国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Zeros of Primitive Characters

2022-04-15 08:23:24WenyangWangandNiDu
Journal of Mathematical Study 2022年1期

Wenyang Wangand Ni Du

1Center for General Education,Xiamen Huaxia University,Xiamen 361024,China.

2School of Mathematical Sciences,Xiamen University,Xiamen 361005,China.

Abstract.Let G be a finite group. An irreducible character χ of G is said to be primitive if χ?G for any character? of a proper subgroup of G.In this paper,we consider about the zeros of primitive characters.Denote by Irrpri(G)the set of all irreducible primitive characters of G.We proved that if g∈G and the order of gG′in the factor group G/G′does not divide|Irrpri(G)|,then there exists ? ∈ Irrpri(G)such that ?(g)=0.

Key words:Finite group,primitive character,vanishing element.

1 Introduction

LetGbe a finite group and Irr(G)be the set of all irreducible characters ofG.For an elementgofG,gis called a vanishing element if there existsχ∈ Irr(G)such thatχ(g)=0.In[3],W.Burnside proved that for any nonlinear irreducible characterχ,there always existsg∈Gsuch thatχ(g)=0,which means that there exists at least a vanishing element for any nonlinear irreducible characterχ.It is interesting to investigate when an element of a finite group can be a vanishing element.In[1],G.Chen obtained a sufficient condition to determine when an element is a vanishing element.More precisely,suppose thatg∈G?G′and the order ofgG′in the factor groupG/G′is coprime to|Irr(G)|,then there existsχ∈ Irr(G)such thatχ(g)=0.In[4],H.Wang,X.Chen and J.Zeng showed a similar sufficient condition about the Brauer characters.In[2],X.Chen and G.Chen investigated the monomial Brauer characters.An irreducible characterχofGis said to be primitive ifχ?Gfor any character?of a proper subgroup ofG.In this paper,we consider about the zeros of primitive characters.

2 Main results and proofs

Acknowledgments

The project was supported by the Natural Science Foundation of China(Grant No.11771356),the Natural Science Foundation of Fujian Province of China(No.2019J01025)and the Research Fund for Fujian Young Faculty(Grant No.JAT190985).

环江| 依安县| 吉隆县| 平利县| 西吉县| 鸡东县| 梧州市| 铜山县| 乌鲁木齐县| 会东县| 台北县| 丰台区| 利川市| 墨江| 景宁| 青海省| 新巴尔虎右旗| 岐山县| 正安县| 江源县| 陵水| 溆浦县| 云和县| 温宿县| 黄冈市| 三门县| 申扎县| 泰顺县| 合江县| 布尔津县| 乐清市| 无为县| 孟津县| 万山特区| 上高县| 阿拉尔市| 抚顺县| 洪泽县| 密云县| 巴林左旗| 灵丘县|