王 斌,黃廷林*,李 楠,高 悅,葉焰中,翟振起,陳 凡,楊鵬程
水源水庫(kù)沉積物及其上覆水DOM光譜特征
王 斌1,黃廷林1*,李 楠1,高 悅1,葉焰中2,翟振起2,陳 凡1,楊鵬程1
(1.西安建筑科技大學(xué)環(huán)境與市政工程學(xué)院,西北水資源與環(huán)境生態(tài)教育部重點(diǎn)實(shí)驗(yàn)室,陜西省環(huán)境工程重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710055;2.深圳市北部水源工程管理處茜坑水庫(kù)管理所,廣東 深圳 518110)
為探究水源水庫(kù)溶解性有機(jī)質(zhì)(DOM)組成結(jié)構(gòu)及來(lái)源,以深圳市茜坑水庫(kù)為例,采用紫外-可見(jiàn)光譜技術(shù)(UV-Vis)并結(jié)合平行因子分析法三維熒光光譜技術(shù)(EEMs-PARAFAC)對(duì)水庫(kù)表層沉積物及其上覆水的DOM光譜特征進(jìn)行分析.結(jié)果表明:PARAFAC識(shí)別出3類(lèi)熒光組分,分別是C1(x/m=270/304nm,類(lèi)蛋白),C2(x/m=285,235/360nm,類(lèi)蛋白)和C3(x/m=270,340/442nm,類(lèi)腐殖質(zhì)).熒光特征指數(shù)表明茜坑水庫(kù)沉積物及其上覆水DOM受新生內(nèi)源和陸源輸入共同影響,但主要以?xún)?nèi)源為主.表層沉積物中的類(lèi)蛋白質(zhì)濃度和類(lèi)腐殖質(zhì)濃度均遠(yuǎn)高于上覆水體,表層沉積物可能向上覆水體釋放小分子DOM.紫外可見(jiàn)光譜與三維熒光表征結(jié)果一致,表層沉積物DOM分子量、腐殖化程度、芳香性和疏水性均低于上覆水.相關(guān)性分析表明,上覆水C1組分與C2組分相關(guān)性顯著(<0.05),表明其存在同源性.通過(guò)對(duì)茜坑水庫(kù)沉積物及其上覆水DOM光譜特征的研究,可進(jìn)一步分析水庫(kù)有機(jī)質(zhì)污染特征.
水源水庫(kù);溶解性有機(jī)質(zhì);紫外-可見(jiàn)光譜技術(shù);三維熒光光譜技術(shù);平行因子分析法
天然有機(jī)物(NOM)廣泛存在于湖泊水庫(kù)中,陸生動(dòng)植物殘骸經(jīng)微生物分解形成的陸源有機(jī)物和水生生物新陳代謝產(chǎn)生的內(nèi)源有機(jī)物是其主要來(lái)源[1-2].水體中的NOM分為溶解性有機(jī)質(zhì)(DOM)和顆粒態(tài)有機(jī)質(zhì)(POM),沉降過(guò)程中的POM可在微生物水解酶作用下向DOM轉(zhuǎn)化[3].DOM的組成結(jié)構(gòu)十分復(fù)雜,主要包括類(lèi)蛋白(類(lèi)色氨酸、類(lèi)酪氨酸等)和類(lèi)腐殖質(zhì)(類(lèi)富里酸、類(lèi)胡敏酸等),既參與碳的生物地球化學(xué)循環(huán),同時(shí)也作為污染物的重要載體,能與無(wú)機(jī)或有機(jī)污染物發(fā)生配位作用,對(duì)污染物的遷移轉(zhuǎn)化產(chǎn)生深遠(yuǎn)影響[4-5].
常見(jiàn)的DOM檢測(cè)手段主要有化學(xué)分析法[6]、氣相色譜法[7]、高效液相色譜法[8]、質(zhì)譜法[9]和光譜法等.紫外-可見(jiàn)光譜技術(shù)(UV-Vis)以及結(jié)合平行因子分析法的三維熒光光譜(EEMs-PARAFAC)技術(shù)靈敏度高、選擇性好、檢測(cè)快速,被廣泛用于DOM來(lái)源與組成特征的定性或半定量研究[10].例如沈爍等[11]和王曉江等[12]利用光譜技術(shù)解析了沉積物中DOM組分及來(lái)源,驗(yàn)證了其表征沉積物有機(jī)物污染強(qiáng)度的可行性.
茜坑水庫(kù)是深圳市西北部片區(qū)最重要的飲用水水庫(kù),對(duì)當(dāng)?shù)亟?jīng)濟(jì)發(fā)展和社會(huì)穩(wěn)定有著重要作用[13].當(dāng)前的研究大多集中于對(duì)河湖等水體DOM光譜特征的表征[14-15],已有水源水庫(kù)DOM的相關(guān)研究也重點(diǎn)考察降雨、徑流等外源輸入的有機(jī)質(zhì)污染特征[16],對(duì)水源水庫(kù)沉積物及其上覆水DOM光譜特征的解析相對(duì)較少.尤其對(duì)于分層型水源水庫(kù),熱分層期間,底層水體處于厭氧高還原環(huán)境,沉積物中的DOM極易從底泥釋放到上覆水體中,且DOM作為飲用水消毒副產(chǎn)物的主要前驅(qū)物,會(huì)導(dǎo)致飲用水處理過(guò)程中產(chǎn)生難聞氣味和致癌物質(zhì),嚴(yán)重威脅飲用水安全[17-18].茜坑水庫(kù)在夏季形成穩(wěn)定的熱分層,水體分層造成的底部水體水質(zhì)惡化,對(duì)城市供水安全構(gòu)成了嚴(yán)重威脅[19],目前對(duì)于茜坑水庫(kù)熱分層末期沉積物及其上覆水DOM的光譜特征還缺乏研究.本研究利用UV-Vis和EEMs- PARAFAC解析熱分層末期茜坑水庫(kù)沉積物及其上覆水DOM組成結(jié)構(gòu)及來(lái)源,分析其光譜特征及意義,以期為茜坑水庫(kù)運(yùn)行管理和水體生態(tài)保護(hù)提供科學(xué)依據(jù).
