)生化學(xué)鍵合,再加上表面缺陷少,難以形成機(jī)械縮合力,這些因素使得CNTs與基體間的界面結(jié)合牢度不強(qiáng),不能通過(guò)CNTs/基體界面提供有效的負(fù)載轉(zhuǎn)移。然而有研究表明,通過(guò)酸化、等離子體活化等方式處理,可使CNTs表面形成羥基、羧基或氨基等活性基團(tuán),使其表面得到氫鍵和誘導(dǎo)力[29]。CNTs官能團(tuán)化可以改善CNTs與聚酰胺基體的界面相互作用,減弱CNTs之間的團(tuán)聚狀態(tài),從而在基體中形成良好的CNTs網(wǎng)絡(luò),當(dāng)CNTs的含量達(dá)到閾值時(shí),即得到增強(qiáng)的纖維或賦予復(fù)合纖維某種功能性。然而,當(dāng)CNTs含量較高時(shí),將顯著降低復(fù)合纖維的彈性,纖維脆化而出現(xiàn)強(qiáng)力下降的現(xiàn)象,并且CNTs的功能網(wǎng)絡(luò)在大應(yīng)變下容易遭到破壞,減短了功能纖維的使用壽命。
紡絲工藝對(duì)聚酰胺基碳納米管復(fù)合纖維的性能有著重大的影響。劉洋等[30]研究了靜電紡絲工藝,包括電場(chǎng)強(qiáng)度、紡絲電壓、紡絲高度等參數(shù)對(duì)MWCNTs/PA6納米纖維的結(jié)構(gòu)與性能的影響。紡絲電壓與纖維的直徑、結(jié)晶度、斷裂強(qiáng)力成正比;紡絲高度的增加,使纖維的定向排列程度提高、纖維的斷裂強(qiáng)度和初始模量增加。Palardy等[31]通過(guò)熔融紡絲法制備MWCNTs/PA12長(zhǎng)絲,在經(jīng)過(guò)140 ℃的熱定型和500%的牽伸后,含有5%多壁碳納米管的MWCNTs/PA12長(zhǎng)絲的楊氏模量達(dá)到了3 800 MPa,是PA12纖維的146%。在纖維的成型過(guò)程中,牽伸處理可誘導(dǎo)大分子鏈沿紡程方向的取向,同時(shí)可誘導(dǎo)CNTs的分散,進(jìn)而使復(fù)合纖維的物理力學(xué)性能得到提高。對(duì)于熔融紡絲制備的CNTs/PA復(fù)合纖維,計(jì)量泵轉(zhuǎn)速、卷繞速度和牽伸工藝等都能對(duì)復(fù)合纖維的性能產(chǎn)生影響。表1是不同牽伸比的PA6/11/CNTs復(fù)合纖維的拉伸強(qiáng)度[32],可以看出在牽伸比為3~4倍時(shí),隨著CNTs添加量的增加,復(fù)合纖維的拉伸強(qiáng)度逐漸增大,直到達(dá)到一定峰值。當(dāng)CNTs添加量一定,牽伸比為3~7倍時(shí),復(fù)合纖維的拉伸強(qiáng)度隨著牽伸比的增加而增大。
以上分析表明,不同的CNTs制備方法和層數(shù)、結(jié)構(gòu),CNTs的分散效果在基體中的分散效果及其與基體的界面結(jié)合牢度,聚酰胺基碳納米管復(fù)合纖維的紡絲及牽伸工藝等都是影響聚酰胺基碳納米管復(fù)合纖維質(zhì)量的因素。因此,在開(kāi)發(fā)這種復(fù)合纖維的時(shí)候需要充分考慮到對(duì)各種影響因素的把握。
3 聚酰胺基碳納米管纖維的應(yīng)用前景
