陳宏州 周晨 莊義慶 姚克兵 楊紅福 徐超 侯毅平 朱鳳
摘要 由藤倉(cāng)赤霉復(fù)合種Gibberella fujikuroi species complex引起的惡苗病(rice bakanae disease)是嚴(yán)重危害水稻的種傳病害。為探明江蘇省水稻惡苗病菌的種群結(jié)構(gòu)及對(duì)多菌靈、咪鮮胺和氰烯菌酯的抗藥性現(xiàn)狀,分別對(duì)2019年江蘇省13個(gè)縣(市)和2020年18個(gè)縣(市)采集的惡苗病植株樣本的123株和182株單孢菌株進(jìn)行了形態(tài)學(xué)初步鑒定,并基于翻譯延伸因子1-α(translation elongation factor 1-α, TEF1-α)序列對(duì)其進(jìn)行了分子鑒定和系統(tǒng)發(fā)育分析;采用區(qū)分劑量法分別檢測(cè)了菌株對(duì)多菌靈、咪鮮胺和氰烯菌酯的抗藥性。結(jié)果表明,2019年和2020年收集的菌株均被鑒定為藤倉(cāng)鐮孢Fusarium fujikuroi、 擬輪枝鐮孢F.verticillioides、層出鐮孢F.proliferatum和新知鐮孢F.andiyazi,分別占比為87.80%、4.07%、5.69%、2.44%和90.11%、1.65%、2.75%、5.49%;基于TEF1-α序列的系統(tǒng)發(fā)育分析,鐮孢菌可清晰分為4個(gè)不同種群,菌株間具遺傳多樣性。2019年和2020年菌株對(duì)多菌靈、咪鮮胺和氰烯菌酯的總抗性頻率分別為67.48%、23.58%、9.76%和41.21%、43.96%、29.12%。依據(jù)菌株對(duì)3種殺菌劑的抗藥性表現(xiàn),可分為7種表現(xiàn)型,其中2019年和2020年對(duì)多菌靈、咪鮮胺和氰烯菌酯有抗性的菌株分別占4.07%和1.65%;對(duì)多菌靈、咪鮮胺和氰烯菌酯敏感的菌株分別占28.46%和17.58%。江蘇省惡苗病菌優(yōu)勢(shì)種為藤倉(cāng)鐮孢,病菌對(duì)多菌靈和咪鮮胺抗性頻率較高,對(duì)氰烯菌酯抗性已逐漸擴(kuò)展。研究結(jié)果可為鐮孢菌分類鑒定及水稻惡苗病綜合防治提供理論依據(jù)。
關(guān)鍵詞 水稻惡苗病; 鐮孢菌; TEF1-α; 系統(tǒng)發(fā)育分析; 抗藥性
中圖分類號(hào): S435.11
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.16688/j.zwbh.2021581
Abstract Rice bakanae disease (RBD) caused by Gibberella fujikuroi species complex (GFSC) is a serious seed-borne disease of rice (Oryza sativa L.). In order to investigate the population structure and the resistance of the pathogen of RBD to carbendazim, prochloraz and phenamacril in Jiangsu province, 123 and 182 single-spore strains collected from RBD-infected rice plants in 13 and 18 counties (cities) in Jiangsu province in 2019 and 2020 were preliminarily identified by morphology, respectively, and then molecular identification and phylogenetic analysis based on translation elongation factor 1-α (TEF1-α) sequences were conducted, and their resistance to carbendazim, prochloraz and phenamacril was detected by using a distinguishing dosage method. The results showed that the strains collected in 2019 and 2020 were identified as Fusarium fujikuroi, F.verticillioides, F.proliferatum and F.andiyazi, accounting for 87.80%, 4.07%, 5.69%, 2.44% and 90.11%, 1.65%, 2.75%, 5.49%, respectively. Phylogenetic analysis based on TEF1-α sequences showed abundant inter-and intra-specific genetic variations among the strains, which were clearly grouped into four different populations. The total resistance frequency of different strains to carbendazim, prochloraz and phenamacril were 67.48%, 23.58%, 9.76% and 41.21%, 43.96%, 29.12% in 2019 and 2020, respectively. According to the resistance phenotypes of all strains to three fungicides, seven resistance types were identified. In 2019 and 2020, the strains resistant to carbendazim, prochloraz and phenamacril accounted for 4.07% and 1.65%, respectively, and the strains sensitive to carbendazim, prochloraz and phenamacril accounted for 28.46% and 17.58%, respectively. The dominant population of the pathogens of RBD in Jiangsu province was F.fujikuroi. The pathogens of RBD in Jiangsu province had relatively high resistance frequencies to carbendazim and prochloraz, and their resistance to phenamacril was gradually expanding. These results provided a theoretic and scientific basis for Fusarium taxonomy and integrated control of RBD.
