国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

4LZ-1.5型大豆聯(lián)合收獲機設計與試驗

2022-03-09 01:52:02倪有亮金誠謙王廷恩
農(nóng)業(yè)工程學報 2022年22期
關鍵詞:脫粒收獲機導流

倪有亮,金誠謙,2,王廷恩,周 磊,劉 政

·農(nóng)業(yè)裝備工程與機械化·

4LZ-1.5型大豆聯(lián)合收獲機設計與試驗

倪有亮1,金誠謙1,2※,王廷恩3,周 磊4,劉 政1

(1. 農(nóng)業(yè)農(nóng)村部南京農(nóng)業(yè)機械化研究所/農(nóng)業(yè)農(nóng)村部大豆機械化生產(chǎn)重點實驗室,南京 210014;2. 山東理工大學農(nóng)業(yè)工程與食品科學學院,淄博 255000;3. 臨沂鑫匯農(nóng)業(yè)機械有限公司,臨沂 276000;4. 中國科協(xié)培訓和人才服務中心,北京 100089)

為實現(xiàn)國內(nèi)大豆大田生產(chǎn)低損收獲同時兼顧大豆育種小區(qū)收獲,該研究設計了4LZ-1.5型大豆聯(lián)合收獲機,針對大豆成熟期易炸莢的特性,分析了大豆撥禾作業(yè)過程,建立了撥禾輪結(jié)構(gòu)和運動參數(shù)求解模型,并對撥禾輪半徑、撥禾速度比、撥禾輪轉(zhuǎn)速等參數(shù)進行優(yōu)化;針對大豆結(jié)莢低、收割易鏟土的特性,分析了大豆籽粒尺寸參數(shù)統(tǒng)計規(guī)律,并對割臺除土機構(gòu)進行優(yōu)化;針對大豆成熟期易脫粒、易破碎特性,對脫粒分離裝置、清選裝置和氣力卸糧裝置進行優(yōu)化;針對育種小區(qū)收獲要求,建立了清種裝置曲柄搖桿機構(gòu)數(shù)字化設計模型,確定了清種裝置結(jié)構(gòu)參數(shù)。分別進行大田生產(chǎn)和育種小區(qū)收獲試驗,結(jié)果表明,大豆大田生產(chǎn)收獲的損失率<3.5%,破碎率<1.5%,含雜率<1.0%;大豆育種小區(qū)收獲的損失率<3.0%,破碎率<1.5%,含雜率<1.0%,混種率<0.2%,清種時間200~270 s,滿足大豆大田生產(chǎn)和育種小區(qū)收獲作業(yè)要求。與現(xiàn)有大豆收獲機械相比,4LZ-1.5型大豆聯(lián)合收獲機收獲損失率降低1.5~5.0個百分點、破碎率降低3.5~6.5個百分點、含雜率降低2.0~7.0個百分點,研究結(jié)果可為后續(xù)大豆收獲機結(jié)構(gòu)改進和作業(yè)參數(shù)優(yōu)化提供參考。

農(nóng)業(yè)機械;收獲;大豆;小區(qū)育種;優(yōu)化;清種

0 引 言

大豆是油脂和優(yōu)質(zhì)植物蛋白的主要來源,是我國重要的糧油作物、戰(zhàn)略物資[1-2]。2021年中國大豆播種面積約930萬hm2,種植規(guī)模逐年增加,但生產(chǎn)效益較低,與之配套的育種和大田機械化生產(chǎn)體系不完善,尤其是大豆機械化收獲水平總體比較落后[3],制約了大豆產(chǎn)業(yè)的發(fā)展。中國南方和黃淮海地區(qū)大豆專用收獲機嚴重缺乏,目前主要利用稻麥聯(lián)合收獲機進行部分作業(yè)參數(shù)調(diào)整后收獲大豆,收獲質(zhì)量差、破碎率高、損失大[4-5];大豆育種小區(qū)收獲仍主要依靠人工或固定式脫粒機[6-7],作業(yè)效率低,限制了小區(qū)育種規(guī)模。

近年來,大豆收獲技術(shù)和裝備研究逐漸得到重視,相關領域?qū)<以诖蠖故斋@技術(shù)上進行了大量研究并取得了一定進展。大豆收獲割臺方面,解鴻儒等設計了一種大豆專用勻流輸送割臺,在割刀與攪龍之間設計了輔助喂入裝置,利用輸送帶實現(xiàn)大豆主動喂入[8];袁玲合等設計了一種大豆機械式切割機構(gòu),并對切割過程進行了仿真優(yōu)化[9];Ni等設計了一種大豆液壓仿形割臺,優(yōu)化了基于土壤-機器互作機理的割臺高度自適應調(diào)控系統(tǒng)[10];金誠謙等對大豆收獲機割臺仿形機構(gòu)進行了優(yōu)化設計[11]。大豆收獲脫粒裝置方面,康家鑫等設計了一種對稱可調(diào)式凹板篩,確定了脫粒間隙調(diào)整量,實現(xiàn)滾筒雙側(cè)脫粒間隙可調(diào)[12];陳艷普等設計了一種大豆縱軸流雙螺旋滾筒,并對脫出物分布規(guī)律進行了研究[13-14];金誠謙等研究了不同脫粒滾筒結(jié)構(gòu)形式對大豆收獲質(zhì)量影響規(guī)律,確定了不同含水率條件下脫粒元件選用和最優(yōu)脫粒作業(yè)參數(shù)匹配[15];Teng等設計了一種脫粒面積可調(diào)式脫粒系統(tǒng),通過電機調(diào)節(jié)凹板篩閉合面積實現(xiàn)大豆脫粒強度調(diào)控[16-17];楊歡等針對西南丘陵地區(qū)大豆收獲,設計了一種小喂入量縱軸流脫粒裝置,并通過多因素試驗優(yōu)化了滾筒轉(zhuǎn)速和導向板升角[18]。大豆收獲清選裝置方面,劉鵬等設計了一種作業(yè)參數(shù)可檢測可調(diào)控的清選系統(tǒng),進行了不同清選篩對大豆清選適應性試驗,優(yōu)化了大豆聯(lián)合收獲機清選作業(yè)參數(shù)[19-21];高連興等基于大豆脫粒機設計了一種氣力清選循環(huán)裝置,通過漂移速度試驗確定了風機轉(zhuǎn)速和振動篩頻率[22]。大豆育種小區(qū)方面,目前仍采用人工收割、脫粒機脫粒的收獲方式,李若曦等提出了一種切流式大豆育種脫粒機結(jié)構(gòu)[23];侯守印等設計了一種立式軸流大豆育種專用脫粒機,并對脫粒、分離、清選裝置的結(jié)構(gòu)與工作參數(shù)進行了試驗優(yōu)化[24]。