CNTs獨(dú)特的物理力學(xué)、熱學(xué)及電學(xué)等性能,使其具有開(kāi)發(fā)功能性增強(qiáng)材料的理想優(yōu)勢(shì)。進(jìn)入21世紀(jì)后,CNTs的產(chǎn)量迅速提高,其生產(chǎn)成本也隨之下降[33],為CNTs及其復(fù)合材料的研究和推廣應(yīng)用提供了良好的前提基礎(chǔ)。PA纖維強(qiáng)度高、質(zhì)輕、耐化學(xué)性好并且具有優(yōu)異的再加工性,通過(guò)適當(dāng)?shù)姆椒▽⒁欢ㄙ|(zhì)量分?jǐn)?shù)的CNTs加入PA纖維可使其力學(xué)性能得到增強(qiáng)、熱學(xué)性能和電學(xué)性能得到改善,甚至賦予其導(dǎo)電、吸波等功能,具有廣闊的應(yīng)用前景。
3.1 CNTs增強(qiáng)纖維
由于其優(yōu)異的物理力學(xué)性能、低密度及高長(zhǎng)徑比等特點(diǎn),CNTs被視為建造太空電梯及制備輕質(zhì)高強(qiáng)的多功能復(fù)合材料的理想增強(qiáng)材料。CNTs中的碳原子為鍵長(zhǎng)短、鍵能大的CC共價(jià)鍵的形式互相連接在一起,賦予其很高的軸向強(qiáng)度、彈性模量和韌性[34]。若能夠在PA基體中形成良好的分散網(wǎng)絡(luò)和取向度,并且和基體形成良好的界面結(jié)合,通過(guò)CNTs/基體界面提供有效的負(fù)載轉(zhuǎn)移,即可利用CNTs作為增強(qiáng)體制備高性能增強(qiáng)PA纖維。CNTs增強(qiáng)的PA纖維,其高強(qiáng)/高韌的性能將有望在航空航天、軍工防護(hù)等特種領(lǐng)域發(fā)揮更加重要的作用。
3.2 導(dǎo)熱、耐高溫和阻燃材料
CNTs良好的軸向?qū)嵝阅芎蜔岱€(wěn)定性可改善材料的導(dǎo)熱性、耐高溫性和阻燃性能,是目前世界上所發(fā)現(xiàn)的最好的耐熱材料之一,已經(jīng)測(cè)量得到的MWCNTs的熱導(dǎo)率為3 000 W/(m·K)左右[35],在大氣環(huán)境下CNTs可以承受450 ℃以上的高溫[36]。Cai等[37]采用靜電紡絲法制備了月桂酸(LA)功能化的PA6/CNTs復(fù)合超細(xì)纖維,CNTs的加入提高了PA6/CNTs復(fù)合纖維的起始熱降解溫度、最大熱失重溫度,還顯著提高了材料的導(dǎo)熱性能,有助于提高復(fù)合纖維的熱穩(wěn)定性,降低其燃燒性能。這些特性使PA6/CNTs復(fù)合纖維在導(dǎo)熱、保溫和阻燃功能纖維等方面具有潛在的應(yīng)用前景。
3.3 電學(xué)相關(guān)材料
CNTs具有優(yōu)異的電學(xué)性能。CNTs的電學(xué)特性與它的結(jié)構(gòu)相關(guān),CNTs中碳原子之間為sp2雜化,每個(gè)碳原子均有一個(gè)未成對(duì)的電子位于垂直于石墨片層的π軌道上,電子在片層方向上的電阻率小,能夠承受很大的電流密度。由于直徑和管壁螺旋角的不同,其可呈現(xiàn)為不同能帶大小的半導(dǎo)體型CNTs或金屬型CNTs[38]。基于CNTs的電學(xué)功能,其常被用于功能填料以期改善聚合物基體的電學(xué)性能,進(jìn)而賦予CNTs/聚合物復(fù)合材料電學(xué)相關(guān)的新功能。聚酰胺基碳納米管復(fù)合纖維不僅可應(yīng)用于防靜電、防電磁輻射等功能防護(hù)服,也可應(yīng)用于智能溫度調(diào)節(jié)、運(yùn)動(dòng)監(jiān)測(cè)功能等柔性智能服裝可穿戴設(shè)備的傳輸線、傳感器、驅(qū)動(dòng)器、電極材料及超級(jí)電容器[39]等元器件。