Key words rice bakanae disease; Fusarium; translation elongation factor 1-α; phylogenetic analysis; resistance
由藤倉(cāng)赤霉復(fù)合種Gibberella fujikuroi species complex引起的水稻惡苗?。╮ice bakanae disease)是危害嚴(yán)重的水稻種傳病害[1]。該病害于1828年在日本首次被發(fā)現(xiàn)[2],現(xiàn)在全球水稻種植區(qū)域均有發(fā)生[3],可造成水稻減產(chǎn)3.0%~95.4%,甚至完全絕收[4]。此外,還因藤倉(cāng)赤霉復(fù)合種菌株產(chǎn)生伏馬毒素等毒素污染而威脅人類和動(dòng)物健康[5]。
水稻惡苗病病原菌種類鑒定對(duì)稻種帶菌率檢測(cè)、病害藥劑防治、抗藥性治理以及病害綜合防治決策制定等方面均有重要意義。相關(guān)研究表明,水稻惡苗病病原包括藤倉(cāng)赤霉復(fù)合種的藤倉(cāng)鐮孢 Fusarium fujikuroi、擬輪枝鐮孢 F.verticillioides和層出鐮孢 F.proliferatum[69]。近年來(lái),首次在非洲高粱上鑒定出的新知鐮孢F.andiyazi[10]也可引起水稻惡苗病[1115]。我國(guó)對(duì)該菌引起的水稻惡苗病也有相關(guān)報(bào)道[1415]。藤倉(cāng)赤霉復(fù)合種的種群鑒定已報(bào)道了多種方法,如:形態(tài)學(xué)鑒定、交配型檢測(cè)、真菌毒素檢測(cè)、營(yíng)養(yǎng)體親和性分類、隨機(jī)擴(kuò)增多態(tài)DNA(random amplification of polymorphic DNA, RAPD)和擴(kuò)增片段長(zhǎng)度多態(tài)性(amplified fragment length polymorphism, AFLP)分析等,但這些方法大多費(fèi)時(shí)費(fèi)力,甚至不能準(zhǔn)確鑒定[16]。翻譯延伸因子1-α(translation elongation factor 1-α, TEF1-α)基因的表達(dá)及調(diào)控具有高度保守性,常應(yīng)用于研究物種間的親緣關(guān)系;作為分子標(biāo)記,TEF1-α序列已被廣泛用于鐮孢菌的種群鑒定,并且在鐮孢菌種級(jí)水平進(jìn)行系統(tǒng)發(fā)育分析時(shí),TEF1-α序列可以準(zhǔn)確地鑒別出鐮孢菌種[1718]。
由于缺乏有效的抗病品種,水稻惡苗病的防治仍以化學(xué)藥劑進(jìn)行種子處理為主[19]。在我國(guó),自20世紀(jì)70年代以來(lái),多菌靈等苯并咪唑類殺菌劑被廣泛應(yīng)用于水稻惡苗病防治,但因病菌產(chǎn)生抗藥性其藥效大大降低[20]。20世紀(jì)80年代,咪唑類殺菌劑,尤其是咪鮮胺,對(duì)水稻惡苗病防效優(yōu)良且與多菌靈無(wú)交互抗性,在生產(chǎn)中應(yīng)用廣泛,但隨著藥效下降,田間病原菌菌株的抗性頻率(MIC>3.125 μg/mL)竟高于80%[21]。氰基丙烯酸酯類殺菌劑——氰烯菌酯,由江蘇省農(nóng)藥研究所1998年合成,具有極高的選擇性和鐮孢菌專化性,與多菌靈和咪鮮胺等無(wú)交互抗性,對(duì)水稻惡苗病防效優(yōu)良[22]。因肌球蛋白-5點(diǎn)突變而產(chǎn)生的病原抗性,導(dǎo)致浙江?。ń鹑A市、紹興市和嘉興市)水稻惡苗病菌對(duì)氰烯菌酯抗性頻率由2017年的18%上升至2018年的47%;氰烯菌酯使用未超過(guò)10年,但多個(gè)區(qū)域水稻惡苗病菌已產(chǎn)生明顯抗性并且抗性種群還在迅速擴(kuò)展[23]。目前,農(nóng)業(yè)農(nóng)村部農(nóng)藥檢定所登記用于水稻惡苗病防治的藥劑有將近170個(gè)(包括單劑和復(fù)配劑)(http:∥www.chinapesticide.org.cn/hysj/index.jhtml),但按制劑有效成分約85%為咪鮮胺、咯菌腈、多菌靈或福美雙,制劑有效成分種類較少,水稻惡苗病有效防控及抗性治理的形勢(shì)仍十分嚴(yán)峻。