茜坑水庫(kù)(113.994~114.022°E,22.690~22.711°N)位于深圳市龍華新區(qū),觀瀾河一級(jí)支流茜坑水上游,屬東江水系.水庫(kù)地處北回歸線(xiàn)以南,屬于南亞熱帶海洋性季風(fēng)氣候,年平均氣溫22℃,平均降雨量1800mm.壩址以上集雨面積4.79km2,正常庫(kù)容1857萬(wàn)m3,總庫(kù)容1917萬(wàn)m3,最大水深約20m.其承擔(dān)著向龍華、大浪、觀瀾街道及深圳西北片區(qū)供水或轉(zhuǎn)輸原水的重要任務(wù).為探究熱分層末期茜坑水庫(kù)沉積物及其上覆水DOM光譜特征,于2020年10月在水庫(kù)8個(gè)采樣點(diǎn)(圖1)采集表層沉積物及上覆水.
圖1 茜坑水庫(kù)平面圖及采樣點(diǎn)分布示意
沉積物樣品:參照高鳳等[20]操作方法,采用彼得森抓泥斗采集表層沉積物樣品,裝入聚乙烯自封袋,立即運(yùn)回實(shí)驗(yàn)室后,用冷凍干燥機(jī)進(jìn)行冷凍干燥.將干燥后的沉積物樣品研磨過(guò)100(0.149mm)目篩.稱(chēng)取2g研磨后的沉積物樣品,加入40mL Milli-Q超純水混合進(jìn)行DOM提取,振蕩24h(220r/min,25℃)后離心(6000r/min,15min ),取上清液過(guò)0.45μm濾膜(Whatman GF/F,預(yù)先450℃灼燒)過(guò)濾后分析[19].
上覆水水樣:采用2L有機(jī)玻璃采水器對(duì)樣點(diǎn)沉積物上方0.5m水樣進(jìn)行采集,并分別置于聚乙烯取樣瓶后,立即運(yùn)回實(shí)驗(yàn)室放置于4℃冰箱保存,3d內(nèi)完成各項(xiàng)指標(biāo)的測(cè)定,測(cè)定方法參照國(guó)家標(biāo)準(zhǔn)方法[21].沉積物浸提液及上覆水的溶解性有機(jī)碳(DOC)經(jīng)0.45μm濾膜(Whatman GF/F,預(yù)先450℃灼燒)過(guò)濾后采用總有機(jī)碳分析儀(島津TOC,日本)測(cè)定.在采集水樣同時(shí),對(duì)點(diǎn)位水溫、溶解氧(DO)、葉綠素a(Chl-a)等選用HACH Hydrolab DS5型多參數(shù)水質(zhì)測(cè)定儀(哈希,美國(guó))進(jìn)行測(cè)定,測(cè)定結(jié)果見(jiàn)表1.
UV-Vis采用DR6000分光光度計(jì)(HACH,美國(guó))進(jìn)行測(cè)定,掃描波長(zhǎng)范圍為200~800nm,用1cm石英比色皿,以1nm為掃描間隔,Mill-Q超純水為參比,中速掃描.吸收系數(shù)計(jì)算公式為[22]:
式中:為波長(zhǎng),nm;()和()分別為未經(jīng)散射校正的波長(zhǎng)為處的吸收系數(shù)和經(jīng)過(guò)散射校正過(guò)后的波長(zhǎng)為處的吸收系數(shù),m-1;為光程路徑,m.
EEMs采用F-7000熒光光譜儀(日立,日本)進(jìn)行測(cè)定.熒光光譜掃描操作步驟為:儀器光源為150W氙燈,以Mill-Q超純水為空白,激發(fā)波長(zhǎng)(x)范圍為200~450nm,波長(zhǎng)間隔5nm,發(fā)射波長(zhǎng)(m)范圍為250~600nm,波長(zhǎng)間隔1nm,水樣的掃描速度為12000nm/min,沉積物浸提液掃描速度為1200nm/ min.測(cè)定結(jié)果扣除Mill-Q超純水三維熒光數(shù)據(jù)并進(jìn)行Delaunnay三角內(nèi)插值法識(shí)別和剔除瑞利散射和拉曼散射.采用平行因子分析法對(duì)三維熒光光譜進(jìn)行解析,通過(guò)殘差分析確定最小熒光組分?jǐn)?shù),利用折半分析來(lái)驗(yàn)證結(jié)果的可靠性[23].
采用Excel2019、Origin 2021軟件進(jìn)行數(shù)據(jù)處理和圖形繪制,Matlab 2014a 軟件進(jìn)行PARAFAC分析,采用SPSS 21.0軟件進(jìn)行Pearson相關(guān)性分析(<0.05表示顯著相關(guān))和單因素ANOVA方差分析(ANOVA,<0.05表示顯著差異).