此外,在醫(yī)學(xué)領(lǐng)域,聚酰胺基碳納米管復(fù)合纖維還有望應(yīng)用于柔性康復(fù)輔助穿戴設(shè)備來(lái)代替?zhèn)鹘y(tǒng)設(shè)備的剛性模塊,用于幫助卒中患者或身體機(jī)能損傷人員的康復(fù)訓(xùn)練,或協(xié)助有身體缺陷者進(jìn)行日?;顒?dòng)。聚酰胺基碳納米管復(fù)合纖維還被應(yīng)用于提高某些細(xì)胞活性的生物支架材料[40]、人工肌肉纖維的應(yīng)變傳感器[41]、采集人體肌電信息用于免疫傳感器[42]及太陽(yáng)能系統(tǒng)的光熱吸收轉(zhuǎn)化[43]設(shè)備等。聚酰胺基碳納米管纖維糅合了聚酰胺易于加工、應(yīng)用廣泛等特點(diǎn),與CNTs納米粒子帶來(lái)的納米效應(yīng)和功能性產(chǎn)生協(xié)同效應(yīng),使復(fù)合纖維具有優(yōu)良的力學(xué)、熱學(xué)及電學(xué)等性能,是一種前景光明的高性能、高附加值的功能纖維。
4 結(jié) 語(yǔ)
CNTs具有優(yōu)異的力學(xué)、電學(xué)、熱學(xué)等性能,但高純CNTs纖維的生產(chǎn)難度和技術(shù)要求較高,限制了其優(yōu)異性能的應(yīng)用。以PA為基體,通過(guò)添加CNTs制備聚酰胺基碳納米管復(fù)合纖維,可有效解決CNTs后續(xù)加工性能差的問(wèn)題,并賦予PA纖維新的功能。然而,CNTs纖維具有納米粒子的強(qiáng)集聚效應(yīng),一方面很難在高黏度的PA中良好分散,另一方面要兼顧材料的剛性和韌性十分困難。通過(guò)功能化改性可改善碳納米管的分散性并加強(qiáng)其與聚合物基體之間的界面相互作用,是實(shí)現(xiàn)纖維高性能化和功能化的有效方法。通過(guò)解決CNTs分散性難題及對(duì)CNTs與PA基體界面作用機(jī)理的研究,同時(shí)進(jìn)行可控工藝條件優(yōu)化,對(duì)制備出成本低廉、物化性能優(yōu)良且具有良好功能性的聚酰胺基碳納米管復(fù)合纖維具有重要的現(xiàn)實(shí)意義。
《絲綢》官網(wǎng)下載
中國(guó)知網(wǎng)下載
參考文獻(xiàn):
[1]IIJIMA S. Helical microtubes of graphitic carbon[J]. Nature, 1991, 354: 56-58.
[2]RATHINAVEL S, PRIYADHARSHINI K, PANDA D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application[J]. Materials Science and Engineering: B, 2021, 268: 115095.
[3]李清文, 趙靜娜, 張驍驊. 碳納米管纖維的物理性能與宏量制備及其應(yīng)用[J]. 紡織學(xué)報(bào), 2018, 39(12): 145-151.
LI Qingwen, ZHAO Jingna, ZHANG Xiaohua. Physical properties and masspreparation and application of carbon nanotube fibers[J]. Journal of Textile Research, 2018, 39(12): 145-151.
[4]朱建民, 周衛(wèi)東. 聚酰胺纖維[M]. 北京: 化工工業(yè)出版社, 2014: 232-234.
ZHU Jianmin, ZHOU Weidong. Polyamide Fiber[M]. Beijing: Chemical Industry Press, 2014: 232-234.