為探明江蘇省水稻惡苗病菌種群結(jié)構(gòu)以及病菌種群對(duì)多菌靈、咪鮮胺和氰烯菌酯抗藥性發(fā)展現(xiàn)狀,筆者對(duì)2019年和2020年采自江蘇省水稻惡苗病植株樣本的123株和182株單孢菌株進(jìn)行了形態(tài)學(xué)初步鑒定以及基于TEF1-α序列的分子鑒定和系統(tǒng)發(fā)育分析,并采用區(qū)分劑量法分別檢測(cè)了其對(duì)多菌靈、咪鮮胺和氰烯菌酯的抗藥性,以期為水稻惡苗病菌種群分類鑒定以及藥劑防治與抗藥性治理提供理論依據(jù)。
1 材料與方法
1.1 材料
供試菌株:2019年在江蘇省阜寧縣等13個(gè)縣(市),2020年在儀征市等18個(gè)縣(市)采集水稻惡苗病樣品,每田塊采1個(gè)病樣。將病樣晾干后,單孢分離獲取菌株,純培養(yǎng)后編號(hào)保存?zhèn)溆肹19]。
供試藥劑:95%多菌靈原藥、98%咪鮮胺原藥,江蘇輝豐生物農(nóng)業(yè)股份有限公司;95%氰烯菌酯原藥,江蘇省農(nóng)藥研究所股份有限公司。將95%多菌靈原藥用適量0.1 mol/L鹽酸溶液溶解,其他原藥分別用適量丙酮溶解后用無(wú)菌水定容至一定體積,并加入5%的吐溫80作為乳化劑,各藥劑均配制成50 000 μg/mL的母液冷藏備用。
供試培養(yǎng)基:馬鈴薯葡萄糖瓊脂(potato dextrose agar,PDA)培養(yǎng)基:馬鈴薯200 g、葡萄糖20 g、瓊脂18 g、蒸餾水1 L;PDA液體培養(yǎng)基:PDA培養(yǎng)基中不添加瓊脂。
供試試劑盒:Omega真菌DNA提取試劑盒,Omega Bio-Tek公司;R011 PCR擴(kuò)增試劑盒,寶生物工程(大連)有限公司。
1.2 方法
1.2.1 供試菌株的形態(tài)學(xué)鑒定
將供試單孢菌株分別移植到PDA平皿上,26℃暗培養(yǎng)并觀察菌落大小及菌落正反面顏色變化,大、小型分生孢子和厚垣孢子形狀及著生方式、產(chǎn)孢細(xì)胞形態(tài)特點(diǎn)以及分生孢子座產(chǎn)生情況,并根據(jù)鐮孢菌的形態(tài)特征進(jìn)行菌株形態(tài)學(xué)鑒定[15,24]。
1.2.2 供試菌株的分子鑒定與系統(tǒng)發(fā)育分析
將形態(tài)學(xué)鑒定后的單孢菌株分別轉(zhuǎn)移到PDA平皿上,26℃暗培養(yǎng)7 d,收集菌絲并于鼓風(fēng)干燥箱75℃烘干約12 h,取10~50 mg干燥菌絲磨成粉末后裝入1.5 mL 離心管中,按照Omega真菌DNA提取試劑盒說(shuō)明提取各菌株DNA。采用TEF1-α引物:ef1 (5′-ATGGGTAAGGAAGACAAGAC-3′)和ef2 (5′-GGAAGTACCAGTGATCATGTT-3′)進(jìn)行PCR[25]。PCR 反應(yīng)體系(50 μL): 5 μL 10×Taq DNA 聚合酶 PCR buffer,1 μL dNTPs (10 mmol/L),3 μL MgCl2 (25 mmol/L),1 μL 引物 (10 μmol/L), 0.5 μL Taq 聚合酶(5 U/μL),1 μL真菌基因組DNA和 37.5 μL ddH2O。PCR反應(yīng)程序:94℃預(yù)變性2 min;94℃變性1 min,55℃退火1 min,72℃延伸1 min,35個(gè)循環(huán);72℃延伸10 min,4℃保存。PCR擴(kuò)增產(chǎn)物經(jīng)1.7%瓊脂糖凝膠電泳分離并拍照分析條帶后,由生工生物工程(上海)股份有限公司進(jìn)行擴(kuò)增產(chǎn)物的純化及雙向測(cè)序。