表1 沉積物及其上覆水理化指標(biāo)測(cè)定結(jié)果
注:-表示數(shù)據(jù)缺失.
通過(guò)PARAFAC對(duì)茜坑水庫(kù)沉積物及其上覆水中DOM的三維熒光進(jìn)行解析,共獲得3類(lèi)熒光組分,其光譜圖與荷載圖如圖2所示.解析出的3類(lèi)熒光組分可分為類(lèi)蛋白組分(C1,C2)和類(lèi)腐殖質(zhì)(C3)兩大類(lèi),其中C1(x/m=270/304nm)對(duì)應(yīng)熒光峰B1,代表類(lèi)酪氨酸物質(zhì),主要來(lái)源于生物產(chǎn)物,也與陸源輸入有關(guān)[24].C2(x/m=285,235/360nm,)有兩個(gè)激發(fā)峰,一個(gè)發(fā)射峰,分別對(duì)應(yīng)熒光峰T1和T2,代表類(lèi)色氨酸物質(zhì),主要與水中浮游植物和微生物等殘?bào)w的降解有關(guān),也可能來(lái)源于陸生植物和土壤有機(jī)物[25].T峰和B峰合稱(chēng)為類(lèi)蛋白熒光峰,屬于內(nèi)源類(lèi)DOM.C3 (x/m=270,340/442nm)的兩個(gè)激發(fā)峰,一個(gè)發(fā)射峰對(duì)應(yīng)A峰和C峰,代表類(lèi)富里酸,屬于類(lèi)腐殖質(zhì),主要來(lái)源于陸源輸入[26].
如圖3所示,水庫(kù)表層沉積物DOM總熒光強(qiáng)度為(1.78±0.21)R.U.,上覆水為(0.36±0.02)R.U.,表層沉積物中C1組分和C3組分熒光強(qiáng)度顯著高于上覆水(<0.05).表層沉積物C1、C2和C3組分占比分別為(80±4.07)%,(10.61±2.86)%,(8.52±1.48)%,類(lèi)蛋白組分通常被認(rèn)為來(lái)源于內(nèi)源生物產(chǎn)物,表明表層沉積物中DOM主要由內(nèi)源類(lèi)DOM組成.上覆水中的類(lèi)色氨酸C2組分占比最大,為(52.74±1.25)%,陸源輸入的類(lèi)腐殖質(zhì)C3組分次之,為(27.48±1.95)%,類(lèi)酪氨酸C1組分最小,為(19.77±2.62)%.上覆水C2和C3組分占比較大,說(shuō)明上覆水DOM與藻類(lèi)、生物降解的自生源類(lèi)和陸源類(lèi)輸入的土壤有機(jī)質(zhì)相關(guān).
綜上所述,PARAFAC解析出的茜坑水庫(kù)表層沉積物及其上覆水DOM由3類(lèi)熒光組分組成,表層沉積物中來(lái)源于生物產(chǎn)物的C1組分類(lèi)酪氨酸熒光強(qiáng)度最高,內(nèi)源類(lèi)DOM(C1+C2)熒光強(qiáng)度占總熒光強(qiáng)度的90.61%;上覆水中來(lái)源于生物降解的內(nèi)源類(lèi)DOM類(lèi)色氨酸(C2組分)熒光強(qiáng)度最高,內(nèi)源類(lèi)DOM(C1+C2)熒光強(qiáng)度占總熒光強(qiáng)度的72.51%.由此說(shuō)明茜坑水庫(kù)表層沉積物及其上覆水DOM具有內(nèi)源和陸源雙重來(lái)源,但內(nèi)源類(lèi)DOM是水庫(kù)表層沉積物及其上覆水DOM的主要來(lái)源.由于茜坑水庫(kù)水源地保護(hù)區(qū)內(nèi)建設(shè)用地、農(nóng)業(yè)用地等土地類(lèi)型已經(jīng)基本清理完畢,目前整個(gè)水庫(kù)水源地保護(hù)區(qū)內(nèi)基本為林地狀態(tài),陸源植物凋落通過(guò)地表徑流等形式可能是DOM陸源輸入的主要來(lái)源.
圖3 茜坑水庫(kù)沉積物及其上覆水DOM熒光組分強(qiáng)度及相對(duì)比例
DOM來(lái)源可以通過(guò)熒光指數(shù)FI、腐殖化指數(shù)HIX和自生源指數(shù)BIX來(lái)表示.熒光指數(shù)FI定義為在370nm激發(fā)波長(zhǎng)下,470與520nm的發(fā)射波長(zhǎng)熒光強(qiáng)度的比值,這個(gè)比值反映了芳香氨基酸與非芳香物對(duì)DOM熒光強(qiáng)度的相對(duì)貢獻(xiàn)率,因而可以作為腐殖質(zhì)的來(lái)源以及DOM的降解程度的指示指標(biāo)[27]. FI<1.4表示陸地或土壤源輸入,FI>1.9表示內(nèi)源微生物活動(dòng)為主[28].茜坑水庫(kù)表層沉積物及其上覆水DOM的FI范圍為1.46~2.11,沉積物FI平均值為1.83,上覆水FI平均值為1.76(圖4a).FI值說(shuō)明茜坑水庫(kù)DOM具有內(nèi)源和陸源的雙重特性,但主要以?xún)?nèi)源為主.陸源可能來(lái)源于降雨徑流攜帶的陸生植物和土壤等有機(jī)質(zhì),內(nèi)源主要來(lái)源于浮游植物和微生物降解產(chǎn)生的分泌物.