[5]REZA F Z. Experimental evaluation of ultrasonic-assisted friction stir process effect on in situ dispersion of multi-walled carbon nanotubes throughout polyamide 6[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(9): 2087-2098.
[6]CHEN T, LIU H H, WANG X C, et al. Properties and fabrication of PA66/surface-modified multi-walled nanotubes composite fibers by ball milling and melt-spinning[J]. Polymers, 2018, 10(5): 547.
[7]ZEINAB M, MINA H, KHALIL F. Synthesis of bio-based polyamide/acid-functionalized multiwalled carbon nanotube nanocomposites using vanillin[J]. Polymer-Plastics Technology and Engineering, 2018, 57(13): 1367-1376.
[8]CHOPRA S, RAMANADHAMB V, VULLENGALAB S P. Outcome of using olive oils for MWCNT functionalization and the influence of —OH modified MWCNTs on PA and PBT nano-composites[J]. Materials Today: Proceedings, 2020, 28(2): 408-419.
[9]FUJIGAYA T, NAKASHIMA N. Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants[J]. Science and Technology of Advanced Materials, 2015, 16(2): 024802.
[10]FATHOLLAH P, SEYED H J, YADOLLAH M, et al. Combination of plasma functionalization and phase inversion process techniques for efficient dispersion of MWCNTs in polyamide 6: Assessment through morphological, electrical, rheological and thermal properties[J]. Polymer-Plastics Technology and Engineering, 2015, 54(6): 632-638.
[11]YENG F S, VENKATA K, YOU T L. Effect of surface modification on multi-walled carbon nanotubes and their reinforced nylon composites[J]. Key Engineering Materials, 2020, 847: 108-113.
[12]WANG J H, YANG D F, GAO X L, et al. Tip and inner walls modification of single-walled carbon nanotubes (3.5 nm diameter) and preparation of polyamide/modified CNT nanocomposite reverse osmosis membrane[J]. Journal of Experimental Nanoscience, 2018, 13(1): 11-26.
[13]侯立晨, 劉海輝, 王寧, 等. 功能化碳納米管的制備及功能化碳納米管/尼龍6復(fù)合纖維[J]. 復(fù)合材料學(xué)報(bào), 2013, 30(1): 45-53.
HOU Lichen, LIU Haihui, WANG Ning, et al. Preparation and characterization of carboxylic multi-walled carbon nanotubes/PA6 composites by solution mixing process[J]. Acta Materiae Compositae Sinica, 2013, 30(1): 45-53.
[14]ZHANG J, YU W G, ZHANG X Y, et al. Enhancement of physical and mechanical properties of polyamide 66 fibers using polysiloxane-functionalized multi-walled carbon nanotubes[J]. Journal of Applied Polymer Science, 2020, 138(14): 1-14.
[15]劉海軍, 陳曉婷, 蔡宏強(qiáng), 等. 超支化聚酰胺改性多壁碳納米管的制備與表征[J]. 化工新型材料, 2015, 43(9): 92-94.
LIU Haijun, CHEN Xiaoting, CAI Hongqiang, et al. Preparation and characterization of multi-walled carbon nanotubes modified by hyperbranched polyamides[J]. New Chemical Materials, 2015, 43(9): 92-94.
[16]江盛玲, 齊士成, 員榮平, 等. 碳納米管功能化的途徑、機(jī)理和表面特征[J]. 當(dāng)代化工, 2014, 43(8): 1425-1428.
JIANG Shengling, QI Shicheng, YUAN Rongping, et al. Functionalization approaches, mechanisms and surface features of functionalized carbon nanotubes[J]. Contemporary Chemical Industry, 2014, 43(8): 1425-1428.
[17]SUN Y, FU W X, LI Z B, et al. Tailorable aqueous dispersion of single-walled carbon nanotubes using tetrachloroperylene-based bolaamphiphiles via noncovalent modification[J]. Langmuir: The ACS Journal of Surfaces and Colloids, 2014, 30(28): 8615-8620.