登錄NCBI網(wǎng)站(http:∥www.ncbi.nih.gov/index.html)對(duì)供試菌株TEF1-α序列進(jìn)行BLAST比對(duì)分析,完成菌株比對(duì)鑒定。利用MEGA 5.0軟件分別對(duì)2019年和2020年供試菌株TEF1-α序列及GenBank下載的藤倉(cāng)鐮孢F.fujikuroi IMI 58289(HF679028.1)、F.fujikuroi PRC4a(JF699612.1)、F.fujikuroi 37-EF1(KC584844.1)、F.fujikuroi M7055(KC964126.1)、層出鐮孢F.proliferatum ITEM2400(LT841259.1)、F.proliferatum WF16(KP054294.1)、F.proliferatum P8114X(KU872102.1)、F.proliferatum CF598(KF267266.1)、擬輪枝鐮孢F.verticillioides K311(KF562131.1)、F.verticillioides FV4(KP732009.1)、新知鐮孢F.andiyazi LS1(MT947799.1)和F.andiyazi RF258(KT257545.1)等12株標(biāo)準(zhǔn)參照菌株TEF1-α序列,以木賊鐮孢F.equiseti NRRL 13405(GQ915507.1)和變紅鐮孢F.incarnatum NRRL 31160(GQ505607.1)為外群,采用鄰接法(neighbor-joining, NJ)構(gòu)建系統(tǒng)發(fā)育樹(shù)[15]。
1.2.3 供試菌株對(duì)多菌靈、咪鮮胺和氰烯菌酯的抗藥性檢測(cè)
采用區(qū)分劑量法檢測(cè)菌株對(duì)各藥劑的抗性。多菌靈、咪鮮胺和氰烯菌酯的鑒別劑量分別設(shè)置為10.0、3.0 μg/mL和5.0 μg/mL。配制含藥培養(yǎng)基,以不加藥劑為對(duì)照[26]。將待測(cè)菌株分別轉(zhuǎn)移到PDA平皿上,26℃暗培養(yǎng)4 d后取直徑為5 mm的菌餅移至各含藥和對(duì)照平皿中,26℃暗培養(yǎng)3 d,每個(gè)處理重復(fù)3次。不能或幾乎不能在鑒別劑量平皿上生長(zhǎng)的為敏感菌株,能生長(zhǎng)的為抗性菌株。
2 結(jié)果與分析
2.1 供試菌株的形態(tài)學(xué)鑒定結(jié)果
依據(jù)水稻惡苗病植株樣本上有橘黃色至淺橙色的分生孢子堆,分離菌株在PDA培養(yǎng)基上初為白色然后變成紅色或紫紅色的菌落、氣生菌絲初為白色然后變成淺灰色或淺粉色、小型分生孢子大多在單瓶?;蚨嗥抗5姆稚咦庸I湘湢钆帕械如犳呔螒B(tài)特征初步將其鑒定為鐮孢菌(圖1),2019年從江蘇省阜寧縣等13個(gè)縣(市),2020年從儀征市等18個(gè)縣(市)采集的水稻惡苗病植株樣品中各獲得123株和182株供試單孢鐮孢菌。
2.2 供試菌株的分子鑒定與系統(tǒng)發(fā)育分析結(jié)果
從2019年的123株