腐殖化指數(shù)HIX是在254nm激發(fā)波長(zhǎng)下,435~480nm發(fā)射波長(zhǎng)處熒光強(qiáng)度積分值和300~ 345nm熒光積分值之比,主要表征DOM中由陸源產(chǎn)生的類(lèi)腐殖質(zhì)的腐殖化程度[29].有研究表明[30],HIX值越高,DOM腐殖化程度越大.HIX>10說(shuō)明DOM有顯著腐殖質(zhì)特征,6 自生源指數(shù)BIX是在310nm激發(fā)波長(zhǎng)下,380與430nm的發(fā)射波長(zhǎng)處熒光強(qiáng)度的比值,主要表征DOM自生貢獻(xiàn)比例[12].BIX>1為生物或細(xì)菌引起的自生來(lái)源為主;0.8 Fn280是在280nm激發(fā)波長(zhǎng)下,340~360nm發(fā)射波長(zhǎng)熒光強(qiáng)度的最大值,代表類(lèi)蛋白物質(zhì)相對(duì)濃度水平.Fn355是在355nm時(shí),440~470nm發(fā)射波長(zhǎng)熒光強(qiáng)度的最大值,代表類(lèi)腐殖質(zhì)的相對(duì)濃度水平[33](圖4d、4e).茜坑水庫(kù)表層沉積物Fn280和Fn355均顯著大于上覆水體,沉積物中的類(lèi)蛋白質(zhì)濃度和類(lèi)腐殖質(zhì)濃度均遠(yuǎn)高于上覆水體. 綜上所述,熒光指數(shù)FI、腐殖化指數(shù)HIX和自生源指數(shù)BIX均表明茜坑水庫(kù)沉積物及其上覆水DOM受新生內(nèi)源和陸源輸入的共同影響,主要以?xún)?nèi)源為主,且呈現(xiàn)出較強(qiáng)的自生源特征.表層沉積物中的類(lèi)蛋白質(zhì)和類(lèi)腐殖質(zhì)濃度均顯著高于上覆水體,與熒光強(qiáng)度結(jié)果一致.對(duì)于分層型水庫(kù),分層期底部水體處于低溶解氧環(huán)境,沉積物中的顆粒態(tài)有機(jī)質(zhì)會(huì)在微生物缺氧或厭氧呼吸作用下降解,產(chǎn)生大量的可溶性副產(chǎn)物向上覆水體釋放[5].沉積物有機(jī)質(zhì)的礦化降解還伴隨著氮、磷的協(xié)同釋放,加劇水體富營(yíng)養(yǎng)化程度,對(duì)水庫(kù)水質(zhì)產(chǎn)生一定的影響. 本研究選取254和355來(lái)表示DOM的相對(duì)濃度[16],同時(shí)選用E2/E3、E3/E4、SUVA260、SUVA280等紫外光譜參數(shù)反映DOM相關(guān)特征.如圖5a、5b所示,表層沉積物254和355均高于上覆水,表明茜坑水庫(kù)表層沉積物DOM相對(duì)濃度顯著高于上覆水(<0.05).E2/E3值為250和365nm處的紫外吸光度之比,E2/E3越高,DOM分子量越小[34].表層沉積物E2/E3值為8.65±2.35,上覆水為5.47±0.67,表層沉積物E2/E3值顯著高于上覆水(<0.05) (圖5c),水庫(kù)表層沉積物DOM分子量小于上覆水,表層沉積物DOM主要成分為小分子類(lèi)蛋白質(zhì),與前文熒光光譜分析結(jié)果一致.E3/E4值為300和400nm處的紫外吸光度之比,與腐殖質(zhì)的腐殖化程度成反比[16].表層沉積物E3/E4值為6.46±1.64,上覆水為4.65±0.93,表層沉積物E3/E4值高于上覆水(<0.05) (圖5d),表明沉積物中DOM腐殖化程度低于上覆水,與腐殖化指數(shù)HIX表征結(jié)果一致.SUVA260為260nm處吸收系數(shù)260與DOC濃度之比,與DOM疏水性成正比;SUVA280為280nm處吸收系數(shù)280與DOC濃度之比,與DOM芳香性相關(guān)[35].表層沉積物SUVA260為1.63±0.28,上覆水為5.17±1.07(圖5e),表層沉積物SUVA280為1.18±0.23,上覆水為4.05±0.85(圖5f),沉積物SUA260和SUVA280均顯著小于上覆水(<0.05),表明沉積物中DOM疏水組分比例和芳香化程度均小于上覆水.這與DOM芳香性結(jié)構(gòu)主要存在于疏水性成分之中有關(guān),與梁儉等[36]研究結(jié)果一致. DOM的組成和結(jié)構(gòu)參數(shù)的相關(guān)性變化可以解釋內(nèi)外源輸入機(jī)制與變化[35].如圖6(a)所示,表層沉積物中C1組分與C1+C2、FI、E2/E3呈正相關(guān)關(guān)系(<0.05)與355呈負(fù)相關(guān)關(guān)系(<0.05).表明C1組分對(duì)DOM分子量和DOM相對(duì)濃度有顯著影響.C2組分與HIX、Fn355和254呈正相關(guān)關(guān)系(<0.05), C3組分與Fn355呈正相關(guān)關(guān)系(<0.05),說(shuō)明C3組分對(duì)類(lèi)腐殖質(zhì)濃度水平具有重要影響.C1+C2與C1、FI、E3/E4呈正相關(guān)關(guān)系(<0.05).表層沉積物DOM中的C1組分與C1+C2相關(guān)性顯著,但C2組分與C1+C2相關(guān)性不顯著,這是因?yàn)楸韺映练e物中的類(lèi)蛋白質(zhì)主要為類(lèi)酪氨酸物質(zhì),與三維熒光分析結(jié)果一致. 上覆水中C1組分與C2、C1+C2、Fn280、254和355相關(guān)性顯著(<0.05)(圖6b),表明C1組分與DOM相對(duì)濃度和類(lèi)蛋白質(zhì)濃度水平有關(guān).C2組分與C1、C1+C2和Fn280呈正相關(guān)關(guān)系(<0.05),表明上覆水中C1與C2組分存在同源性.C3組分與其他組分和各光譜參數(shù)均不相關(guān)(>0.05),可能是上覆水中C3組分占比較小,對(duì)上覆水體DOM影響不顯著.此外,沉積物及其上覆水中SUVA260與SUVA280均呈顯著正相關(guān)(<0.05),說(shuō)明DOM疏水性和芳香性顯著相關(guān),與前文結(jié)論一致. 水庫(kù)的修建改變了原有河道的水力學(xué)特征,使得水力停留時(shí)間變長(zhǎng),DOM會(huì)發(fā)生一系列的遷移轉(zhuǎn)化過(guò)程,包括物理作用下的沉降與釋放擴(kuò)散、生物和化學(xué)作用下的礦化、氧化還原等.茜坑水庫(kù)表層沉積物中小分子類(lèi)蛋白質(zhì)濃度顯著高于上覆水,在微生物的分解作用、生物或化學(xué)作用下,沉積物中顆粒態(tài)有機(jī)物又會(huì)向溶解態(tài)轉(zhuǎn)變,進(jìn)而向上覆水體釋放.釋放的小分子有機(jī)組分尺寸小,疏水性差,難以通過(guò)混凝等常規(guī)水處理工藝去除,對(duì)水質(zhì)安全產(chǎn)生較大威脅,增加水處理成本[37]. 3.1 PARAFAC共識(shí)別出3類(lèi)熒光組分,分別為源于生物產(chǎn)物的類(lèi)酪氨酸C1,自生源類(lèi)色氨酸C2和陸源腐殖質(zhì)類(lèi)富里酸C3.沉積物中C1組分占比最大,類(lèi)蛋白質(zhì)組分C1與C2占到總熒光組分的90%以上;上覆水中C2組分占比最大,C3組分占比較沉積物有所增加. 3.2 熒光指數(shù)FI、腐殖化指數(shù)HIX和自生源指數(shù)BIX均表明茜坑水庫(kù)沉積物及其上覆水DOM受新生內(nèi)源和陸源輸入的共同影響,主要以?xún)?nèi)源為主,且呈現(xiàn)出較強(qiáng)的自生源特征;紫外光譜參數(shù)E2/E3、E3/E4、SUVA260、SUVA280與熒光特征指數(shù)表征結(jié)果一致,均表明茜坑水庫(kù)沉積物及其上覆水DOM具有內(nèi)源和陸源雙重特征,自生源特征明顯. 