[18]ZHENG T, XU N, KAN Q, et al. Wet-spinning assembly of continuous, highly stable hyaluronic/multiwalled carbon nanotube hybrid microfibers[J]. Polymers, 2019, 11(5): 867.
[19]ZHENG T, POUR S S A P, SEO J, et al. Biocompatible carbon nanotube-based hybrid microfiber for implantable electrochemical actuator and flexible electronic applications[J]. ACS Appl Mater Interfaces, 2019, 11(23): 20615-20627.
[20]XUE C H, ZHOU R J, SHI M M, et al. The preparation of highly water-soluble multi-walled carbon nanotubes by irreversible noncovalent functionalization with a pyrene-carrying polymer[J]. Nanotechnology, 2008, 19(21): 215604.
[21]SCAFFARO R, MAIO A, TITO A C. High performance PA6/CNTs nanohybrid fibers prepared in the melt[J]. Composites Science and Technology, 2012, 72(15): 1918-1923.
[22]IRISAWA T, SHIMAMOTO D, TAKESHIGE K. The effects of pulverization treatment for the mechanical properties of polyamide 6 fiber filled with carbon nanotubes[J]. Materials Science & Engineering: B, Solid-State Materials for Advanced Technology, 2020, 254: 114514.
[23]BAJI A, MAI Y W, WONG S C. Effect of fiber diameter on the deformation behavior of self-assembled carbon nanotube reinforced electrospun polyamide 6, 6 fibers[J]. Materials Science & Engineering: A, Structural Materials: Properties, Misrostructureand Processing, 2011, 528(21): 6565-6572.
[24]LI J, TIAN L, PAN N. Mechanical and electrical properties of the PA6/SWNTs nanofiber yarn by electrospinning[J]. Polymer Engineering and Science, 2014, 54(7): 1618-1624.
[25]夏禹舜, 王迎, 張延輝. 導(dǎo)電錦/棉復(fù)合紗的設(shè)計(jì)與開(kāi)發(fā)[J]. 上海紡織科技, 2020, 48(9): 33-35.
XIA Yushun, WANG Ying, ZHANG Yanhui. Design and development of conductive brocade/cotton composite yarn[J]. Shanghai Textile Science & Technology, 2020, 48(9): 33-35.
[26]GUAN X Y, ZHENG G Q, DAI K, et al. Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility[J]. ACS Applied Materials & Interfaces, 2016, 8(22): 14150-14159.
[27]MIRJALILI M, KARIMI L. Preparation of melt spun electroconductive fine fibres containing carbon nanotubes[J]. Autex Research Journal, 2015, 15(2): 87-92.
[28]ZHANG J W, YANG C, WEI F Q, et al. Study on the mechanism and process of a universal preparation of carbon nanotubes uniform dispersions in aqueous solution[J]. Ferroelectrics, 2020, 562(1): 135-144.
[29]張興祥, 耿宏章. 碳納米管、石墨烯纖維及薄膜[M]. 北京: 科學(xué)出版社, 2014: 282.
ZHANG Xingxiang, GENG Hongzhang. Carbon Nanotubes, Graphene Fibers and Films[M]. Beijing: Science Press, 2014: 282.
[30]劉洋, 徐安長(zhǎng), 陳倩, 等. 靜電紡絲工藝PA6/MWNTs納米纖維紗結(jié)構(gòu)與性能的影響[J]. 紡織學(xué)報(bào), 2010, 31(3): 1-6.
LIU Yang, XU Anchang, CHEN Qian, et al. Effect of electrospinning process on structure and property of PA6/MWNTs yarn[J]. Journal of Textile Research, 2010, 31(3): 1-6.
[31]PALARDY G, TRUDEL-BOUCHER D, HUBERT P. Investigation of a postprocessing method to tailor the mechanical properties of carbon nanotube/polyamide fibers[J]. Journal of Applied Polymer Science, 2013, 130(6): 4375-4382.