和2020年的182株供試鐮孢菌DNA中均擴(kuò)增出約700 bp TEF1-α片段,不同種間擴(kuò)增出的片段長(zhǎng)度沒(méi)有明顯差異(圖2)。將PCR產(chǎn)物純化及雙向測(cè)序所得序列提交至GenBank并進(jìn)行BLAST比對(duì)分析得出,2019年和2020年供試菌株均分別為藤倉(cāng)鐮孢F.fujikuroi、 擬輪枝鐮孢F.verticillioides、層出鐮孢F.proliferatum和新知鐮孢F.andiyazi。2019年的123株菌株中,藤倉(cāng)鐮孢占比87.80%(108/123),為優(yōu)勢(shì)種群,擬輪枝鐮孢占比4.07%(5/123),層出鐮孢占比5.69%(7/123),新知鐮孢占比2.44%(3/123);2020年的182株菌株中,藤倉(cāng)鐮孢占比90.11%(164/184),也為優(yōu)勢(shì)種群,擬輪枝鐮孢占比1.65%(3/182),層出鐮孢占比2.75%(5/182),新知鐮孢占比5.49%(10/182)(表1~2)。
基于2019年(123株)和2020年(182株)供試鐮孢菌以及GenBank中12株標(biāo)準(zhǔn)參照菌株的TEF1-α序列并以木賊鐮孢F.equiseti NRRL 13405(GQ915507.1)和變紅鐮孢F.incarnatum NRRL 31160(GQ505607.1)為外群,分別進(jìn)行了系統(tǒng)發(fā)育分析,構(gòu)建的系統(tǒng)發(fā)育樹(shù)顯示供試鐮孢菌株具有廣泛的遺傳多樣性,并且這些菌株被清晰地分為4個(gè)不同的類群,即藤倉(cāng)鐮孢、層出鐮孢、擬輪枝鐮孢和新知鐮孢(圖3~4)。這表明,TEF1-α序列在水稻惡苗病病原鐮孢菌種群鑒定中具有較好的效果。
2.3 水稻惡苗病病原菌株對(duì)多菌靈、咪鮮胺和氰烯菌酯的抗藥性
抗藥性檢測(cè)結(jié)果得出,2019年采自阜寧縣等13個(gè)縣(市)的123株惡苗病菌株對(duì)多菌靈、咪鮮胺和氰烯菌酯的總抗性頻率分別為67.48%、23.58%和9.76%,2020年采自儀征市等18個(gè)縣(市)的182株菌株對(duì)多菌靈、咪鮮胺和氰烯菌酯的總抗性頻率分別為41.21%、43.96%和29.12%,惡苗病菌株對(duì)多菌靈、咪鮮胺和氰烯菌酯的抗性頻率在不同地區(qū)間差異較大(表1~3)。結(jié)果表明,江蘇省水稻惡苗病菌對(duì)多菌靈和咪鮮胺的抗性頻率整體仍較高,局部地區(qū)抗氰烯菌酯菌株高發(fā)。
2.4 水稻惡苗病病原菌株對(duì)多菌靈、咪鮮胺和氰烯菌酯抗藥性的表現(xiàn)型
依據(jù)菌株對(duì)多菌靈、咪鮮胺和氰烯菌酯的抗、感程度,可將2019年的123株菌株和2020年的182株菌株分為7種表現(xiàn)型(表4)。2019年和2020年對(duì)多菌靈、咪鮮胺和氰烯菌酯均有抗性的菌株分別占4.07%和1.65%,對(duì)多菌靈和咪鮮胺抗藥而對(duì)氰烯菌酯敏感的菌株分別占18.70%和25.82%,對(duì)多菌靈抗藥而對(duì)咪鮮胺和氰烯菌酯敏感的菌株分別占41.46%和10.99%,對(duì)多菌靈和氰烯菌酯抗藥而對(duì)咪鮮胺敏感的菌株分別占3.25%和2.75%,對(duì)多菌靈、咪鮮胺和氰烯菌酯均敏感的菌株分別占28.46%和17.58%,對(duì)多菌靈和氰烯菌酯敏感而對(duì)咪鮮胺抗藥的菌株分別占1.63%和17.03%,對(duì)多菌靈和咪鮮胺敏感而對(duì)氰烯菌酯抗藥的菌株分別占2.44%和24.18%。
3 討論
我國(guó)是全球水稻產(chǎn)銷第一大國(guó),其中江蘇省水稻年種植面積達(dá)220萬(wàn)hm2以上,但對(duì)多個(gè)區(qū)域水稻惡苗病菌種群尤其是病菌種群結(jié)構(gòu)知之甚少。國(guó)內(nèi)對(duì)水稻惡苗病菌種群的研究報(bào)道中,大多沿用國(guó)內(nèi)外業(yè)界均已建議廢棄的種名“串珠鐮孢F.moniliforme”[2730]。在鐮孢菌的鑒定中,通?;趥鹘y(tǒng)形態(tài)學(xué)特征的鑒定僅作為鐮孢菌的預(yù)判或菌種鑒定的輔助措施[15],而TEF1-α基因序列是鐮孢菌分子鑒定中高效且應(yīng)用廣泛的鑒別基因序列[31]。