3.3 表層沉積物中的類(lèi)蛋白質(zhì)和類(lèi)腐殖質(zhì)濃度高于上覆水,DOM分子量、腐殖化程度、芳香性和疏水性低于上覆水,沉積物存在向上覆水釋放有機(jī)質(zhì)的潛力,可能對(duì)后續(xù)水處理工藝產(chǎn)生一定影響. [1] Docherty K M, Young K C, Maurice P A, et al. Dissolved organic matter concentration and quality influences upon structure and function of freshwater microbial communities [J]. Microbial Ecology, 2006,52(3):378–388. [2] Zhao L Y, Li N, Huang T L, et al. Effects of artificially induced complete mixing on dissolved organic matter in a stratified source water reservoir [J]. Journal of Environmental Sciences, 2022,111: 130-140. [3] Mayorga E, Aufdenkampe A K, Masiello C A, et al. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers [J]. Nature, 2005,436(7050):538-541. [4] Xu H C, Jiang H L. UV-induced photochemical heterogeneity of dissolved and attached organic matter associated with cyanobacterial blooms in a eutrophic freshwater lake [J]. Water Research, 2013,47 (17):6506-6515. [5] 張 倩,董 靖,吉芳英,等.新建人工深水湖泊沉積物上覆水和孔隙水中溶解性有機(jī)質(zhì)的光譜特征 [J]. 湖泊科學(xué), 2018,30(1):112-120. Zhang Q, Dong J, Ji F Y, et al. Spectral characteristics of dissolved organic matter in overlying water and pore water of newly built artificial deep-water lake sediments [J]. Lake Science, 2018,30(1): 112-120. [6] 金建忠.以硫酸錳作催化劑無(wú)汞快速測(cè)定COD [J]. 廣州化學(xué), 2002,(4):24-27. Jin J Z. Quick determination of COD without mercury using manganese sulfate as a catalyst [J]. Guangzhou Chemistry, 2002, (4):24-27. [7] Li C M, Wang D H, Li N, et al. Identifying unknown by-products in drinking water using comprehensive two-dimensional gas chromatography–quadrupole mass spectrometry and in silico toxicity assessment [J]. Chemosphere, 2016,163:535-545. [8] Huen J M, Gillard R, Mayer A G, et al. Automatic measurement of pesticides in drinking water using on-line solid-phase extraction, HPLC and chemometry [J]. Fresenius' Journal of Analytical Chemistry, 1994,348(8/9):606-614. [9] 閉鳳麗,劉 波,張凌云,等.質(zhì)譜檢測(cè)技術(shù)在水環(huán)境監(jiān)測(cè)中的應(yīng)用及發(fā)展 [J]. 供水技術(shù), 2016,10(6):10-14,18. Bi F L, Liu B, Zhang LY, et al. Application and development of mass spectrometry detection technology in water environment monitoring [J]. Water Supply Technology, 2016,10(6):10-14,18. [10] 李元鵬,石 玉,張柳青,等.千島湖有色可溶性有機(jī)物光譜學(xué)特征及環(huán)境指示意義 [J]. 環(huán)境科學(xué)學(xué)報(bào), 2019,39(11):3856-3865. Li Y P, Shi Y, Zhang L Q, et al. Spectral characteristics and environmental significance of chromophoric dissolved organic matter in Lake Qiandao, a large drinking water reservoir [J]. Journal of Environmental Science, 2019,39(11):3856-3865. [11] 沈 爍,王育來(lái),楊長(zhǎng)明,等.南淝河不同排口表層沉積物DOM光譜特征 [J]. 中國(guó)環(huán)境科學(xué), 2014,34(9):2351-2361. Shen S, Wang Y L, Yang C M, et al. Spectral characteristic of dissolved organic matter (DOM) in the surface sediments from different discharging points along the Nanfei River in Hefei City, Anhui Province [J]. China Environmental Science, 2014,34(9):2351- 2361. [12] 王曉江,黃廷林,李 楠,等.峽谷分層型水源水庫(kù)表層沉積物溶解性有機(jī)物光譜特征 [J]. 湖泊科學(xué), 2018,30(6):1625-1635. Wang X J, Huang T L, Li N, et al. Spectral characteristics of dissolved organic matter in surface sediments of canyon layered water source reservoirs [J]. Journal of Lake Science, 2018,30(6):1625-1635. [13] 葉焰中,陳 凡,黃廷林.基于水質(zhì)綜合指數(shù)法對(duì)亞熱帶水源型水庫(kù)水質(zhì)評(píng)價(jià) [J/OL]. 