針對南方和黃淮海地區(qū)大豆大田生產(chǎn)收獲問題,兼顧大豆育種小區(qū)收獲,本文設計了4LZ-1.5型大豆聯(lián)合收獲機,對六輻偏心撥禾輪、割臺除土機構(gòu)、脫粒分離裝置、清選裝置、清種裝置和氣力卸糧裝置進行優(yōu)化,同時在大豆收獲機上開發(fā)集成育種小區(qū)收獲所需的清種裝置,以提高清種效率、降低含雜率,并分別進行大田生產(chǎn)和育種小區(qū)收獲試驗,以期為大豆收獲機的優(yōu)化設計提供參考。

1 整機結(jié)構(gòu)與工作原理

4LZ-1.5型大豆聯(lián)合收獲機主要由割臺、中間輸送裝置、脫粒分離裝置、清選裝置、籽粒升運器、復脫升運器、糧箱、清種裝置和底盤等組成,結(jié)構(gòu)如圖1所示,主要參數(shù)如表1所示。大豆收獲作業(yè)時,大豆被割刀切割后經(jīng)由撥禾輪撥入割臺內(nèi)部,通過割臺喂入攪龍將大豆植株輸送至中間輸送裝置,并通過中間輸送裝置將大豆植株輸送至脫粒分離裝置,單縱軸流脫粒滾筒脫分作業(yè)后,大豆籽粒和雜余落在清選裝置篩面上進行清選作業(yè),雜余和秸稈分離出收獲機,大豆籽粒落入水平籽粒螺旋輸送器,并通過籽粒升運器輸送至糧箱;部分雜余和未脫凈豆莢進入水平雜余螺旋輸送器,通過復脫升運器再次輸送至脫粒滾筒前段進行二次脫粒;收獲完成或糧箱裝滿后,通過氣力卸糧裝置卸糧。對于大豆育種小區(qū)收獲、種子收獲等對品種一致性要求高的作業(yè)場景,利用清種裝置,放出殘留在水平籽粒螺旋輸送器和水平雜余螺旋輸送器中的大豆,完成清種,避免漏種、混種。

1.割臺 2.操控臺 3.糧箱 4.籽粒升運器 5.復脫升運器 6.撥禾輪 7.中間輸送裝置 8.底盤 9.側(cè)圓孔凹板篩 10.清種裝置 11.清選裝置 12.脫粒分離裝置

表1 4LZ-1.5型大豆聯(lián)合收獲機主要參數(shù)

2 關鍵部件設計

2.1 割臺

2.1.1 六輻偏心撥禾輪

大豆成熟期易炸莢,撥禾輪轉(zhuǎn)速過大,豆莢在撥禾過程易受力炸裂,造成極大的割臺損失,故撥禾過程需要低轉(zhuǎn)速作業(yè);大豆結(jié)莢位置低,底部結(jié)莢離地高度小,貼地收割時需要將整株大豆同步撥入割臺,因此需要較高的撥禾頻率?,F(xiàn)有五輻撥禾輪收獲大豆時需采用較高的轉(zhuǎn)速,撥禾線速度過大造成大豆損失嚴重。為兼顧低轉(zhuǎn)速、高頻率的撥禾作業(yè),本文設計了六輻偏心撥禾輪,并對彈齒排布參數(shù)、撥禾輪結(jié)構(gòu)參數(shù)和運動參數(shù)進行優(yōu)化。六輻偏心撥禾輪主要由彈齒壓板、尼龍彈齒、主六邊輻盤、主軸、尼龍卡套、曲柄、副六邊輻盤、偏心環(huán)和輻條等組成,其結(jié)構(gòu)如圖2所示。

1.彈齒壓板 2.尼龍彈齒 3.主六邊輻盤 4.主軸 5.尼龍卡套 6.曲柄 7.副六邊輻盤 8.偏心環(huán) 9.輻條

4LZ-1.5型大豆聯(lián)合收獲機主要針對南方和黃淮海及育種小區(qū)地塊設計,大豆行距約350~400 mm,一次完成4行大豆收獲,收獲寬度約1 400~1 600 mm,兼顧整機尺寸配置,割臺作業(yè)幅寬設計為1 500 mm,彈齒壓板長度=1 300 mm。為提高大豆植株喂入成功率,減少漏枝、掉枝,同時降低彈齒對大豆植株過度撥禾,需要合理設計彈齒排布數(shù)量。

試驗測試了國內(nèi)主要大豆品種植株性狀參數(shù),其平均值如表2所示。

表2 主要大豆品種植株物理性狀參數(shù)

收割時,為確保大豆植株受到扶禾作用,在大豆蓬徑范圍內(nèi)至少有一個尼龍彈齒撥禾,即大豆植株蓬徑d大于相鄰尼龍彈齒中心距Δ1;同時,對于蓬徑較大的植株,為減少多個彈齒對植株撥禾打擊造成落粒損失,蓬徑內(nèi)應少于3個彈齒撥禾,即d<2Δ1,依據(jù)表2測量的數(shù)據(jù),同時設計的尼龍彈齒寬度為40 mm,故有:

式中Δ1為相鄰尼龍彈齒中心距,mm;為彈齒數(shù)量;dmin為最小蓬徑,mm,取試驗采集的大豆品種中平均蓬徑的最小值,即85 mm;dmax為最大蓬徑,mm,取試驗采集的大豆品種中平均蓬徑的最大值,即138 mm。

綜合考慮彈齒壓板尺寸和彈齒布局,取Δ1=73 mm,=17。

撥禾輪與螺旋扒指輸送器、割刀在割臺的分布關系如圖3所示,尼龍彈齒撥禾作業(yè)的運動軌跡呈長幅擺線形態(tài),根據(jù)現(xiàn)有研究[25],撥禾輪的尼龍彈齒在1下段弧線運動過程中,大豆植株由割刀切割后受力向螺旋扒指輸送器運動,直接撥禾的長度l1為

式中為撥禾輪半徑,m;為撥禾速度比。

1.撥禾輪 2.螺旋扒指輸送器 3.割臺后壁 4.三角死區(qū) 5.割刀

1.Reel 2.Spiral finger conveyor 3.Header rear side panel 4.Triangle dead zone 5.Cutter

注:為撥禾輪半徑,m;1為輸送器外圓半徑,m;l為三角形“死區(qū)”到輸送器端部的距離,m;l為割刀到輸送器中心軸距離,m;1為撥禾輪彈齒壓板運動軌跡所形成線圈的最大橫弦,m。

Note:is the radius of the reel, m;1is the outer radius of the spiral finger conveyor, m;lis the distance from the triangle dead zone to the end of the spiral finger conveyor, m;lis the distance from the cutter to the central axis of the spiral finger conveyor, m;1is the maximum transverse chord of the coil formed by the movement track of the spring tooth plate of the reel, m.