[32]于昆. 聚酰胺6/11/碳納米復(fù)合纖維的制備與性能研究[D]. 廣州: 華南理工大學(xué), 2020: 47-48.
YU Kun. Preparation and Properties of Polyamide 6/11/Carbon Nanocomposite Fibers[D]. Guangzhou: South China University of Technology, 2020: 47-48.
[33]MICHAEL F L, DE VOIDER, SAMEH H, et al. Carbon nanotubes: Present and future commercial applications[J]. Science, 2013, 339(6119): 535-539.
[34]劉國(guó), 薛東, 陶春立, 等. 碳納米管增強(qiáng)聚酰胺纖維的研究進(jìn)展[J]. 合成纖維, 2015, 44(1): 43-45.
LIU Guo, XUE Dong, TAO Chunli, et al. Research and development in carbon nanatubes reinforced polyamide fibers[J]. Synthetic Fiber, 2015, 44(1): 43-45.
[35]BERBER S, TOMANEK D, KWON Y K. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20): 4613-4616.
[36]HE W T, GAO J, LIAO S T, et al. A facile method to improve thermal stability and flame retardancy of polyamide 6[J]. Composites Communications, 2019, 13: 145-150.
[37]CAI Y B, XU X L, GAO C T, et al. Effects of carbon nanotubes on morphological structure, thermal and flammability properties of electrospun composite fibers consisting of lauric acid and polyamide 6 as thermal energy storage materials[J]. Fibers and Polymers, 2012, 13(7): 837-845.
[38]ZEINAB E, ALI N, HUSSEIN M, et al. Fine tuning of optoelectronic properties of single-walled carbon nanotubes from conductors to semiconductors[J]. Carbon, 2019, 153: 337-346.
[39]GAO T T, ZHOU Z, YU J Y, et al. All-in-one, compact architecture towards wearable, all-solid-state, high-volumetric-energy-density supercapacitors[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23834-23841.
[40]FABIO Z V. Physical and in vitro biological evaluation of a PA6/MWCNT electrospun composite for biomedical applications[J]. Journal of Bioactive and Compatible Polymers, 2011, 26(1): 35-47.
[41]吳鵬飛, 宋彥輝, 俞能晟, 等. 碳納米管/尼龍并股人工肌肉纖維的制備與性能表征[J]. 山東化工, 2019, 48(14): 16-20.
WU Pengfei, SONG Yanhui, YU Nengsheng, et al. Preparation and characterization of electrothermally driven carbon nanotube/nylon artificial muscles[J]. Shandong Chemical Industry, 2019, 48(14): 16-20.
[42]SOARES J C, IWAKI L E O, SOARES A C, et al. Immunosensor for pancreatic cancer based on electrospun nanofibers coated with carbon nanotubes or gold nanoparticles[J]. ACS Omega, 2017, 2(10): 6975-6983.
[43]MARCONNET A M, PANZER M A, GOODSON K E. Thermal conduction phenomena in carbon nanotubes and related nanostructured materials[J]. Reviews of Modern Physics, 2013, 85(3): 1295-1326.
Abstract:
Carbon nanotubes with unique structure, great specific surface area, good electrical conductivity and excellent mechanical properties are perfect fillers for preparing functional and high-performance composite materials. Polyamide fiber is widely used because of its excellent wear resistance and light weight. Polyamide-based carbon nanotube composite fibers can be prepared by a suitable method to obtain the effect of complementary advantages and improve the mechanical and electrical properties of polyamide fibers while giving full play to the functions of carbon nanotubes. The composite fibers have great application prospects in the fields of electric conduction, thermal conduction, electromagnetic shielding and high-performance fiber materials. However, the dispersion effect of carbon nanotubes in polyamide matrix and the interfacial bonding force between the two are the key factors affecting the quality of composite fibers, which are unavoidable in the research process.