本研究對(duì)采自江蘇省不同縣(市)水稻惡苗病植株樣本的單孢菌株進(jìn)行基于形態(tài)特征的初步鑒定后,基于TEF1-α序列進(jìn)行分子鑒定與系統(tǒng)發(fā)育分析,結(jié)果表明TEF1-α序列在水稻惡苗病菌種群分子鑒定及系統(tǒng)發(fā)育分析中具有較好效果,同時(shí)藤倉(cāng)鐮孢是江蘇省水稻惡苗病菌種群中的優(yōu)勢(shì)種群,這一研究結(jié)果與世界多個(gè)研究報(bào)道相似[8,12,16,19,32]。
2007年,陳夕軍等[33]報(bào)道,江蘇省水稻惡苗病菌對(duì)多菌靈總抗性頻率達(dá)95.8%,而對(duì)咪鮮胺總抗性頻率為1.5%,抗性菌株頻率低且不夠穩(wěn)定,加之競(jìng)爭(zhēng)力較弱,病菌對(duì)咪鮮胺的田間抗性可能增長(zhǎng)緩慢。2013年,楊紅福等[34]報(bào)道,江蘇由于長(zhǎng)期單一使用咪鮮胺浸種防治水稻惡苗病,導(dǎo)致水稻惡苗病菌對(duì)咪鮮胺總抗性頻率達(dá)82.14%,抗性菌株成為田間優(yōu)勢(shì)種群,并導(dǎo)致田間咪鮮胺對(duì)水稻惡苗病喪失防效。據(jù)報(bào)道,2016年采自江蘇省16個(gè)縣(市)的202株藤倉(cāng)赤霉菌對(duì)多菌靈、咪鮮胺和氰烯菌酯的總抗性頻率分別為77.72%、67.33%和0%[26];2018年采自浙江省嘉興市某些田塊的水稻惡苗病菌對(duì)氰烯菌酯抗性頻率達(dá)100%[23]。本研究中,2019年采自江蘇省13個(gè)縣(市)的123株和2020年采自18個(gè)縣(市)的182株水稻惡苗病菌對(duì)多菌靈、咪鮮胺和氰烯菌酯的總抗性頻率分別為67.48%、23.58%、9.76%和41.21%、43.96%、29.12%;依據(jù)菌株對(duì)多菌靈、咪鮮胺和氰烯菌酯的抗、感性程度,可將菌株分為7種表現(xiàn)型,未檢測(cè)到對(duì)多菌靈敏感而對(duì)咪鮮胺和氰烯菌酯抗藥的菌株。不同年份間,水稻惡苗病菌對(duì)多菌靈和咪鮮胺抗性頻率有一定波動(dòng),這可能是檢測(cè)樣本差異導(dǎo)致的,但田間菌株對(duì)多菌靈和咪鮮胺的抗性頻率整體仍較高。水稻惡苗病菌對(duì)氰烯菌酯抗性從未檢測(cè)到抗性菌株,發(fā)展至總抗性頻率達(dá)29.12%,2020年采自江蘇溧水某些田塊菌株對(duì)氰烯菌酯抗性頻率甚至達(dá)100%。可見(jiàn),江蘇省水稻惡苗病菌對(duì)氰烯菌酯抗性也已逐漸擴(kuò)展,并且局部地區(qū)對(duì)氰烯菌酯抗性高發(fā)。鑒于水稻惡苗病菌抗藥性發(fā)展現(xiàn)狀,在江蘇省水稻生產(chǎn)中,不宜繼續(xù)使用多菌靈、咪鮮胺和氰烯菌酯作為主效成分的單劑或復(fù)配劑防治水稻惡苗病。
本研究中,由于采集的水稻惡苗病樣本偏少,江蘇省水稻惡苗病菌種群結(jié)構(gòu)鑒定結(jié)果未能完全反映現(xiàn)狀,層出鐮孢、擬輪枝鐮孢和新知鐮孢在大田實(shí)際危害及病菌種群占比情況還有待進(jìn)一步研究。在水稻惡苗病防治中,需綜合應(yīng)用選育無(wú)病種子、催芽及秧苗期加強(qiáng)栽培管理及調(diào)優(yōu)種子處理藥劑與方法相結(jié)合的多項(xiàng)防控措施,堅(jiān)持“預(yù)防為主,綜合防治”的策略,以保障水稻高產(chǎn)穩(wěn)產(chǎn)及糧食安全。
參考文獻(xiàn)
[1] O’DONNELL K, CIGELNIK E, NIRENBERG H I. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex [J]. Mycologia, 1998, 90(3): 465493.