圖3 撥禾輪運動示意圖

Fig.3 Reel movement diagram

在撥禾輪、割刀和螺旋輸送器之間形成三角形“死區(qū)”,大豆植株若切割后堆放在“死區(qū)”內(nèi),不利于向后輸送,造成堆積;同時,收割作業(yè)時,為減少撥禾輪打擊豆莢致使其炸裂,撥禾輪尼龍彈齒應調(diào)節(jié)為豎直方向插入大豆植株內(nèi),撥禾作用點在切斷后大豆植株的重心位置上下,即撥禾作業(yè)過程,重心移動距離近似與1長度相等。為保障大豆植株在割臺順利輸送、避免切割后大豆植株從割臺滑落,大豆重心應移動至“死區(qū)”中心位置,即大豆植株直接撥禾作業(yè)段l1應大于三角形“死區(qū)”到輸送器端部的距離l的一半,即l1>l/2,建立參數(shù)求解模型:

根據(jù)團隊前期試驗研究結(jié)果[21,26],大豆收獲機合理收獲作業(yè)速度在1.0~1.6 m/s,撥禾輪合理轉(zhuǎn)速n在30~38 r/min,l取測試大豆品種最小值0.458 m,在收獲作業(yè)時調(diào)至0.05 m。考慮大豆植株平均高度以及大豆撥禾過程易炸莢特性,割臺前端適當加長,設計l=0.48 m,螺旋扒指輸送器采用現(xiàn)有成熟產(chǎn)品,半徑1=0.25 m。利用MATLAB編程建模求解,取=0.52 m,=1.6,此時n=35 r/min,v=1.2 m/s。

2.1.2 除土機構(gòu)

大豆是低結(jié)莢作物,底莢高度通常在11~18 cm[10],收獲過程割臺貼地行走,割刀離地高度通常要求在5 cm左右,割刀易鏟土帶入割臺,大豆收獲輸送過程,籽粒與土粒黏附,嚴重影響大豆收獲品質(zhì)。因此,需要在大豆植株進入脫粒室前,進行除土,如圖4所示,在割臺、中間輸送裝置底部設計了除土機構(gòu)。

注:lk1為篩板長條孔寬度,mm;lk2為篩板長條孔長度,mm。

割臺除土機構(gòu)主要由篩板、彈簧卡扣、長條孔、R型銷、套筒和銷軸等組成,長條孔寬度直接影響割臺除土性能,寬度過大,易造成割臺處大豆籽粒損失;寬度過小,土粒難以漏出,除土功能不佳,故需要充分研究大豆籽粒尺寸參數(shù)分布,合理設計長條孔寬度。

大豆籽粒近似為一個不等邊橢球體,其在長軸、短軸、極軸的直徑分別定義為大豆籽粒的長度、寬度、高度,試驗測試采集了國內(nèi)主要大豆品種中黃13、中黃37和冀豆21的籽粒尺寸參數(shù),測量值范圍如表3所示。

表3 主要大豆品種籽粒尺寸參數(shù)

2.2 脫粒分離裝置

大豆成熟期易脫粒、易破碎,傳統(tǒng)的釘齒脫粒滾筒對大豆脫粒破碎較大,本文結(jié)合大豆作物特性和脫粒作業(yè)要求,對大豆脫粒分離裝置進行了設計優(yōu)化,大豆脫粒分離裝置主要由單縱軸流脫粒滾筒、圓孔凹板篩、脫粒滾筒頂蓋和傳動裝置等組成,其結(jié)構(gòu)如圖5所示。

1.脫粒滾筒頂蓋 2.側(cè)圓孔凹板篩 3.單縱軸流脫粒滾筒 4.圓孔凹板篩 5.固定架 6.傳動裝置 7.導流板角度調(diào)節(jié)機構(gòu)

2.2.1 單縱軸流脫粒滾筒

大豆單縱軸流脫粒滾筒采用閉式滾筒結(jié)構(gòu),主要由滾筒轉(zhuǎn)軸、螺旋喂入頭、閉式滾筒外殼、調(diào)節(jié)口、脫粒弓齒、分離釘齒等主要部件組成,功能上主要分為喂入段、脫粒段和分離段,大豆植株通過喂入段進入脫粒室,經(jīng)由脫粒段的脫粒弓齒作用完成脫粒作業(yè),在分離段排出秸稈。

大豆秸稈量較大,莖稈相對水稻、小麥較粗,傳統(tǒng)開式滾筒脫粒時,秸稈易纏繞滾筒轉(zhuǎn)軸形成堵塞,故采用閉式滾筒結(jié)構(gòu)。適收期內(nèi)大豆易脫粒、易破碎,脫粒元件采用弓齒結(jié)構(gòu),對大豆豆莢、籽粒壓強較小,實現(xiàn)大豆脫粒功能的同時,降低了籽粒損傷;在分離段采用活動釘齒,占據(jù)分離段空間小,具有較強的秸稈強制排出能力。

1.滾筒轉(zhuǎn)軸 2.螺旋喂入頭 3.閉式滾筒外殼 4.調(diào)節(jié)口 5.脫粒弓齒 6.分離釘齒

傳統(tǒng)脫粒滾筒的脫粒齒多采用等距的排布方式,而大豆成熟期易脫粒,根據(jù)試驗觀察,收獲過程待脫大豆量在軸流滾筒脫粒段軸向逐漸減少、脫粒功耗逐漸降低,脫粒弓齒軸向分布應先密后疏,弓齒排布方式如圖 7所示。

注:lt為脫粒段長度,mm;lf為分離段長度,mm;xn為第n個脫粒弓齒到脫粒段邊緣距離,mm。

為滿足大豆脫粒量先密后疏的作業(yè)規(guī)律,脫粒弓齒齒距逐步遞增,設計每組脫粒弓齒的齒距差為二階等差數(shù)列:

脫粒段長度為

2.2.2 凹板篩

成熟期大豆易脫粒,大豆籽粒在脫粒室滯留時間過長會增加大豆破碎概率,故需增加凹板篩孔數(shù)量和面積,提高大豆籽粒在凹板篩處的通過性。如圖8所示,圓孔凹板篩由4塊凹板組成,篩孔直徑25 mm,脫粒間隙20 mm[26],可通過更換不同大小的脫粒弓齒實現(xiàn)脫粒間隙調(diào)節(jié)。

圖8 圓孔凹板篩結(jié)構(gòu)示意圖

2.2.3 脫粒滾筒頂蓋

大豆品種較多,不同品種差異大,主要表現(xiàn)在植株高度、成熟期含水率不同。脫粒分離裝置作業(yè)時,大豆喂入量、含水率直接影響脫分物料的運動,故將脫粒滾筒頂蓋導流板角度設計為可調(diào),當收獲喂入量增加或植株含水率較大時,為避免脫粒滾筒內(nèi)部堵塞,適當增大導流板角度,提高作物流運動效率和通過性;當收獲喂入量較小、植株含水率較低時,適當減小導流板角度,增加脫粒時間。

1.導流角度刻度板 2.固定框架 3.導流角度調(diào)節(jié)桿 4.鉸接座 5.導流板 6.導流連桿 7.導流固定板

1.Diversion angle scale plate 2.Fixed frame 3.Diversion angle adjustment rod 4.Hinged base 5.Deflector 6.Deflector rod 7.Deflector fixing plate

注:l為導流角度刻度板長度,mm;l為鉸接座到導流角度刻度板的距離,mm;N為導流角度刻度板上第個刻度編號。

Note:lis the length of the diversion angle scale plate, mm;lis the distance from the hinged base to the diversion angle scale plate, mm;Nis theth scale No. on the diversion angle scale plate.