In order to promote the development and application of polyamide-based carbon nanotube composite fibers, this paper started from the functional modification methods of carbon nanotubes, reviewed the influence of these methods on the dispersion of carbon nanotubes in polyamide matrix and their enhancement or functionalization effects of composite fibers. Then, the research status of polyamide-based carbon nanotube composite fibers was summarized according to the preparation methods, the key technologies and difficulties of its preparation were discussed. Finally, the application prospects of polyamide-based carbon nanotube composite fibers were prospected. The functional modification methods of carbon nanotubes can be divided into covalent functional modification and non-covalent functional modification. The covalent functional modification refers to activating the carbon nanotubes by oxidation or plasma treatment processes, and introducing active functional groups there, and then using the active points to carry out subsequent grafting modification. The non-covalent functional modification refers to using non-covalent bonds such as hydrogen bonds to make organic or inorganic macromolecules physically adsorbed or wrapped on the surface of carbon nanotubes. The covalently functionalized modified carbon nanotubes and the polyamide matrix have a stronger interface force, which would destroy the structure of carbon nanotubes. Despite little damage of non-covalent functionalization to the structure of carbon nanotubes, it is difficult to remove the dispersant. The polyamide-based carbon nanotube composite fibers can be prepared by the methods of melt spinning, electrospinning, impregnation and surface coating. Melt spinning is a simple process with high production efficiency, but in polyamide, a high viscosity polymer melt, it is difficult to disperse carbon nanotubes. Electrospinning method can be used to produce materials of ultra-high relative surface area, and at the meantime, the fillers can be effectively dispersed, arranged and oriented, but it has low efficiency. The impregnation and coating method can make the carbon nanotubes form a good functional network on the surface of the polyamide fiber, but carbon nanotubes on the fiber surface fall off easily. The factors affecting the quality of polyamide-based carbon nanotube composite fibers include the preparation method of carbon nanotubes and their structures, the processing and forming method and parameters of composite fibers, the content and dispersion state of carbon nanotubes, and the interfacial interaction between carbon nanotubes and polyamide matrix. Compared with multi-walled carbon nanotubes, single-walled carbon nanotubes endow polyamide-based carbon nanotube composite fibers with lower surface resistance and have better enhancement effect on the composite fibers. If the content of carbon nanotubes is too low, it cannot break through the functionalization or enhancement threshold. If the content is excessively high, it will form stress concentration, leading to the embrittlement of composite fibers. The polyamide-based carbon nanotube reinforced composite fibers can be applied in special fields with high requirements for fiber mechanical properties, with potential application prospects in the aspects of heat conduction, heat preservation, flame retardance due to the unique thermal characteristics. Carbon nanotubes have improved the electrical properties of the composite fiber, which can be applied to antistatic, electromagnetic radiation and other functional protective clothing and electronic components of smart wearable textiles. The polyamide-based carbon nanotube composite fibers can be prepared by adding carbon nanotubes with excellent properties into polyamide matrix through appropriate methods and processes, which can effectively solve the problem of poor processability of carbon nanotubes and endow polyamide fibers with new functions, and it is an effective method to achieve high performance and functionalization of fibers. Polyamide-based carbon nanotube composite fibers have good mechanical, electrical, thermal and other comprehensive properties, and have broad application prospects.
It is necessary to conduct in-depth research on the dispersion method of carbon nanotubes and the interfacial interaction mechanism between carbon nanotube and polyamide matrix, and to optimize the controllable and predictable process conditions. It is of great practical significance to prepare polyamide-based carbon nanotube composite fibers with excellent physical and chemical properties as well as good functions at low cost. It is necessary to further study on the application prospect of polyamide-based carbon nanotube composite fiber in high performance reinforcing fiber, electrical and thermal materials and expand to other fields.
Key words:
carbon nanotubes; carbon nanotube modification; polyamide fibers; flexible intelligent textiles; blended spinning