[2] ITO S, SHIMADA S. On the nature of growth promoting substance excreted by the “bakanae” fungus [J]. Annals of the Phytopathological Society of Japan, 1931, 2(4): 322378.
[3] SINGH R, SUNDER S. Foot rot and bakanae of rice: retrospects and prospects [J]. International Journal of Tropical Plant Diseases, 1997, 15: 153176.
[4] KABILAN G, HARITHA D, CHOUDHURY D. Review on bakanae disease of rice and management [J]. The Pharma Innovation Journal, 2021, 10(5): 12671273.
[5] PROCTOR R H, PLATTNER R D, BROWN D W, et al. Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex [J]. Mycological Research, 2004, 108(7): 815822.
[6] DESJARDINS A E, MANANDHAR H K, PLATTNER R D, et al. Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species [J]. Applied and Environmental Microbiology, 2000, 66(3): 10201025.
[7] CARTER L L A, LESLIE J F, WEBSTER R K. Population structure of Fusarium fujikuroi from California rice and water grass [J]. Phytopathology, 2008, 98(9): 992998.
[8] AMATULLI M T, SPADARO D, GULLINO M L, et al. Molecular identification of Fusarium spp.associated with bakanae disease of rice in Italy and assessment of their pathogenicity [J]. Plant Pathology, 2010, 59(5): 839844.
[9] HSUAN H M, SALLEH B, ZAKARIA L. Molecular identification of Fusarium species in Gibberella fujikuroi species complex from rice, sugarcane and maize from peninsular Malaysia [J]. International Journal of Molecular Sciences, 2011, 12(10): 67226732.
[10]MARASAS W F O, RHEEDER J P, LAMPRECHT S C, et al. Fusarium andiyazi sp.nov., a new species from sorghum [J]. Mycologia, 2001, 93(6):12031210.
[11]PR M D, TONTI S, PANCALDI D, et al. First report of Fusarium andiyazi associated with rice bakanae in Italy [J]. Plant Disease, 2010, 94(8): 1070.
[12]WULFF E G, SRENSEN J L, LBECK M, et al. Fusarium spp.associated with rice bakanae: ecology, genetic diversity, pathogenicity and toxigenicity [J]. Environmental Microbiology, 2010, 12(3): 649657.
[13]CHOI H W, HONG S K, LEE Y K, et al. Taxonomy of Fusarium fujikuroi species complex associated with bakanae on rice in Korea [J]. Australasian Plant Pathology, 2018, 47(1): 2334.
[14]戎振洋, 袁詠天, 曾丹丹, 等. 基于環(huán)介導(dǎo)等溫?cái)U(kuò)增技術(shù)快速診斷由Fusarium andiyazi引起的水稻惡苗病[J]. 植物病理學(xué)報(bào), 2018, 48(2): 256262.
[15]陳宏州, 楊紅福, 姚克兵, 等. 水稻惡苗病病原菌鑒定及室內(nèi)藥劑毒力測(cè)定[J]. 植物保護(hù)學(xué)報(bào), 2018, 45(6): 13561366.
[16]KIM J H, KANG M R, KIM H K, et al. Population structure of the Gibberella fujikuroi species complex associated with rice and corn in Korea [J]. The Plant Pathology Journal, 2012, 28(4): 357363.