圖9 導流板角度調(diào)節(jié)機構(gòu)結(jié)構(gòu)示意圖

Fig.9 Structural diagram of the angle adjustment mechanism of the deflector

脫粒滾筒頂蓋主要由蓋板和導流板調(diào)節(jié)機構(gòu)組成,導流板調(diào)節(jié)機構(gòu)如圖9所示,最前端導流板通過鉸接座、螺栓與導流角度調(diào)節(jié)桿連接,導流板、導流固定板、導流連桿構(gòu)成平行四連桿機構(gòu),轉(zhuǎn)動導流角度調(diào)節(jié)桿可實現(xiàn)所有導流板同步轉(zhuǎn)動,從而完成導流板整體角度調(diào)整;應用導流角度刻度板定位導流角度調(diào)節(jié)桿并定量確定導流角度,導流角度調(diào)節(jié)桿位于導流板導流角度刻度板最右側(cè)時,導流角度最小,向左調(diào)節(jié)導流調(diào)節(jié)桿時,導流板角度順時針增加,向右調(diào)節(jié)導流調(diào)節(jié)桿時,導流板角度逆時針增加。

2.3 清選裝置

4LZ-1.5型大豆聯(lián)合收獲機采用葉片風機-組合篩式清選裝置,由葉片風機、抖動板、前柵格篩、圓孔篩、指桿篩、后柵格篩等組成(圖10),利用大豆、豆莢及雜余的漂浮系數(shù)不同,通過氣流吹浮及清選篩抖動,將混雜在大豆中的豆莢和雜余排出。當大豆植株由清選裝置上方脫粒滾筒脫粒作業(yè)后,大豆籽粒和部分大豆秸稈、豆莢等落在抖動板及清選篩篩面上,在振動作用下,抖動板上的物料不斷在前柵格篩匯合,在氣流及清選篩振動作用下進行清選。大豆籽粒由前柵格篩、圓孔篩落入水平籽粒螺旋輸送器,雜余混合物經(jīng)過指桿篩落到后柵格篩前部,同時葉片風機氣流將雜余混合物疏松翻轉(zhuǎn),碎秸稈等受氣流作用而漂浮。

1.葉片風機 2.抖動板 3.前柵格篩 4.圓孔篩 5.指桿篩 6.后柵格篩 7.水平籽粒螺旋輸送器 8.水平雜余螺旋輸送器

2.3.1 風機

清選風機為軸流葉片風機,采用單風道設計,葉片數(shù)量為4,葉輪外徑為380 mm,葉輪寬580 mm。

2.3.2 清選篩

篩面長度L[25]為

2.4 清種裝置

育種小區(qū)相對大田生產(chǎn),其種植規(guī)模小、品種多,小區(qū)收獲對大豆混種要求高,收獲后需要頻繁清種,以減少漏種、混種,本文針對小區(qū)收獲的清種性能要求,在水平籽粒輸送攪龍、水平雜余輸送攪龍底部等易殘留大豆籽粒且人工難以清理的部位設計了清種裝置,其結(jié)構(gòu)如圖11所示,主要由連接軸、曲柄桿、調(diào)節(jié)把手、篩板調(diào)節(jié)桿、圓孔弧型篩板、連桿、驅(qū)動桿等組成。驅(qū)動桿與曲柄桿焊裝在連接軸上,篩板調(diào)節(jié)桿與篩板焊合連接構(gòu)成搖桿,篩板鉸接在輸送攪龍外罩上,曲柄桿、連桿、搖桿與圓孔弧型篩板組成一個曲柄搖桿機構(gòu),向下轉(zhuǎn)動調(diào)節(jié)把手,圓孔弧型篩板向下打開,堆積在輸送攪龍外罩和水平籽粒輸送攪龍內(nèi)的大豆籽粒落下,完成清種;向上轉(zhuǎn)動調(diào)節(jié)把手時,圓孔弧型篩板向上閉合。

1.輸送攪龍罩 2.水平籽粒輸送攪龍 3.連接軸 4.曲柄桿 5.調(diào)節(jié)把手 6.篩板調(diào)節(jié)桿 7.圓孔弧型篩板 8.連桿 9.驅(qū)動桿

為順利完成清種作業(yè),確保攪龍內(nèi)堆積的大豆完全清理,需要對清種裝置的曲柄搖桿機構(gòu)進行設計,確定曲柄、連桿、搖桿長度,該曲柄搖桿機構(gòu)簡圖如圖12所示。

注:O為圓孔弧型篩板旋轉(zhuǎn)中心,、為圓孔弧型篩板,A1B1、A2B2為篩板調(diào)節(jié)桿,B1C1、B2C2為連桿,D為連接軸旋轉(zhuǎn)中心,C1D、C2D為曲柄桿,DE1、DE2為驅(qū)動桿,E1F1、E2F2為調(diào)節(jié)把手,、是圓孔弧型篩板關閉和完全打開狀態(tài)時搖桿角度,(°)。

由此建立該清種裝置優(yōu)化設計數(shù)學模型為

2.5 氣力卸糧裝置

氣力式卸糧裝置主要由糧箱、電機、傳動鏈、卸糧管、滾筒式卸料器、排氣管路、進氣管路、旋渦風機等組成,結(jié)構(gòu)如圖13所示。滾筒式卸料器與糧箱底部相連,卸糧作業(yè)時,電機驅(qū)動卸糧器內(nèi)部滾筒轉(zhuǎn)動后,糧箱內(nèi)部大豆籽粒持續(xù)落入卸料器底部,旋渦風機產(chǎn)生的高壓氣流通過排氣管道將卸料器底部大豆籽粒吹出,經(jīng)由卸糧管排出卸糧,并可通過卸糧管直接裝袋或卸至運梁車等。