水資源保護(hù): 1-12[2021-10-12]. http://kns.cnki. net/kcms/detail/32.1356.TV.20211008.1410.004.html. Ye Y Z, Chen F, Huang T L. Evaluation of water quality of subtropical water-source reservoir based on water quality comprehensive index [J/OL]. Water Resources Protection: 1-12 [2021-10-12]. http://kns.cnki.net/kcms/detail/32.1356.TV.20211008.1410.004.html. [14] 李曉潔,高紅杰,郭冀峰,等.三維熒光與平行因子研究黑臭河流DOM [J]. 中國(guó)環(huán)境科學(xué), 2018,38(1):311-319. Li X J, Gao H J, Guo J F, et al. Analyzing DOM in black and odorous water bodies using excitation-emission matrix fluorescence with PARAFAC [J]. China Environmental Science, 2018,38(1):311-319. [15] 陳 樂(lè),周永強(qiáng),周起超,等.撫仙湖有色可溶性有機(jī)物的來(lái)源組成與時(shí)空變化 [J]. 湖泊科學(xué), 2019,31(5):1357-1367. Chen L, Zhou Y Q, Zhou Q C, et al. Sources, composition and spatiotemporal variations of chromophoric dissolved organic matter in a deep oligotrophic Lake Fuxian, China [J]. Journal of Lake Sciences, 2019,31(5):1357-1367. [16] 李程遙,黃廷林,溫成成,等.汛期暴雨徑流對(duì)飲用水水庫(kù)溶解性有機(jī)質(zhì)(DOM)光譜特征的影響 [J]. 環(huán)境科學(xué), 2021,42(3):1391-1402. Li C Y, Huang T L, Wen C C, et al. Impact of storm runoff during flood season on the spectral characteristics of dissolved organic matter (DOM) in drinking water reservoirs [J]. Environmental Science, 2021,42(3):1391-1402. [17] 張春華,黃廷林,方開(kāi)凱,等.同溫混合初期主庫(kù)區(qū)沉積物間隙水DOM的光譜特征——以周村水庫(kù)為例 [J]. 中國(guó)環(huán)境科學(xué), 2016,36(10): 3048-3055. Zhang C H, Huang T L, Fang K K, et al. Spectral characteristics of DOM in interstitial water of sediments in the main reservoir area at the early stage of isothermal mixing: Taking Zhoucun Reservoir as an example [J]. China Environmental Science, 2016,36(10):3048-3055. [18] 閆彩虹.湖泊沉積物溶解性有機(jī)質(zhì)與有機(jī)氮特征研究 [D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué), 2011. Yan C H. Study on the characteristics of dissolved organic matter and organic nitrogen in lake sediments [D]. Changsha: Hunan Agricultural University, 2011. [19] 王 斌,黃廷林,陳 凡,等.亞熱帶分層型水庫(kù)夏季水質(zhì)特征及沉積物內(nèi)源污染影響研究 [J]. 中國(guó)環(huán)境科學(xué), 2021,41(10):4829-4836. Wang B, Huang T L, Chen F, et al. Study on the characteristics of water quality and the influence of sediment endogenic pollution in subtropical stratified reservoirs in summer [J]. China Environmental Science,2021,41(10):4829-4836. [20] 高 鳳,邵美玲,唐劍鋒,等.城鎮(zhèn)流域水體-沉積物中溶解性有機(jī)質(zhì)的熒光特性及影響因素:以寧波市小浹江為例[J]. 環(huán)境科學(xué), 2019,40(9):4009-4017. Gao F, Shao M L, Tang J F, et al. Fluorescence characteristics and influencing factors of dissolved organic matter in water bodies and sediments in urban basins: A case study of Xiaojia River in Ningbo City [J]. Environmental Science, 2019,40(9):4009-4017. [21] 國(guó)家環(huán)境保護(hù)總局.水和廢水監(jiān)測(cè)分析方法 [M]. 4版.北京:中國(guó)環(huán)境科學(xué)出版社, 2002. State Environmental Protection Administration. Water and wastewater monitoring and analysis methods [M]. 4th Ed. Beijing: China Environmental Science Press, 2002. [22] 林子深,黃廷林,楊尚業(yè),等.秦嶺北麓河流夏季有色溶解有機(jī)物分布特征及影響因素 [J]. 環(huán)境科學(xué), 2020,41(5):2210-2220. Lin Z S, Huang T L, Yang S Y, et al. Distribution characteristics and influencing factors of colored dissolved organic matter in the rivers of the northern piedmont of Qinling Mountains in summer [J]. Environmental Science, 2020,41(5):2210-2220. [23] 周石磊,孫 悅,苑世超,等.崗南水庫(kù)沉積物間隙水有色溶解有機(jī)物的時(shí)空分布特征及差異分析 [J]. 