[17]O’DONNELL K, NIRENBERG H I, AOKI T, et al. A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species [J]. Mycoscience, 2000, 41(1): 6178.
[18]GEISER D M, JIMNEZ-GASCO M M, KANG S, et al. FUSARIUM-ID v.1.0: a DNA sequence database for identifying Fusarium [J]. European Journal of Plant Pathology, 2004, 110(5/6): 473479.
[19]CHEN Hongzhou, YANG Hongfu, YAO Kebing, et al. Molecular identification of the Gibberella fujikuroi species complex associated with rice bakanae and its management in Jiangsu province, China [J]. International Journal of Agriculture and Biology, 2019, 21(2): 409415.
[20]CHEN Zihao, GAO Tao, LIANG Shuping, et al. Molecular mechanism of resistance of Fusarium fujikuroi to benzimidazole fungicides [J]. FEMS Microbiology Letters, 2014, 357(1): 7784.
[21]CHEN Yu, HUANG Tingting, CHEN Changjun, et al. Sensitivity of Fusarium verticillioides isolates from rice to a novel cyanoacrylate fungicide [J]. Crop Protection, 2012, 39: 106109.
[22]刁亞梅, 倪玨萍, 馬亞芳, 等. 創(chuàng)造殺菌劑氰烯菌酯的應(yīng)用研究[J]. 植物保護(hù), 2007, 33(4): 121123.
[23]WU Jianyan, SUN Yanan, ZHOU Xiaojun, et al. A new mutation genotype of K218T in myosin-5 confers resistance to phenamacril in rice bakanae disease in the field [J]. Plant Disease, 2020, 104(4): 11511157.
[24]LESLIE J F, SUMMERELL B A. The Fusarium laboratory manual [M]. USA: Blackwell Publishing, 2006: 87278.
[25]O’DONNELL K, KISTLER H C, CIGELNIK E, et al. Multiple evolutionary origins of the fungus causing panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies [J]. Proceedings of the National Academy of Sciences, 1998, 95(5): 20442049.
[26]陳宏州, 楊紅福, 姚克兵, 等. 藤倉(cāng)赤霉菌的抗藥性及對(duì)不同殺菌劑敏感性的相關(guān)分析[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2017, 33(33): 135141.
[27]王拱辰, 陳鴻逵, 徐沛生, 等. 水稻惡苗病病原菌的研究[J]. 植物病理學(xué)報(bào), 1990, 20(2): 9397.
[28]羅俊國(guó). 水稻惡苗病致病鐮孢種類及菌系研究[J]. 中國(guó)水稻科學(xué), 1995, 9(2): 119122.
[29]陳夕軍, 盧國(guó)新, 童蘊(yùn)慧, 等. 江蘇水稻惡苗病病原菌研究[J]. 揚(yáng)州大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版), 2008, 29(3): 8890.
[30]呂國(guó)忠, 趙志慧, 孫肖東, 等. 串珠鐮孢菌種名的廢棄及其與騰倉(cāng)赤霉復(fù)合種的關(guān)系[J]. 菌物學(xué)報(bào), 2010, 29(1): 143151.
[31]LEYVA-MADRIGAL K Y, LARRALDE-CORONA C P, CALDERN-VZQUEZ C L,et al. Genome distribution and validation of novel microsatellite markers of Fusarium verticillioides and their transferability to other Fusarium species [J]. Journal of Microbiological Methods, 2014, 101: 1823.
[32]MOHD ZAINUDIN N A I, SALLEH B. Variability of Fusarium species associated with bakanae disease of rice based on virulence, vegetative and biological compatibility [J]. Sydowia, 2010, 62(1): 89104.
[33]陳夕軍, 盧國(guó)新, 童蘊(yùn)慧, 等. 水稻惡苗病菌對(duì)三種浸種劑的抗性及抗藥菌株的競(jìng)爭(zhēng)力[J]. 植物保護(hù)學(xué)報(bào), 2007, 34(4): 425430.
[34]楊紅福, 吉沐祥, 姚克兵, 等. 水稻惡苗病對(duì)咪鮮胺的抗性研究及治理[J]. 江西農(nóng)業(yè)學(xué)報(bào), 2013, 25(6): 9496.
(責(zé)任編輯:楊明麗)