1.糧箱 2.電機 3.傳動鏈 4.卸糧管 5.滾筒式卸料器 6.排氣管路 7.進氣管路 8.旋渦風機

團隊前期對卸料器的結(jié)構(gòu)尺寸進行了設計[30-31],卸料器下端通風口直徑d=0.1 m,所需氣流速度v=30 m/s。為提高大豆籽粒通過性,減少卸料器底部堵塞,需要增加卸糧管內(nèi)的風量,旋渦風機相對離心風機體積小、風量大,本文選用旋渦風機,對風機比轉(zhuǎn)數(shù)、葉輪直徑、葉片數(shù)進行適應性設計[32-34]。

注:hY為葉片高度,mm;DY1為葉輪直徑,mm;DY2為葉輪內(nèi)徑,mm。

3 田間試驗

3.1 大田收獲適應性試驗

3.1.1 試驗條件

為測試4LZ-1.5型大豆聯(lián)合收獲機作業(yè)性能,于2021年10月在新疆澤普縣、山東省梁山縣、河北省滄州市進行了大田收獲試驗。新疆澤普縣試驗田大豆無倒伏,地塊平坦,收獲大豆品種為合豐50號,千粒質(zhì)量198 g,大豆植株平均高度為502 mm,底莢平均高度95 mm,大豆籽粒含水率11.8%;山東省梁山縣試驗田大豆無倒伏,地塊有一定起伏,收獲大豆品種為齊黃34,千粒質(zhì)量276 g,大豆植株平均高度為707 mm,底莢平均高度239 mm,大豆籽粒含水率12.5%;河北省滄州市試驗田大豆無倒伏,地塊較平坦,收獲大豆品種為冀豆12,千粒質(zhì)量214 g,大豆植株平均高度為513 mm,底莢平均高度135 mm,大豆籽粒含水率14.3%,圖15為部分試驗場景。同時進行普通收獲機的對比試驗。

圖15 田間試驗

3.1.2 試驗評價指標

依據(jù)《NY/T 738-2020 大豆聯(lián)合收割機作業(yè)質(zhì)量》[35],大豆大田收獲試驗以損失率,含雜率0,破碎率0作為評價指標,各指標計算如下:

式中W為每平方米的損失大豆質(zhì)量,g;1為每平方米自然落粒的大豆質(zhì)量,g;W為每平方米大豆收獲質(zhì)量,g;W為對糧箱內(nèi)大豆采樣樣品中雜質(zhì)質(zhì)量,g;W為對糧箱內(nèi)大豆采樣樣品質(zhì)量,g;W為對糧箱內(nèi)大豆采樣樣品中破碎籽粒質(zhì)量,g。

3.1.3 試驗結(jié)果與分析

試驗前,根據(jù)地塊作業(yè)工況特點和大豆品種特性、長勢,對大豆收獲機割臺、風機轉(zhuǎn)速、清選篩開度、脫粒滾筒轉(zhuǎn)速等進行了適當調(diào)整,割臺高度在5~10 cm,脫粒滾筒轉(zhuǎn)速在350~400 r/min;收獲機與大豆待割區(qū)之間預留15~20 m緩沖區(qū)域,收獲機經(jīng)過緩沖區(qū)域加速行駛至1.2~1.6 m/s,并以此速度完成收獲作業(yè)。大田收獲試驗結(jié)果如表4所示。

表4 大田收獲試驗結(jié)果

由表4可知,4LZ-1.5型大豆聯(lián)合收獲機總體上作業(yè)效果較好,損失率<3.5%、破碎率<1.5%、含雜率<1.0%,各項評價指標低于《NY/T 738-2020 大豆聯(lián)合收割機作業(yè)質(zhì)量》規(guī)定值,與現(xiàn)有普通大豆收獲機械田間作業(yè)質(zhì)量相比,收獲損失率降低1.5~5.0個百分點、破碎率降低3.5~6.5個百分點、含雜率降低2.0~7.0個百分點。河北滄州試驗田作業(yè)條件較好、大豆品種特性、含水率適宜,收獲效果最佳,損失率1.3%、破碎率0.4%、含雜率0.2%;新疆澤普縣大豆品種籽粒較小、含水率低,清選風機轉(zhuǎn)速調(diào)整不當造成損失偏高。

3.2 育種小區(qū)收獲性能試驗

3.2.1 試驗條件與方法

為測試4LZ-1.5型大豆聯(lián)合收獲機在育種小區(qū)試驗地的作業(yè)性能,分別于2020年10月、2021年11月在河北省滄州市進行小區(qū)收獲試驗,每個育種小區(qū)規(guī)模約為3 m×6 m,小區(qū)內(nèi)種植6行大豆,行距45~50 cm。大豆品種包括滄豆1312、滄豆0734、滄豆1327、滄鮮豆1號、滄豆1438、滄黑豆2號、滄豆1301、滄豆1417、滄豆1426、滄豆1329、滄豆1453、滄豆1434、滄豆1418、滄豆11共14個,其中滄鮮豆籽粒為綠色,滄黑豆籽粒為黑色,其余品種籽粒為黃色。

為辨別收獲后大豆混種情況,間隔收獲黑色、黃色、綠色大豆品種,收獲后通過顏色區(qū)分前一段滯種情況。

3.2.2 試驗評價指標

參照《NY/T 738-2020 大豆聯(lián)合收割機作業(yè)質(zhì)量》[33],大豆小區(qū)收獲作業(yè)質(zhì)量的評價指標包括損失率,含雜率0,破碎率0,同時結(jié)合育種科研人員對大豆小區(qū)收獲作業(yè)要求,補充混種率H1、清種時間T,計算如下:

式中2為對收獲后糧箱內(nèi)大豆采樣樣品的總質(zhì)量,g;W1為對收獲后糧箱內(nèi)大豆采樣樣品中混雜前一次收獲大豆品種的大豆質(zhì)量,g。

清種時間T為清理割臺、水平籽粒螺旋輸送器、水平雜余螺旋輸送器內(nèi)部殘留大豆籽粒所用的總時間,s。

3.2.3 試驗結(jié)果與分析

育種小區(qū)地塊小、收獲大豆品種多,試驗前適當調(diào)整大豆收獲機割臺、風機轉(zhuǎn)速、清選篩開度、脫粒滾筒轉(zhuǎn)速等,割臺高度在5~10 cm,脫粒滾筒轉(zhuǎn)速在350~400 r/min;收獲機與大豆待割區(qū)之間預留10~15 m緩沖區(qū)域,經(jīng)過緩沖區(qū)域,收獲機加速行駛至1.0~1.2 m/s,完成一個大豆品種收獲后,收獲機空轉(zhuǎn)3~5 min,盡可能使收獲機內(nèi)部殘留大豆輸送至糧箱,然后通過清種裝置清理殘留在割臺、螺旋輸送器內(nèi)的大豆,記錄清種時間,試驗結(jié)果如表5所示。