環(huán)境科學(xué), 2020,41(6):2635-2645. Zhou S L, Sun Y, Yuan S C, et al. Temporal and spatial distribution characteristics and difference analysis of colored dissolved organic matter in the sediment interstitial water of Gangnan Reservoir [J]. Environmental Science, 2020,41(6):2635-2645. [24] 閆麗紅,陳學(xué)君,蘇榮國(guó),等.2010年秋季長(zhǎng)江口口外海域CDOM的三維熒光光譜-平行因子分析[J]. 環(huán)境科學(xué), 2013,34(1):51-60. Yan L H, Chen X J, Su R G, et al. Three-dimensional fluorescence spectra-parallel factor analysis of CDOM in the waters off the Yangtze Estuary in the autumn of 2010 [J]. Environmental Science, 2013,34(1):51-60. [25] 李奕潔,宋貴生,胡素征,等.2014年夏季長(zhǎng)江口有色溶解有機(jī)物(CDOM)的分布、光學(xué)特性及其來(lái)源探究 [J]. 海洋與湖沼, 2015, 46(3):670-678. Li Y J, Song G S, Hu S Z, et al. Research on the distribution, optical properties and sources of colored dissolved organic matter (CDOM) in the Yangtze River Estuary in the summer of 2014 [J]. Ocean and Limnology, 2015,46(3):670-678. [26] 黃昌春,李云梅,王 橋,等.基于三維熒光和平行因子分析法的太湖水體CDOM組分光學(xué)特征 [J]. 湖泊科學(xué), 2010,22(3):375-382. Huang C C, Li Y M, Wang Q, et al. Optical characteristics of CDOM components in Taihu Lake based on three-dimensional fluorescence and parallel factor analysis [J]. Lake Science, 2010,22(3):375-382. [27] 呂偉偉,姚 昕,張保華.太湖北部湖區(qū)春、冬季節(jié)天然有機(jī)質(zhì)的熒光特征及環(huán)境意義 [J]. 環(huán)境科學(xué), 2018,39(8):3601-3613. Lu W W, Yao X, Zhang B H. Fluorescence characteristics and environmental significance of natural organic matter in the northern lake area of Lake Taihu in spring and winter [J]. Environmental Science, 2018,39(8):3601-3613. [28] Mcknight D M, Boyer E W, Westerhoff P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity [J]. Limnology and Oceanography, 2001,46(1):38-48. [29] 程遠(yuǎn)月,王帥龍,胡水波,等.海草生態(tài)系中DOM的三維熒光光譜特征 [J]. 光譜學(xué)與光譜分析, 2015,35(1):141-145. Cheng Y Y, Wang S L, Hu S B, et al. Three-dimensional fluorescence spectrum characteristics of DOM in seagrass ecosystem [J]. Spectroscopy and Spectral Analysis, 2015,35(1):141-145. [30] Ohno T, Fernandez I J, Hiradate S, et al. Effects of soil acidification and forest type on water soluble soil organic matter properties [J]. Geoderma, 2007,40(1/2):176-187. [31] 陳俊伊,王書(shū)航,姜 霞,等.蠡湖表層沉積物熒光溶解性有機(jī)質(zhì)(FDOM)熒光光譜特征 [J]. 環(huán)境科學(xué), 2017,38(1):70-77. Chen J Y, Wang S H, Jiang X, el al. Fluorescence spectral characteristics of fluorescent dissolved organic matter (FDOM) in the surface sediments from Lihu Lake [J]. Environmental Science, 2017, 38(1):70-77. [32] Huguet A, Vacher L, Relexans S, et al. Properties of fluorescent dissolved organic matter in the Gironde Estuary [J]. Organic Geochemistry, 2009,40(6):706-719. [33] 周石磊,孫 悅,張藝冉,等.雄安新區(qū)-白洋淀冬季冰封期水體溶解性有機(jī)物的空間分布、光譜特征及來(lái)源解析 [J]. 環(huán)境科學(xué), 2020,41(1):213-223. Zhou S L, Sun Y, Zhang Y R, et al. Spatial distribution, spectral characteristics and sources analysis of dissolved organic matter from Baiyangdian Lake in Xiong’an New District during the winter freezing period [J]. Environmental Science, 2020,41(1):213-223. [34] Li P, Hu J. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review [J]. Critical Reviews in Environmental Science and Technology, 2017, 47(3):131-154. [35] 范詩(shī)雨,秦紀(jì)洪,劉堰楊,等.岷江上游水體中DOM光譜特征的季節(jié)變化 [J]. 環(huán)境科學(xué), 2018,39(10):4530-4538. Fan S Y, Qin J H, Liu Y Y, et al. Seasonal variations of DOM spectral characteristics in the surface water of the upstream Minjiang River [J]. Environmental Science, 2018,39(10):4530-4538. [36] 梁 儉,江 韜,盧 松,等.