表5試驗結(jié)果表明,4LZ-1.5型大豆聯(lián)合收獲機小區(qū)收獲作業(yè)順暢、作業(yè)質(zhì)量較好,能夠?qū)崿F(xiàn)大豆小區(qū)聯(lián)合收獲機各項作業(yè)功能,其中損失率<3.0%、破碎率<1.5%、含雜率<1.0%,各項評價指標低于《NY/T 738-2020 大豆聯(lián)合收割機作業(yè)質(zhì)量》規(guī)定值?;旆N率<0.2%,且14個小區(qū)品種收獲中有9次試驗混種率為0,清種時間200~270 s,滿足大豆育種小區(qū)收獲作業(yè)要求。

表5 育種小區(qū)收獲試驗結(jié)果

4 結(jié) 論

1)設計了4LZ-1.5型大豆聯(lián)合收獲機,針對大豆植株性狀和作業(yè)工況特點,設計了六輻偏心撥禾輪、割臺除土機構(gòu)、脫粒分離裝置、清選裝置、清種裝置和氣力卸糧裝置等,結(jié)合理論分析、運動分析、MATLAB參數(shù)化設計,對撥禾輪直徑、脫粒滾筒直徑、脫粒弓齒排布、卸糧風機直徑等結(jié)構(gòu)參數(shù)以及撥禾輪轉(zhuǎn)速、脫粒滾筒轉(zhuǎn)速、卸糧風機比轉(zhuǎn)速等運動參數(shù)進行了優(yōu)化設計。

2)在國內(nèi)新疆、山東、河北等地進行了大田收獲對比試驗,試驗結(jié)果表明:損失率<3.5%,破碎率<1.5%,含雜率<1.0%,4LZ-1.5型大豆聯(lián)合收獲機大田收獲作業(yè)效果較好,能夠達到大豆低損收獲要求。

3)在3 m×6 m小區(qū)內(nèi)對14個不同大豆品種進行收獲測試,試驗結(jié)果表明,損失率<3.0%,破碎率<1.5%,含雜率<1.0%,混種率<0.2%,清種時間200~270 s,滿足育種小區(qū)收獲作業(yè)指標要求。

[1] 石彥國. 調(diào)整產(chǎn)業(yè)結(jié)構(gòu)確保大豆產(chǎn)業(yè)健康持續(xù)發(fā)展[J]. 中國食品學報,2010,10(4):1-7.

Shi Yanguo. Adjusting the Industrial Structure to Ensure Sustained and Healthy Development of Soybean Industry[J]. Journal of Chinese Institute of Food Science and Technology, 2010, 10(4): 1-7. (in Chinese with English abstract)

[2] 高連興,焦維鵬,楊德旭,等. 含水率對大豆靜壓機械特性的影響[J]. 農(nóng)業(yè)工程學報,2012,28(15):40-44.

Gao Lianxing, Jiao Weipeng, Yang Dexu, et al. Effect of moisture content on mechanical properties of soybean seed under stati cpressure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(15): 40-44. (in Chinese with English abstract)

[3] 倪有亮,金誠謙,陳滿,等. 我國大豆機械化生產(chǎn)關鍵技術(shù)與裝備研究進展[J]. 中國農(nóng)機化學報,2019,40(12):17-25.

Ni Youliang, Jin Chengqian, Chen Man, et al. Research progress on mechanized production technology and equipment of soybean in China[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 17-25. (in Chinese with English abstract)

[4] 劉基,金誠謙,梁蘇寧,等. 大豆機械收獲損失的研究現(xiàn)狀[J]. 農(nóng)機化研究,2017,39(7):1-9.

Liu Ji, Jin Chengqian, Liang Suning, et al. The research of soybean harvested by machine[J]. Journal of Agricultural Mechanization Research, 2017, 39(7): 1-9. (in Chinese with English abstract)

[5] 梁蘇寧,沐森林,金誠謙,等. 黃淮海地區(qū)大豆生產(chǎn)機械化現(xiàn)狀與發(fā)展趨勢[J]. 農(nóng)機化研究,2015,37(1):261-268.

Liang Suning, Mu Senlin, Jin Chengqian, et al. Actualities and developing trend of production mechanization of soybean in Huanghuaihai region[J]. Journal of Agricultural Mechanization Research, 2015, 37(1): 261-268. (in Chinese with English abstract)

[6] 王星. 縱向變徑軸流式大豆育種專用脫粒機的研究[D]. 哈爾濱:東北農(nóng)業(yè)大學,2020.

Wang Xing. Axial Flow Thresher with Longitudinal Variable Diameter Specific for Soybean Breeding[D]. Haerbin: Northeast Agricultural University, 2020. (in Chinese with English abstract)

[7] 朱明,陳海軍,李永磊. 中國種業(yè)機械化現(xiàn)狀調(diào)研與發(fā)展分析[J]. 農(nóng)業(yè)工程學報,2015,31(14):1-7.

Zhu Ming, Chen Haijun, Li Yonglei. Investigation and development analysis of seed industry mechanization in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2015, 31(14): 1-7. (in Chinese with English abstract)

[8] 解鴻儒. 大豆聯(lián)合收獲機勻流輸送割臺的設計與試驗[D]. 淄博:山東理工大學,2019.

Xiu Hongru. Design and Experiment of Belt Conveyor Header for Soybean Combine Harvester[D]. Zibo: Shandong University of Technology, 2019. (in Chinese with English abstract)

[9] 袁玲合,謝詢,史景釗. 大豆收獲機械切割機構(gòu)虛擬設計與仿真分析[J]. 農(nóng)機化研究,2016,38(11):76-80.

Yuan Linghe, Xie Xun, Shi Jingzhao. Virtual Design and Simulative Analysis of the Cutting Mechanism of Soybean Harvest Machinery[J]. Journal of Agricultural Mechanization Research, 2016, 38(11): 76-80. (in Chinese with English abstract)

[10] Ni Y L, Jin C Q, Chen M, et al. Computational model and adjustment system of header height of soybean harvesters based on soil-machine system[J]. Computers and Electronics in Agriculture, 2021, 183: 105907.

[11] 金誠謙,劉崗微,倪有亮,等. 基于MBD-DEM 耦合的聯(lián)合收獲機割臺仿形機構(gòu)設計與試驗[J]. 農(nóng)業(yè)工程學報,2022,38(2):1-10.

Jin Chengqian, Liu Gangwei, Ni Youliang, et al. Design and experiment of header profiling mechanism for combine harvester based on MBD-DEM coupling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2022, 38(2): 1-10. (in Chinese with English abstract)

[12] 康家鑫,王修善,謝方平,等. 大豆聯(lián)合收獲機對稱可調(diào)式凹板篩設計與試驗[J]. 農(nóng)業(yè)工程學報,2022,38(2):11-22.

Kang Jiaxin, Wang Xiushan, Xie Fangping, et al. Design and experiment of symmetrical adjustable concave for soybean combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2022, 38(2): 11-22. (in Chinese with English abstract)

[13] 陳艷普,滕悅江,王廷恩,等. 縱軸流雙螺旋滾筒的設計與試驗分析[J]. 農(nóng)機化研究,2020,42(7):62-69.

Chen Yanpu, Teng Yuejiang, Wang Ting’en, et al. Design and experimental analysis of longitudinal and axial flow double spiral rolle[J]. Journal of Agricultural Mechanization Research, 2020, 42(7): 62-69. (in Chinese with English abstract)

[14] 陳艷普,康艷,王廷恩,等. 大豆收獲機縱軸流柔性脫粒裝置脫出物分布規(guī)律[J]. 中國農(nóng)業(yè)大學學報,2020,25(9):104-111.

Chen Yanpu, Kang Yan, Wang Ting'en, et al. Distribution regularities of the threshed mixtures in longitudinal axial flow flexible thresher of soybean harvester[J]. Journal of China Agricultural University, 2020, 25(9): 104-111. (in Chinese with English abstract)

[15] 金誠謙,康艷,郭紅星,等. 脫粒滾筒結(jié)構(gòu)形式對大豆機收質(zhì)量影響的試驗研究[J]. 農(nóng)業(yè)工程學報,2021,37(4):49-58.

Jin Chengqian, Kang Yan, Guo Hongxing, et al. Experimental research on the influence of threshing roller structures on the quality of mechanically-harvested soybeans[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2021, 37(4): 49-58. (in Chinese with English abstract)

[16] Teng Y J, Jin C Q, Chen Y P, et al. Design and test on the type of adjustable threshing strength-full circular separation threshing device[J]. International Agricultural Engineering Journal, 2020, 29(3): 97-107.

[17] Teng Y J, Jin C Q, Chen Y P, et al. Design and test on the type of spiral cylinder-segmented concave threshing system[J]. International Agricultural Engineering Journal, 2020, 29(1): 74-85.

[18] 楊歡,杜勇利,陳平,等. 小喂入量大豆收割機縱軸流脫粒裝置參數(shù)優(yōu)化[J]. 甘肅農(nóng)業(yè)大學學報,2018,53(3):184-189.

Yang Huan, Du Yongli, Chen Ping, et al. Parameters optimization of longitudinal axial threshing unit of small feed harvester for soybean[J]. Journal of Gansu Agricultural University, 2018, 53(3): 184-189. (in Chinese with English abstract)

[19] 劉鵬,金誠謙,楊騰祥,等. 多參數(shù)可調(diào)可測式清選系統(tǒng)設計與試驗[J]. 農(nóng)業(yè)機械學報,2020,51(S2):191-201.

Liu Peng, Jin Chengqian, Yang Tengxiang, et al. Design and experiment of multi parameter adjustable and measurable cleaning system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 191-201. (in Chinese with English abstract)

[20] 劉鵬,金誠謙,寧新杰,等. 大豆機收清選篩田間性能試驗與分析[J]. 農(nóng)業(yè)工程學報,2020,36(9):36-43.

Liu Peng, Jin Chengqian, Ning Xinjie, et al. Field performance test and analysis of the cleaning sieve of soybean harvesters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2020, 36(9): 36-43. (in Chinese with English abstract)

[21] 劉鵬,金誠謙,劉政,等. 大豆聯(lián)合收獲機田間清選作業(yè)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學報,2020,36(10):35-45.

Liu Peng, Jin Chengqian, Liu Zheng, et al. Optimization of field cleaning parameters of soybean combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2020, 36(10): 35-45. (in Chinese with English abstract)

[22] 高連興,趙學觀,楊德旭,等. 大豆脫粒機氣力清選循環(huán)裝置研制與性能試驗[J]. 農(nóng)業(yè)工程學報,2012,28(24):22-27.

Gao Lianxing, Zhao Xueguan, Yang Dexu, et al. Development and performance test on pneumatic cleaning-circulatory device of soybean thresher[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2012, 28(24): 22-27. (in Chinese with English abstract)

[23] 李若曦,陳海濤. 5TDQ -300型切流式大豆育種脫粒機參數(shù)優(yōu)化[J]. 農(nóng)機化研究,2016,38(4):147-157.

Li Ruoxi, Chen Haitao. Parameters optimization of 5TDQ-300 tangential flow thresher for soybean breeding[J]. Journal of Agricultural Mechanization Research, 2016, 38(4): 147-157. (in Chinese with English abstract)

[24] 侯守印,陳海濤. 立式軸流大豆育種脫粒機參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學報,2012,28(5):19-25.

Hou Shouyin, Chen Haitao. Parameters optimization of vertical axial flow thresher for soybean breeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(5): 19-25. (in Chinese with English abstract)

[25] 中國農(nóng)業(yè)機械化科學研究院. 農(nóng)業(yè)機械設計手冊(下冊)[M]. 北京:中國農(nóng)業(yè)科學技術(shù)出版社,2007.

[26] 金誠謙,郭飛揚,徐金山,等. 大豆聯(lián)合收獲機作業(yè)參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學報,2019,35(13):10-22.

Jin Chengqian, Guo Feiyang, Xu Jinshan, et al. Optimization of working parameters of soybean combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2019, 35(13): 10-22. (in Chinese with English abstract)

[27] 樊晨龍,崔濤,張東興,等. 縱軸流聯(lián)合收獲機雙層異向清選裝置設計與試驗[J]. 農(nóng)業(yè)機械學報,2018,11(49):239-248.

Fan Chenlong, Cui Tao, Zhang Dongxing, et al. Design and experiment of double-layered reverse cleaning device for axial flow combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 11(49): 239-248. (in Chinese with English abstract)

[28] 李蕾,蘇福蓮,石磊. 基于matlab和adams的曲柄搖桿機構(gòu)優(yōu)化設計[J]. 機械工程師,2011,43(10):36-38.

Li Lei, Su Fulian, Shi Lei. The optimization design of crank and rocker mechanism based on matlab and adams[J]. Mechanical Engineer, 2011, 43(10): 36-38. (in Chinese with English abstract)

[29] 李世文,王力強,潘鑫,等. 基于Matlab的曲柄搖桿機構(gòu)參數(shù)化設計[J]. 內(nèi)燃機與配件,2021,5:204-206.

[30] 郭飛揚,倪有亮,康艷,等. 大豆聯(lián)合收獲機氣力卸糧裝置試驗研究[J]. 中國農(nóng)機化學報,2020,41(5):31-39.

Guo Feiyang, Ni Youliang, Kang Yan, et al. Experimental study on pneumatic unloading device of soybean combine harvester[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(5): 31-39. (in Chinese with English abstract)

[31] 郭飛揚,金誠謙,俞康,等. 大豆聯(lián)合收獲機氣力卸糧裝置的設計與試驗[J]. 中國農(nóng)業(yè)大學學報,2020,25(10):147-157.