淹水條件下三峽庫(kù)區(qū)典型消落帶土壤釋放DOM的光譜特征:熒光光譜 [J]. 環(huán)境科學(xué), 2016,37(7):2506- 2514. Liang J, Jiang T, Lu S, et al. Spectral characteristics of dissolved organic matter (DOM) releases from soils of typical water-level fluctuation zones of Three Gorges Reservoir areas: UV-Vis spectrum [J]. Environmental Science, 2016,37(7):2506-2514. [37] 李 凱,王曉東,黃廷林.湖庫(kù)型水源天然有機(jī)物來(lái)源與特性及其對(duì)水處理工藝影響研究進(jìn)展 [J]. 西安建筑科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018,50(4):588-593. Li K, Wang X D, Huang T L. Research progress of natural organic matter sources and characteristics in lake-reservoir water and its effect on water treatment process [J]. Journal of Xi 'an University of Architecture and Technology (Natural Science Edition), 2018,50(4): 588-593. 致謝:本實(shí)驗(yàn)的現(xiàn)場(chǎng)采樣工作由深圳市北部水源工程管理處茜坑水庫(kù)管理所的工作人員協(xié)助完成,在此表示感謝. Spectral characteristics of dissolved organic matter in sediment and overlying water of water source reservoir. WANG Bin1, HUANG Ting-lin1*, LI Nan1, GAO Yue1, YE Yan-zhong2, ZHAI Zhen-qi2,CHEN Fan1, YANG Peng-cheng1 (1.Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China;2.Xikeng Reservoir Management Institute, North Water Resources Engineering Management Office, Shenzhen 518110, China)., 2022,42(3):1309~1317 To explore the composition and source of dissolved organic matter (DOM) in water source reservoir, the Shenzhen Xikeng Reservoir was taken as an example, using ultraviolet-visible spectroscopy (UV-Vis) combined with parallel factor analysis three-dimensional fluorescence spectroscopy (EEMs-PARAFAC) analyzed the DOM spectral characteristics of the surface sediments of the reservoir and its overlying water. The results showed that: PARAFAC had identified three types of fluorescent components, namely C1 (x/m=270/304nm, protein-like), C2 (x/m=285,235/360nm, protein-like) and C3 (x/m=270,340/442nm, humus-like). The fluorescence characteristic index indicated that the sediments of the Xikeng Reservoir and the DOM of the overlying water were affected by both the new endogenous and terrestrial inputs, but mainly endogenous. The protein-like concentration and humus-like concentration in the surface sediments were much higher than the overlying water, and the surface sediments might release small molecules of DOM. The UV-vis spectrum and three-dimensional fluorescence characterization results were consistent, and the DOM molecular weight, degree of humification, aromaticity and hydrophobicity of the surface sediments were all lower than that of the overlying water. Correlation analysis showed that the C1 and C2 components of the overlying water were significantly correlated (<0.05), and there was homology between them. The study of the DOM spectral characteristics of the sediments of the Xikeng Reservoir and its overlying water can further analyze the characteristics of the organic matter pollution of the reservoir. water source reservoir;DOM;UV-Vis;EEMs;PARAFAC X524 A 1000-6923(2022)03-1309-09 王 斌(1995-),男,內(nèi)蒙古自治區(qū)鄂爾多斯市人,西安建筑科技大學(xué)碩士研究生,主要研究方向?yàn)樗此畮?kù)污染物演替及水質(zhì)改善.發(fā)表論文2篇. 2021-08-18 國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFD1100101);國(guó)家自然科學(xué)基金資助項(xiàng)目(51979217) *責(zé)任作者, 教授, huangtinglin@xauat.edu.cn2.3 紫外-可見(jiàn)吸收光譜特征分析
2.4 熒光組分與光譜參數(shù)的相關(guān)關(guān)系
2.5 沉積物及其上覆水DOM遷移轉(zhuǎn)化及其對(duì)水庫(kù)水質(zhì)的影響
3 結(jié)論