Guo Feiyang, Jin Chengqian, Yu Kang, et al. Design and experiment of the pneumatic grain unloading device of soybean combine harvester[J]. Journal of China Agricultural University, 2020, 25(10): 147-157. (in Chinese with English abstract)

[32] 劉相臣. 旋渦氣泵的基本原理與設計(四)[J]. 化工裝備技術(shù),2002,23(6):44-47.

[33] 劉相臣. 旋渦氣泵的基本原理與設計(三)[J]. 化工裝備技術(shù),2002,23(5):44-48.

[34] 沈陽水泵研究所,中國農(nóng)業(yè)機械化科學研究院. 葉片泵設計手冊[M],北京:機械工業(yè)出版社,1983.

[35] 中華人民共和國農(nóng)業(yè)農(nóng)村部. 全國農(nóng)業(yè)機械標準化技術(shù)委員會農(nóng)業(yè)機械化分技術(shù)委員會. NY/T738-2020大豆聯(lián)合收割機作業(yè)質(zhì)量[S]. 北京:中國農(nóng)業(yè)出版社,2020.

Design and experiments of the 4LZ-1.5 soybean combine harvester

Ni Youliang1, Jin Chengqian1,2※, Wang Ting’en3, Zhou Lei4, Liu Zheng1

(1.,,,210014,; 2.,,255000,; 3..,.,276000,; 4.,100089,)

Soybean is one of the most important grains and oil crops in China, due to a major source of oil and high-quality vegetable protein. It is very necessary to realize the low-loss harvest of soybean fields in the southern and Huanghuaihai regions. In this study, a 4LZ-1.5 type combine harvester was designed to consider the harvest of soybean breeding plots. The operation process was also theoretically analyzed for the soybean reel harvesting, according to the soybean pods easy to be fried at maturity. A numerical model was established for the reel structure and motion parameters. Some parameters were then optimized, such as the reel radius, reel speed ratio, and reel rotational speed. After that, the soil removal mechanism was optimized for the soybeans with the low pods and easy-to-shovel soil, according to the statistical parameters of soybean grain size. Furthermore, a soybean threshing and separation device was designed for the easy threshing and breakage of soybeans at maturity. The arrangement and distribution of the arch teeth were also determined via the increasing characteristics of the second-order arithmetic sequence. The angle of the deflector was adjusted for the various input amount. The blade fan-combined screen cleaning device was designed to optimize the structural parameters of the fan and cleaning screen. The pneumatic grain unloading device was designed to optimize the vortex fan. The plot harvesting required the high soybean mixed seeding, particularly for the breeding plot with a small planting scale and many varieties, compared with the field production. Frequent seed cleaning was required after harvesting to reduce the missed and mixed seeding, according to the harvest requirements of the breeding area. An optimization mathematical model was established to develop the seed cleaning device, together with the objective function and constraint conditions. A numerical simulation was then carried out using MATLAB, in order to determine the structural parameters of the seed-cleaning device. A series of comparative experiments in field harvesting were conducted in the Xinjiang Uygur Autonomous Region, Shandong province, and Hebei province of China. The better operating performance was achieved in the 4LZ-1.5 soybean combine harvester: the loss rate < 3.5%, broken rate < 1.5%, and impurity rate < 1%, fully meeting the soybean harvest requirements in most hilly areas. After harvest testing of 14 soybean varieties in a 3 m×6 m breeding plot, the test results were all achieved: the loss rate < 3.0%, broken rate < 1.5%, impurity rate < 1.0%, mixed seed rate < 0.2%, and the clearing time of 200-270 s, fully meeting the requirements of the harvesting operation indicators in the breeding plots. Compared with the existing soybean harvesting machinery, the harvest loss rate of 4LZ-1.5 soybean combine harvester was reduced by 1.5-5.0 percentage points, the broken rate was reduced by 3.5-6.5 percentage points, and the impurity rate was reduced by 2.0-7.0 percentage points. The findings can provide a strong reference for the structural optimization of operating parameters in soybean harvesters.

agricultural machinery; harvesting; soybean; breeding plots; optimization;seed cleaning

倪有亮,金誠謙,王廷恩,等. 4LZ-1.5型大豆聯(lián)合收獲機設計與試驗[J]. 農(nóng)業(yè)工程學報,2022,38(22):1-11. doi:10.11975/j.issn.1002-6819.2022.22.001 http://www.tcsae.org

Ni Youliang, Jin Chengqian, Wang Ting’en, et al. Design and experiments of the 4LZ-1.5 soybean combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(22): 1-11. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.22.001 http://www.tcsae.org

2022-09-15

2022-10-27

國家重點研發(fā)計劃項目(2021YFD2000500);國家大豆產(chǎn)業(yè)技術(shù)體系(CARS-04);國家自然科學基金資助項目(32171911、32272004);中央級公益性科研院所基本科研業(yè)務費專項(S202216)

倪有亮,博士,助理研究員,研究方向為大豆機械化收獲技術(shù)與收獲機械智能控制技術(shù)。Email:764607401@qq.com

金誠謙,研究員,博士生導師,研究方向為大田作物收獲機械化與智能化技術(shù)。Email:412114402@qq.com

10.11975/j.issn.1002-6819.2022.22.001

S225.31

A

1002-6819(2022)-22-0001-11

猜你喜歡
脫粒收獲機導流
基于人工擊打脫粒原理的食葵脫粒裝置設計與試驗
甘蔗收獲機提升機構(gòu)的運動學與動力學分析
脫粒分離裝置的研究現(xiàn)狀及發(fā)展趨勢
新型分支相間導流排
柔性差速帶式單株大豆脫粒裝置設計與試驗
某水利樞紐工程施工導流及水流控制研究
多滾筒脫粒分離裝置脫粒參數(shù)試驗與分析
導流堤在小型引水工程中的應用
拖拉機與玉米收獲機的保養(yǎng)與維修
整稈式甘蔗收獲機斷尾機構(gòu)虛擬試驗研究
隆德县| 潞城市| 通化市| 农安县| 吉隆县| 富锦市| 临高县| 潞城市| 荥阳市| 昂仁县| 和硕县| 阿克陶县| 临泉县| 汶上县| 溆浦县| 滁州市| 石屏县| 土默特左旗| 文昌市| 荔浦县| 陆河县| 勐海县| 庄浪县| 隆子县| 云浮市| 泰州市| 新和县| 随州市| 历史| 东源县| 德州市| 卓尼县| 濮阳市| 玛多县| 宁国市| 九龙坡区| 吕梁市| 凤阳县| 拜泉县| 宝坻区| 黔南|